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Why scale-dependent functions?
L2(R) or not L2(R)?

φ(x)→ φa(x), dx → dxda
a

To localize a particle in an interval ∆x the measuring device
requests a momentum transfer of order ∆p∼~/∆x . φ(x) at a
point x has no experimental meaning. What is meaningful, is
vacuum expectation of product of fields in a region around x

If the particle, described by φ(x), have been initially prepared
on the interval (x − ∆x

2 , x + ∆x
2 ), the probability of registering

it on this interval is ≤ 1: for the registration depends on the
strength of interaction and the ratio of typical scales related
to the particle and to the equipment.

Statement of existence: if a measuring equipment with a
given resolution a fails to register an object, prepared on
spatial interval of width ∆x with certainty, then tuning the
equipment to all possible resolutions a′ would lead to the
registration.

∫
|φa(x)|2dµ(a, x) = 1

[MA Phys. Rev. D 81(2010)125003]
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Continuous Wavelet Transform

[Carey, 1976,Bull. Austr. Math.
Soc. 15, 12; Duflo and Moore,
1976, J. Func. Anal., 21, 209]:
Let H be a Hilbert space, G be a
locally compact Lie group acting on
H, dµ(ν), ν ∈ G be a left-invariant
measure on G , with a representation
U(ν). ∀|φ〉 ∈ H

|φ〉 =
1

Cχ

∫
G

U(ν)|χ〉dµ(ν)〈χ|U∗(ν)|φ〉

|χ〉 ∈ H is the basic wavelet, which
satisfies the admissibility condition
Cχ = 1

‖χ‖2

∫
G
|〈χ|U(ν)|χ〉|2dµ(ν) <

∞. 〈χ|U∗(ν)|φ〉 are the coefficients
of wavelet decomposition

Let

G : x ′ = ax + b, x , b ∈ Rd , a ∈ R+,

be the affine group Rd , with

U(a, b)χ(x) =
1

ad
χ

(
x − b

a

)
being its (L1-normalized) representa-
tion. Then

φa(b) =

∫
Rd

1

ad
χ

(
x − b

a

)
φ(x)ddx

are the wavelet coefficients of the
function φ ∈ L2(Rd ) with respect to
the basic wavelet χ.

φ(x) =
1

Cχ

∫
1

ad
χ

(
x − b

a

)
φa(b)

ddbda

a
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Multiresolution analysis (MRA)

Mallat sequence

Increasing sequence of closed subspaces
{Vj}j∈Z,Vj ∈ L2(R):

1 . . . ⊂ V0 ⊂ V1 ⊂ V2 ⊂ . . . ⊂ L2(R)

2 clos L2 ∪j∈Z Vj = L2(R)

3 ∩j∈ZVj = ∅
4 Vj and Vj+1 are ”similar”:

f (x) ∈ Vj ⇔ f (2x) ∈ Vj+1.

If a set of functions ϕ0
k ≡ ϕ(x−k) forms

a basis in V0, then the scaling functions

ϕj
k = 2

j
2ϕ(2jx − k)

form a basis in Vj .

Any function f (x) ∈ V0

can be written as a sum of
basic functions from V1:

f (x) =
∑

k

ck 2
1
2ϕ(2x − k).

Thus V1 = V0⊕W0, where
Wj := Vj+1 \ Vj :

V2 = V1⊕W1 = V0⊕W0⊕W1,

and so on. The basic func-
tions in orthogonal comple-
ments Wj are referred to as
wavelet functions

χj
k (x) = 2

j
2χ(2jx − k).
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Discrete wavelet transform. Orthogonal wavelets

Requirements of the orthonormality of basic functions and compact-
ness of their support on [0, 2N − 1] for some N ∈ N enables the it-
erative construction of the basic wavelets from the scaling equation:

ϕ(x) =
√

2
∑

k

hkϕ(2x − k),

from where the basic wavelet functions are derived I. Daubechies.
“Orthonormal bases of compactly supported wavelets”. In: Comm.
Pure. Apl. Math. 41 (1988), pp. 909–996:

χ(x) =
√

2
2N−1∑
k=0

gkϕ(2x − k), gk = (−1)kh2N+1−k .

I. Daubechies. Ten lectures on wavelets. Philadelphie: S.I.A.M.,
1992
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Iterative wavelet algorithms

If {Vj} chain is bounded from
above by the best resolution
space VM , we can decompose
this data into projections on

WM−1⊕ . . .⊕W2⊕W1⊕W0⊕V0

by applying a pair of filters (h, g):

c j−1
i =

2N−1∑
k=0

hkc
j
k+2i ,

d j−1
i =

2N−1∑
k=0

gkc
j
k+2i ,

where c j
i are coefficients of the

projection on Vj ; d
j
i – on Wj .

Haar wavelet: N =1, h0 =h1 = 1√
2

ϕ(x) =

{
1 : 0 ≤ x ≤ 1,

0 : otherwise
,

χ(x) =


+1, 0 ≤ x < 1/2

−1, 1/2 ≤ x < 1

0, otherwise

.

x

χ

ϕ
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Euclidean scale-dependent QFT

Euclidean QFT (φ4): SE [φ] =
∫
Rd

[
1
2 (∇φ)2 + m2

2 φ
2 + λ

4!φ
4
]
ddx

Z [J] = N
∫
Dφ exp

(
−SE [φ] +

∫
J(x)φ(x)ddx

)
, φ(x) := 〈x |φ〉

If we want the fields to depend on scale (and other parameters) of
observation, we need φaθ(x) := 〈x , a, θ;χ|φ〉.
In isotropic [SO(d)-invariant] case

φ(x)→ φa(x) ≡ 〈x , a, χ|φ〉, ddx → daddx

Cχa

ZW [Ja(x)] =

∫
Dφa(x) exp

(
−SW [φa(x)] +

∫
φa(x)Ja(x)

daddx

Cχa

)
M. V. Altaisky. “Quantum field theory without divergences”. In:
Phys. Rev. D 81 (2010), p. 125003.
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Feynman diagrams in multiscale QFT

1 Each field φ̃(k) is substituted by the scale component
φ̃(k)→ φ̃a(k) = χ̃(ak)φ̃(k).

2 Each integration in the momentum variable is accompanied by
the corresponding scale integration

ddk

(2π)d
→ ddk

(2π)d

da

a

1

Cχ
.

3 Each interaction vertex is substituted by its wavelet transform;
for the N-th power interaction vertex, this gives multiplication

by the factor
N∏

i=1

χ̃(aiki ).

The finiteness of the loop integrals is provided by the following
rule: There should be no scales ai in internal lines smaller than the
minimal scale of all external lines (A = mink∈E ak ):∫ ∞

A
|χ̃(aip)|2 dai

Cχai
×
∫ ∞

A
|χ̃(ajp)|2

daj

Cχaj
,
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Multiscale Green functions

The Green functions

〈φa1(x1) · · ·φan (xn)〉c =
δn lnZW [Ja]

δJa1(x1) . . . δJan (xn)

∣∣∣∣
J=0

,

are cumulants of the field φa(x).
The bare Green function in wavelet representation takes the form

G
(2)
0 (a1, a2, p) =

χ̃(a1p)χ̃(−a2p)

p2 + m2
.

The integration over the internal scale variables ai results in a
squared wavelet cutoff factors f 2(Ap) in each diagram line, where

f (x) =
1

Cχ

∫ ∞
x
|χ̃(a)|2 da

a
, χ̃1(k) = −ıke−

k2

2 , fχ1(x) = e−x2

for isotropic wavelets. Normalization condition f (0) = 1 corre-
sponds to the divergent theory in the infinite resolution limit A→ 0.
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Scale-dependent vertex functions

As usual in functional renormalization group technique [C. Wetterich. “Exact

evolution equation for the effective potential”. In: Phys. Lett. B 301.1 (1993), pp. 90 –94], we can
introduce the effective action functional

Γ[φa(x)] = − lnZW [Ja(x)] +

∫
Ja(x)φa(x)

daddx

Cχa
,

the functional derivatives of which are the vertex functions.
We can express it in a form of perturbation expansion:

Γ(A)[φa] = Γ
(0)
(A) +

∞∑
n=1

∫
Γ

(n)
(A)(a1, b1, . . . , an, bn)×

× φa1(b1) . . . φan (bn)
da1d

db1

Cχa1
. . .

dand
dbn

Cχan

The subscript (A) indicates the presence in the theory of minimal scale – the observation scale.
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Vertex renormalization φ4
[MA Phys. Rev. D93(2016)105043]

Γ(4) = −

1

2 3

4

− 3

2

1

2

3

4

q

Using χ̃1(k) = −ıke−
k2

2 wavelet results in the cutoff factor fχ1(x) =

e−x2
. In four dimensions in the relativistic limit s2 � 4m2 we get

the following scaling equation for the coupling constant λ = λeff (A):

∂λ

∂µ
=

3λ2

16π2

2α2 + 1− eα
2

α2
e−2α2

,

where µ = − lnA + const, α = As, s = p1 + p2.
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Wavelet renormalization [No renormalization of fields is required]

φ4: M. V. Altaisky. “Unifying renormalization group and
the continuous wavelet transform”. In: Phys. Rev. D
93 (10 2016), p. 105043

Quantum electrodynamics: M. V. Altaisky and R. Raj. “Wavelet
regularization of Euclidean QED”. In: Phys. Rev. D
102 (12 2020), p. 125021

Quantum chromodynamics: M. V. Altaisky. “Wavelet
regularization of gauge theories”. In: Phys. Rev. D
101 (10 2020), p. 105004

Stochastic dynamics: M. V. Altaisky, M. Hnatich, and
N. E. Kaputkina. “Renormalization of viscosity in
wavelet-based model of turbulence”. In: Phys. Rev.
E 98 (3 2018), p. 033116
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Wavelet bases in Minkowski space
E. Gorodnitskiy and M.Perel, J. Math. Phys. 45(2012)385203

In the Minkowski space we cannot define wavelet transform using
a single mother wavelet. This is because the group SO(1, 1) of
Lorentz transformations is not a simply-connected group, but in-
cludes 4 connected components(
ch η sh η
sh η ch η

)
,

(
ch η −sh η
sh η −ch η

)
,

(
−ch η sh η
−sh η ch η

)
,

(
−ch η −sh η
−sh η −ch η

)
parametrized by the rapidity th (η) = v/c . Wavelet transform in
R1,1 requires 4 separate wavelets

χj (x) =

∫
Aj

dωdk

(2π)2
χ̃(k)e−ı(ωt−kx),

different from each other by their support in momentum space:

A1 : |ω| > |k|, ω > 0, A2 : |ω| > |k |, ω < 0,

A3 : |ω| < |k|, ω > 0, A4 : |ω| < |k|, ω < 0.
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Goal

What we want is a Lorentz-invariant theory with the spacetime
regions being spanned by some wavelet basis in a way totally
symmetric with respect to the space and the time variables.

This goal is not easy to achieve because of the causality issues.

There is only one causality rela-
tion (≺) in local QFT, but two
(≺,⊂) in scale-dependent QFT

A

B

x

t

Event A can causally affect event B only within the future-

directed light cone

≺ – signal causality

⊂ – the whole – the
part causality

Α Β

M. V. Altaisky and N. E. Kaputkina. “Continuous wavelet

transform in quantum field theory”. In: Phys. Rev. D

88 (2 2013), p. 025015 M. Altaisky and N. Kaputkina.

“On the wavelet decomposition in light cone variables”.

In: Russian Physics Journal 55.10 (2013), pp. 1177–1182
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Causal sites [J.D.Christensen and L.Crane, J. Math. Phys. 46 (2005) 122502]

Definition

A set of regions A,B,C , . . . ∈ Z with two partial orders, such that:
1 The subset relation ⊂ is a partial order on the set of regions:

A ⊂ B ∧ B ⊂ C =⇒ A ⊂ C ; A ⊂ A,
A ⊂ B ∧ B ⊂ A =⇒ A = B

2 The partial order ⊂ has a minimum element: ∀A, ∅ ⊂ A

3 The partial order ⊂ has unions:
A ⊂ A ∪ B, B ⊂ A ∪ B; if A ⊂ C ∧ B ⊂ C =⇒ A ∪ B ⊂ C

4 Relation ≺ induces a strict partial order on the non-empty
regions: A ≺ B ∧ B ≺ C =⇒ A ≺ C ; A ⊀ A.

5 ∀A,B,C :
A ⊂ B ∧ B ≺ C =⇒ A ≺ C ,
A ⊂ B ∧ C ≺ B =⇒ C ≺ A,
A ≺ C ∧ B ≺ C =⇒ A ∪ B ≺ C

is called a causal site

16 Mikhail Altaisky , Natalia Kaputkina , Robin Raj Multiresolution quantum field theory



Measurements and probability

Probability theory:

P(φB) =

∫
P(φB |φA)P(φA)DφA

Α Β

In Euclidean space

〈φa1(x1) . . . φan (xn)〉

is well defined.

The measurement of Sz = + 3
2

rules out either of si = −1
2

−L L

2T

x

t

l−l

whole
part

In Minkowski space we need light-
front variables
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Light front variables

x+ =
t + x√

2
, x− =

t − x√
2
,

x2 = 2x+x− − (x⊥)2

The standard (signal) ordering im-
plies a partial order on the set
Θ = A ∪ B ∪ C ∪ D:

A ≺ B ≺ C ,A ≺ D ≺ C .

How can we define functional in-
tegration on Θ?

A

B

C

D

x

t

x+x−

The regions, B and D, being separated by a space-like

interval, are not causally ordered. In the picture B and D

are simultaneous, but in other Lorentz frames it may be

either B ≺ D, or D ≺ B.

In standard approach x+ is taken as a ’time’, so that B ≺ D.
Polyzou, W.N. Phys. Rev. D 101(2020)096004
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Path integration over event regions: one dimension

Transition amplitude:

〈Q ′|Q〉 ∝
∫
Dqe

ı
~
∫ T

0 L[q(t)]dt

Feynman measure

Dq =
n∏

i=1

dq(ti ), max
i

(ti − ti−1)→ 0.

Discrete wavelet transform

dm
n :=

∫ T

0
2−

m
2 χ̄
(
2−mt − nb0

)
q(t)dt.

Integral over the scale variable da
a be-

comes discrete sum
∑

m dm
n χmn(t)

q0, q1, q2, q3 → d1
0 , d

1
1 , d

2
0 , c

2
0 .

2

3 6 7

5

4

1

c2
0 =

q0 + q1 + q2 + q3

2
,

d2
0 =

q0 + q1 − q2 − q3

2
,

d1
0 =

q0 − q1√
2

,

d1
1 =

q2 − q3√
2
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Wavelet transform on [0,T ]⊗ [0,T ] in (x+, x−)-plane

To store the information of each 4 points of the j hierarchy level
(c j

2k,2m, c
j
2k+1,2m, c

j
2k,2m+1, c

j
2k+1,2m+1) we need 4 basic functions:

ϕ(x+)ϕ(x−) χ(x+)ϕ(x−)
ϕ(x+)χ(x−) χ(x+)χ(x−),

This gives 4 different wavelet coefficients:

c j+1
k,m =

c j
2k,2m + c j

2k,2m+1 + c j
2k+1,2m + c j

2k+1,2m+1

2
,

d
(1),j+1
k,m =

c j
2k,2m − c j

2k,2m+1 + c j
2k+1,2m − c j

2k+1,2m+1

2
,

d
(2),j+1
k,m =

c j
2k,2m + c j

2k,2m+1 − c j
2k+1,2m − c j

2k+1,2m+1

2
,

d
(3),j+1
k,m =

c j
2k,2m − c j

2k,2m+1 − c j
2k+1,2m + c j

2k+1,2m+1

2
.
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Light front QFT in (1 + 1) dimensions

Considering the square domain D = [0,T ]⊗ [0,T ] in the (x+, x−)
plane, and the action functional

S [φ] =

∫ T

0
dx+

∫ T

0
dx−

[ ∂φ
∂x+

∂φ

∂x−
− m2

2
φ2 − λ

4!
φ4
]
,

originated from the standard Lagrangian of φ4 theory, We can for-
mally decompose the field φ(x+, x−) into the scale components

φ(x+, x−) =
∑

dm1,m2

j ,k1,k2
χm1

j ,k1
(x+)χm2

j ,k2
(x−),

where the upper indices m1,m2 ∈ {h, g} designate the type of basic
function: χh ≡ ϕ, χg ≡ χ. Similar decomposition can be written
for a full four-dimensional case of φ(x+, x−, x⊥).
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Correspondence to the ordinary theory

DWT-based generating functional

Z [J] =

∫
Ddm1,m2,...

j ,k1,k2,...
e

ı
~S[d

m1,m2,...
j,k1,k2,...

]+ıd
m1,m2,...
j,k1,k2,...

J
m1,m2,...
j,k1,k2,...

Mass term: m2

2

∫
φ2dx+dx− → m2

2

∑
|dm1m2

j ,k1k2
|2

Source term:
∫
J(x)φ(x)dx+dx− →

∑
Jm1,m2

j ,k1,k2
dm1m2

j ,k1k2
.

Kinetic term:∫
∂φ

∂x+

∂φ

∂x−
dx+dx− = −dm′1,m

′
2

j ′,k ′1,k
′
2
dm1,m2

j ,k1,k2
Ω

m′1,m1

j ′,k1−k ′1
Ω

m′2,m2

j ,k2−k ′2
=

= −
∫

d
m′1,m

′
2

j ′,k ′1,k
′
2
χ

m′1
j ′,k ′1

(x+)χ
m′2
j ′,k ′2

(x−)dm1,m2

j ,k1,k2

∂χm1
j ,k1

(x+)

∂x+

∂χm2
j ,k2

(x−)

∂x−
dx+dx−

Connection coefficients Ωm′,m
j ,k−k ′ :=

∫
dxχm′

j ,k ′(x)
∂χm

j,k (x)

∂x
J. M. Restrepo and G. K. Leaf. “Inner product computations using periodized Daubechies wavelets”. In: International

Journal for Numerical Methods in Engineering 40.19 (1997), pp. 3557–3578
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Thank You for your attention !

W i
abηφ =

∫
Ai

eık−b++ık+b−−ık⊥b⊥ f̃ (k−, k+, k⊥)

× χ̃(aeηk−, ae
−ηk+, aR

−1(φ)k⊥)
dk+dk−d

2k⊥
(2π)4
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