Multiresolution quantum field theory in light-front coordinates

Mikhail Altaisky ¹ Natalia Kaputkina ² Robin Raj ³

¹Space Research Institute RAS, Moscow, Russia

²National University of Science and Technology 'MISIS', Moscow, Russia

³Mahatma Gandhi University, Kottayam, Kerala, India

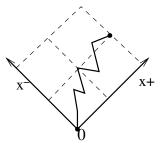
LightCone'2021: Nov 28 - Dec 4, 2021, Jeju, Korea

This paper arXiv:2106.15706

- Light-cone QFT
- Wavelet-based QFT
- Causality
- Measurement

W. N. Polyzou. In: *Phys. Rev. D* 101 (9 2020), p. 096004

$$S = \int dx^+ d\tilde{x} L(\phi(x^+, \tilde{x})),$$
$$x^+ = \frac{t+x}{\sqrt{2}}, x^- = \frac{t-x}{\sqrt{2}}$$



Why scale-dependent functions? $L^2(\mathbb{R})$ or not $L^2(\mathbb{R})$?

 $\phi(x) \rightarrow \phi_a(x), \quad dx \rightarrow \frac{dxda}{a}$

• To localize a particle in an interval Δx the measuring device requests a momentum transfer of order $\Delta p \sim \hbar/\Delta x$. $\phi(x)$ at a point x has no experimental meaning. What is meaningful, is vacuum expectation of product of fields in a region around x

[MA Phys. Rev. D 81(2010)125003]

Why scale-dependent functions? $L^2(\mathbb{R})$ or not $L^2(\mathbb{R})$?

 $\phi(x) \to \phi_a(x), \quad dx \to \frac{dxda}{a}$

- To localize a particle in an interval Δx the measuring device requests a momentum transfer of order $\Delta p \sim \hbar/\Delta x$. $\phi(x)$ at a point x has no experimental meaning. What is meaningful, is vacuum expectation of product of fields in a region around x
- If the particle, described by $\phi(x)$, have been initially prepared on the interval $\left(x - \frac{\Delta x}{2}, x + \frac{\Delta x}{2}\right)$, the probability of registering it on this interval is ≤ 1 : for the registration depends on the strength of interaction and the ratio of typical scales related to the particle and to the equipment.

[MA Phys. Rev. D 81(2010)125003]

Why scale-dependent functions? $L^2(\mathbb{R})$ or not $L^2(\mathbb{R})$?

 $\phi(x) \rightarrow \phi_a(x), \quad dx \rightarrow \frac{dxda}{a}$

- To localize a particle in an interval Δx the measuring device requests a momentum transfer of order $\Delta p \sim \hbar/\Delta x$. $\phi(x)$ at a point x has no experimental meaning. What is meaningful, is vacuum expectation of product of fields in a region around x
- If the particle, described by $\phi(x)$, have been initially prepared on the interval $\left(x - \frac{\Delta x}{2}, x + \frac{\Delta x}{2}\right)$, the probability of registering it on this interval is ≤ 1 : for the registration depends on the strength of interaction and the ratio of typical scales related to the particle and to the equipment.
- Statement of existence: if a measuring equipment with a given resolution *a* fails to register an object, prepared on spatial interval of width Δx with certainty, then tuning the equipment to *all* possible resolutions *a'* would lead to the registration. $\int |\phi_a(x)|^2 d\mu(a, x) = 1$ [MA Phys. Rev. D 81(2010)125003]

Continuous Wavelet Transform

[Carey, 1976,Bull. Austr. Math. Soc. **15**, 12; Duflo and Moore, 1976, J. Func. Anal., **21**, 209]: Let \mathcal{H} be a Hilbert space, G be a locally compact Lie group acting on \mathcal{H} , $d\mu(\nu), \nu \in G$ be a left-invariant measure on G, with a representation $U(\nu)$. $\forall | \phi \rangle \in \mathcal{H}$

$$|\phi
angle = rac{1}{\mathcal{C}_{\chi}}\int_{\mathcal{G}}U(
u)|\chi
angle d\mu(
u)\langle\chi|U^{*}(
u)|\phi
angle$$

 $\begin{array}{l} |\chi\rangle \in \mathcal{H} \text{ is the basic wavelet, which} \\ \text{satisfies the admissibility condition} \\ C_{\chi} = \frac{1}{\|\chi\|^2} \int_{\mathcal{G}} |\langle \chi | U(\nu) | \chi \rangle|^2 d\mu(\nu) < \\ \infty. \ \langle \chi | U^*(\nu) | \phi \rangle \text{ are the coefficients} \\ \text{of wavelet decomposition} \end{array}$

Let

$$G: x' = ax + b, x, b \in \mathbb{R}^d, a \in \mathbb{R}_+,$$

be the affine group \mathbb{R}^d , with

$$U(a,b)\chi(x) = \frac{1}{a^d}\chi\left(\frac{x-b}{a}\right)$$

being its (L^1 -normalized) representation. Then

$$\phi_{a}(b) = \int_{\mathbb{R}^{d}} rac{1}{a^{d}} \overline{\chi\left(rac{x-b}{a}
ight)} \phi(x) d^{d}x$$

are the wavelet coefficients of the function $\phi \in L^2(\mathbb{R}^d)$ with respect to the basic wavelet χ .

$$\phi(x) = \frac{1}{C_{\chi^{c}}} \int_{\mathbb{T}^{d}} \frac{1}{a^{d}} \chi \left(\frac{x-b}{1-a^{d}} \right) \phi_{a}(b) \frac{d^{d}bda}{1-a^{d}}$$

Multiresolution analysis (MRA)

Mallat sequence

Increasing sequence of closed subspaces $\{V_j\}_{j\in\mathbb{Z}}, V_j \in L^2(\mathbb{R}):$ $\bigcirc \dots \subset V_0 \subset V_1 \subset V_2 \subset \dots \subset L^2(\mathbb{R})$ $\oslash \operatorname{clos}_{L^2} \cup_{j\in\mathbb{Z}} V_j = L^2(\mathbb{R})$ $\circledcirc \cap_{j\in\mathbb{Z}} V_j = \emptyset$ $\circlearrowright V_j \text{ and } V_{j+1} \text{ are "similar":}$ $f(x) \in V_i \Leftrightarrow f(2x) \in V_{i+1}.$

If a set of functions $\varphi_k^0 \equiv \varphi(x-k)$ forms a basis in V_0 , then the *scaling functions*

$$\varphi_k^j = 2^{\frac{j}{2}} \varphi(2^j x - k)$$

form a basis in V_j .

Any function $f(x) \in V_0$ can be written as a sum of basic functions from V_1 :

$$f(x) = \sum_{k} c_k 2^{\frac{1}{2}} \varphi(2x-k).$$

Thus $V_1 = V_0 \oplus W_0$, where $W_j := V_{j+1} \setminus V_j$:

$$V_2 = V_1 \oplus W_1 = V_0 \oplus W_0 \oplus W_1,$$

and so on. The basic functions in orthogonal complements W_j are referred to as *wavelet functions*

$$\chi_k^j(\mathbf{x}) = 2^{\frac{j}{2}} \chi(2^j \mathbf{x} - \mathbf{k}).$$

Discrete wavelet transform. Orthogonal wavelets

Requirements of the orthonormality of basic functions and compactness of their support on [0, 2N - 1] for some $N \in \mathbb{N}$ enables the iterative construction of the basic wavelets from the scaling equation:

$$\varphi(x) = \sqrt{2} \sum_{k} h_k \varphi(2x - k),$$

from where the basic wavelet functions are derived I. Daubechies. "Orthonormal bases of compactly supported wavelets". In: *Comm. Pure. Apl. Math.* 41 (1988), pp. 909–996:

$$\chi(x) = \sqrt{2} \sum_{k=0}^{2N-1} g_k \varphi(2x-k), \quad g_k = (-1)^k h_{2N+1-k}.$$

I. Daubechies. *Ten lectures on wavelets*. Philadelphie: S.I.A.M., 1992

Iterative wavelet algorithms

If $\{V_j\}$ chain is bounded from above by the best resolution space V_M , we can decompose this data into projections on $W_{M-1} \oplus \ldots \oplus W_2 \oplus W_1 \oplus W_0 \oplus V_0$ by applying a pair of filters (h, g):

$$c_i^{j-1} = \sum_{k=0}^{2N-1} h_k c_{k+2i}^j,$$

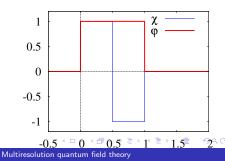
$$d_i^{j-1} = \sum_{k=0}^{2N-1} g_k c_{k+2i}^j,$$

where c_i^j are coefficients of the projection on V_j ; d_i^j – on W_j .

7 Mikhail Altaisky , Natalia Kaputkina , Robin Raj

Haar wavelet: $N = 1, h_0 = h_1 = \frac{1}{\sqrt{2}}$

$$arphi(x) = egin{cases} 1: & 0 \le x \le 1, \\ 0: & ext{otherwise} \end{cases}, \ \chi(x) = egin{cases} +1, & 0 \le x < 1/2 \\ -1, & 1/2 \le x < 1 \ 0, & ext{otherwise} \end{cases}$$



Euclidean scale-dependent QFT

Euclidean QFT (
$$\phi^4$$
): $S_E[\phi] = \int_{\mathbb{R}^d} \left[\frac{1}{2} (\nabla \phi)^2 + \frac{m^2}{2} \phi^2 + \frac{\lambda}{4!} \phi^4 \right] d^d x$
$$Z[J] = \mathcal{N} \int \mathcal{D}\phi \exp\left(-S_E[\phi] + \int J(x)\phi(x)d^d x \right), \quad \phi(x) := \langle x | \phi \rangle$$

If we want the fields to depend on scale (and other parameters) of observation, we need $\phi_{a\theta}(x) := \langle x, a, \theta; \chi | \phi \rangle$. In isotropic [SO(d)-invariant] case

$$\phi(x) \to \phi_a(x) \equiv \langle x, a, \chi | \phi \rangle, \quad d^d x \to \frac{dad^d x}{C_{\chi} a}$$

$$Z_W[J_a(x)] = \int \mathcal{D}\phi_a(x) \exp\left(-S_W[\phi_a(x)] + \int \phi_a(x)J_a(x)\frac{dad^dx}{C_{\chi}a}\right)$$

M. V. Altaisky. "Quantum field theory without divergences". In: *Phys. Rev. D* 81 (2010), p. 125003.

Feynman diagrams in multiscale QFT

- Each field $\tilde{\phi}(k)$ is substituted by the scale component $\tilde{\phi}(k) \rightarrow \tilde{\phi}_{a}(k) = \overline{\tilde{\chi}(ak)}\tilde{\phi}(k)$.
- Each integration in the momentum variable is accompanied by the corresponding scale integration

$$rac{d^d k}{(2\pi)^d}
ightarrow rac{d^d k}{(2\pi)^d} rac{da}{a} rac{1}{C_{\chi}}.$$

The finiteness of the loop integrals is provided by the following rule: There should be no scales a_i in internal lines smaller than the minimal scale of all external lines $(A = \min_{k \in E} a_k)$:

$$\int_{\mathcal{A}}^{\infty} |\tilde{\chi}(a_i p)|^2 \frac{da_i}{C_{\chi} a_i} \times \int_{\mathcal{A}}^{\infty} |\tilde{\chi}(a_j p)|^2 \frac{da_j}{C_{\chi} a_j},$$

Multiscale Green functions

The Green functions

$$\langle \phi_{a_1}(x_1) \cdots \phi_{a_n}(x_n) \rangle_c = \left. \frac{\delta^n \ln Z_W[J_a]}{\delta J_{a_1}(x_1) \dots \delta J_{a_n}(x_n)} \right|_{J=0}$$

are cumulants of the field $\phi_a(x)$.

The bare Green function in wavelet representation takes the form

$$G_0^{(2)}(a_1,a_2,p) = rac{ ilde{\chi}(a_1p) ilde{\chi}(-a_2p)}{p^2+m^2}$$

The integration over the internal scale variables a_i results in a squared wavelet cutoff factors $f^2(Ap)$ in each diagram line, where

$$f(x) = rac{1}{C_{\chi}} \int_{x}^{\infty} |\tilde{\chi}(a)|^2 rac{da}{a}, \quad \left[\tilde{\chi}_1(k) = -\imath k e^{-rac{k^2}{2}}, f_{\chi_1}(x) = e^{-x^2}
ight]$$

for isotropic wavelets. Normalization condition f(0) = 1 corresponds to the divergent theory in the infinite resolution limit $A \rightarrow 0$.

Scale-dependent vertex functions

As usual in functional renormalization group technique [C. Wetterich. "Exact evolution equation for the effective potential". In: *Phys. Lett. B* 301.1 (1993), pp. 90 –94], We Can introduce the effective action functional

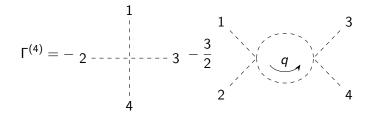
$$\Gamma[\phi_a(x)] = -\ln Z_W[J_a(x)] + \int J_a(x)\phi_a(x)\frac{dad^d x}{C\chi a},$$

the functional derivatives of which are the vertex functions. We can express it in a form of perturbation expansion:

$$\Gamma_{(A)}[\phi_a] = \Gamma_{(A)}^{(0)} + \sum_{n=1}^{\infty} \int \Gamma_{(A)}^{(n)}(a_1, b_1, \dots, a_n, b_n) \times \\ \times \phi_{a_1}(b_1) \dots \phi_{a_n}(b_n) \frac{da_1 d^d b_1}{C_{\chi} a_1} \dots \frac{da_n d^d b_n}{C_{\chi} a_n}$$

The subscript (A) indicates the presence in the theory of minimal scale – the observation scale.

Vertex renormalization ϕ^4 [MA Phys. Rev. D93(2016)105043]



Using $\tilde{\chi}_1(k) = -ike^{-\frac{k^2}{2}}$ wavelet results in the cutoff factor $f_{\chi_1}(x) = e^{-x^2}$. In four dimensions in the relativistic limit $s^2 \gg 4m^2$ we get the following scaling equation for the coupling constant $\lambda = \lambda^{eff}(A)$:

$$rac{\partial\lambda}{\partial\mu}=rac{3\lambda^2}{16\pi^2}rac{2lpha^2+1-e^{lpha^2}}{lpha^2}e^{-2lpha^2},$$

where $\mu = -\ln A + const$, $\alpha = As$, $s = p_1 + p_2$.

Wavelet renormalization [No renormalization of fields is required]

 φ⁴: M. V. Altaisky. "Unifying renormalization group and the continuous wavelet transform". In: *Phys. Rev. D* 93 (10 2016), p. 105043

Quantum electrodynamics: M. V. Altaisky and R. Raj. "Wavelet regularization of Euclidean QED". In: *Phys. Rev. D* 102 (12 2020), p. 125021

Quantum chromodynamics: M. V. Altaisky. "Wavelet regularization of gauge theories". In: *Phys. Rev. D* 101 (10 2020), p. 105004

Stochastic dynamics: M. V. Altaisky, M. Hnatich, and

N. E. Kaputkina. "Renormalization of viscosity in wavelet-based model of turbulence". In: *Phys. Rev. E* 98 (3 2018), p. 033116

.

Wavelet bases in Minkowski space E. Gorodnitskiy and M.Perel, J. Math. Phys. **45**(2012)385203

In the Minkowski space we cannot define wavelet transform using a single mother wavelet. This is because the group SO(1,1) of Lorentz transformations is not a simply-connected group, but includes 4 connected components

$$\begin{pmatrix} \operatorname{ch} \eta & \operatorname{sh} \eta \\ \operatorname{sh} \eta & \operatorname{ch} \eta \end{pmatrix}, \begin{pmatrix} \operatorname{ch} \eta & -\operatorname{sh} \eta \\ \operatorname{sh} \eta & -\operatorname{ch} \eta \end{pmatrix}, \begin{pmatrix} -\operatorname{ch} \eta & \operatorname{sh} \eta \\ -\operatorname{sh} \eta & \operatorname{ch} \eta \end{pmatrix}, \begin{pmatrix} -\operatorname{ch} \eta & -\operatorname{sh} \eta \\ -\operatorname{sh} \eta & -\operatorname{ch} \eta \end{pmatrix}$$

parametrized by the rapidity $th(\eta) = v/c$. Wavelet transform in $\mathbb{R}^{1,1}$ requires 4 separate wavelets

$$\chi_j(x) = \int_{\mathcal{A}_j} \frac{d\omega dk}{(2\pi)^2} \tilde{\chi}(k) e^{-i(\omega t - kx)},$$

different from each other by their support in momentum space:

$$egin{aligned} &\mathcal{A}_1: |\omega| > |k|, \omega > 0, & \mathcal{A}_2: |\omega| > |k|, \omega < 0, \ &\mathcal{A}_3: |\omega| < |k|, \omega > 0, & \mathcal{A}_4: |\omega| < |k|, \omega < 0. \end{aligned}$$

Goal

What we want is a Lorentz-invariant theory with the spacetime regions being spanned by some wavelet basis in a way totally symmetric with respect to the space and the time variables.

This goal is not easy to achieve because of the causality issues.

There is only one causality relation (\prec) in local QFT, but two (\prec , \subset) in scale-dependent QFT

Event A can causally affect event B only within the future-

15 Mikhail Altaisky, Natalia Kaputkina, Robin Raj

directed light cone

 \prec – signal causality

 \subset – the whole – the part causality

M. V. Altaisky and N. E. Kaputkina. "Continuous wavelet transform in quantum field theory". In: *Phys. Rev. D* 88 (2 2013), p. 025015 M. Altaisky and N. Kaputkina. "On the wavelet decomposition in light cone variables". In: *Russian Physics_Journal_*55,10 (2013), pp. 1177=1182₂, c. Multiresolution quantum field theory

Definition

A set of regions $A, B, C, \ldots \in \mathcal{Z}$ with two partial orders, such that:

- The subset relation ⊂ is a partial order on the set of regions:
 A ⊂ B ∧ B ⊂ C ⇒ A ⊂ C; A ⊂ A,
 A ⊂ B ∧ B ⊂ A ⇒ A = B
- **2** The partial order \subset has a minimum element: $\forall A, \emptyset \subset A$
- The partial order \subset has unions: $A \subset A \cup B, B \subset A \cup B$; if $A \subset C \land B \subset C \implies A \cup B \subset C$
- ③ Relation \prec induces a strict partial order on the non-empty regions: $A \prec B \land B \prec C \implies A \prec C$; $A \not\prec A$.

is called a causal site

Probability theory:

$$P(\phi_B) = \int P(\phi_B | \phi_A) P(\phi_A) \mathcal{D} \phi_A$$

In Euclidean space

$$\langle \phi_{a_1}(x_1) \dots \phi_{a_n}(x_n) \rangle$$

is well defined.

The measurement of $S_z = +\frac{3}{2}$ rules out either of $s_i = -\frac{1}{2}$ part whole -L -1

In Minkowski space we need lightfront variables

Light front variables

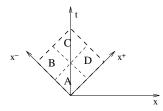
$$x^{+} = \frac{t+x}{\sqrt{2}}, x^{-} = \frac{t-x}{\sqrt{2}},$$

 $x^{2} = 2x^{+}x^{-} - (x^{\perp})^{2}$

The standard (signal) ordering implies a partial order on the set $\Theta = A \cup B \cup C \cup D$:

 $A \prec B \prec C, A \prec D \prec C.$

How can we define functional integration on Θ ?



The regions, *B* and *D*, being separated by a space-like interval, are not causally ordered. In the picture *B* and *D* are simultaneous, but in other Lorentz frames it may be either $B \prec D$, or $D \prec B$.

In standard approach x^+ is taken as a 'time', so that $B \prec D$. Polyzou, W.N. *Phys. Rev. D* **101**(2020)096004 Transition amplitude:

$$\langle Q'|Q
angle \propto \int {\cal D}q e^{rac{i}{\hbar}\int_0^{ au} L[q(t)]dt}$$

Feynman measure

$$\mathcal{D}q = \prod_{i=1}^n dq(t_i), \quad \max_i(t_i - t_{i-1}) o 0.$$

Discrete wavelet transform

$$d_n^m := \int_0^T 2^{-\frac{m}{2}} \bar{\chi} \left(2^{-m}t - nb_0 \right) q(t) dt.$$

Integral over the scale variable $\frac{da}{a}$ becomes discrete sum $\sum_{m} d_{n}^{m} \chi_{mn}(t)$

$$q_0, q_1, q_2, q_3 \rightarrow d_0^1, d_1^1, d_0^2, c_0^2.$$

$$c_0^2 = \frac{q_0 + q_1 + q_2 + q_3}{2},$$

$$d_0^2 = \frac{q_0 + q_1 - q_2 - q_3}{2},$$

$$d_0^1 = \frac{q_0 - q_1}{\sqrt{2}},$$

$$d_1^1 = \frac{q_2 - q_3}{\sqrt{2}}$$

Wavelet transform on $[0, T] \otimes [0, T]$ in (x^+, x^-) -plane

To store the information of each 4 points of the *j* hierarchy level $(c_{2k,2m}^{j}, c_{2k+1,2m}^{j}, c_{2k,2m+1}^{j}, c_{2k+1,2m+1}^{j})$ we need 4 basic functions:

$$\begin{array}{ll} \varphi(x^+)\varphi(x^-) & \chi(x^+)\varphi(x^-) \\ \varphi(x^+)\chi(x^-) & \chi(x^+)\chi(x^-), \end{array}$$

This gives 4 different wavelet coefficients:

$$\begin{split} c_{k,m}^{j+1} &= \frac{c_{2k,2m}^{j} + c_{2k,2m+1}^{j} + c_{2k+1,2m}^{j} + c_{2k+1,2m+1}^{j}}{2}, \\ d_{k,m}^{(1),j+1} &= \frac{c_{2k,2m}^{j} - c_{2k,2m+1}^{j} + c_{2k+1,2m}^{j} - c_{2k+1,2m+1}^{j}}{2}, \\ d_{k,m}^{(2),j+1} &= \frac{c_{2k,2m}^{j} + c_{2k,2m+1}^{j} - c_{2k+1,2m}^{j} - c_{2k+1,2m+1}^{j}}{2}, \\ d_{k,m}^{(3),j+1} &= \frac{c_{2k,2m}^{j} - c_{2k,2m+1}^{j} - c_{2k+1,2m}^{j} + c_{2k+1,2m+1}^{j}}{2}. \end{split}$$

20 Mikhail Altaisky , Natalia Kaputkina , Robin Raj

Considering the square domain $D = [0, T] \otimes [0, T]$ in the (x^+, x^-) plane, and the action functional

$$S[\phi] = \int_0^T dx^+ \int_0^T dx^- \left[\frac{\partial \phi}{\partial x^+} \frac{\partial \phi}{\partial x^-} - \frac{m^2}{2} \phi^2 - \frac{\lambda}{4!} \phi^4\right],$$

originated from the standard Lagrangian of ϕ^4 theory, We can formally decompose the field $\phi(x^+, x^-)$ into the scale components

$$\phi(x^+,x^-) = \sum d_{j,k_1,k_2}^{m_1,m_2} \chi_{j,k_1}^{m_1}(x^+) \chi_{j,k_2}^{m_2}(x^-),$$

where the upper indices $m_1, m_2 \in \{h, g\}$ designate the type of basic function: $\chi^h \equiv \varphi, \chi^g \equiv \chi$. Similar decomposition can be written for a full four-dimensional case of $\phi(x^+, x^-, \mathbf{x}_\perp)$.

Correspondence to the ordinary theory

DWT-based generating functional

$$Z[J] = \int \mathcal{D}d_{j,k_1,k_2,\dots}^{m_1,m_2,\dots} e^{\frac{i}{\hbar}S[d_{j,k_1,k_2,\dots}^{m_1,m_2,\dots}] + id_{j,k_1,k_2,\dots}^{m_1,m_2,\dots}J_{j,k_1,k_2,\dots}^{m_1,m_2,\dots}}$$

Mass term: $\frac{m^2}{2} \int \phi^2 dx^+ dx^- \to \frac{m^2}{2} \sum |d_{j,k_1k_2}^{m_1m_2}|^2$ Source term: $\int J(x)\phi(x)dx^+ dx^- \to \sum J_{j,k_1,k_2}^{m_1m_2}d_{j,k_1k_2}^{m_1m_2}$. Kinetic term:

$$\int \frac{\partial \phi}{\partial x^{+}} \frac{\partial \phi}{\partial x^{-}} dx^{+} dx^{-} = -d_{j',k_{1}',k_{2}'}^{m_{1}',m_{2}'} d_{j,k_{1},k_{2}}^{m_{1}',m_{1}} \Omega_{j',k_{1}-k_{1}'}^{m_{2}',m_{2}} \Omega_{j,k_{2}-k_{2}'}^{m_{1}',m_{2}'} =$$

$$= -\int d_{j',k_{1}',k_{2}'}^{m_{1}',m_{2}'} \chi_{j',k_{1}'}^{m_{1}'} (x^{+}) \chi_{j',k_{2}'}^{m_{2}'} (x^{-}) d_{j,k_{1},k_{2}}^{m_{1},m_{2}} \frac{\partial \chi_{j,k_{1}}^{m_{1}} (x^{+})}{\partial x^{+}} \frac{\partial \chi_{j,k_{2}}^{m_{2}} (x^{-})}{\partial x^{-}} dx^{+} dx^{-}$$

Connection coefficients $\Omega_{j,k-k'}^{m',m} := \int dx \chi_{j,k'}^{m'}(x) \frac{\partial \chi_{j,k}^m(x)}{\partial x}$

J. M. Restrepo and G. K. Leaf. "Inner product computations using periodized Daubechies wavelets". In: International Journal for Numerical Methods in Engineering 40.19 (1997), pp. 3557–3578

$$egin{aligned} &W^i_{ab\eta\phi} = \int_{A_i} e^{\imath k_- b_+ + \imath k_+ b_- - \imath oldsymbol{k}_\perp oldsymbol{b}_\perp \widetilde{f}(k_-, k_+, oldsymbol{k}_\perp)) \ & imes \overline{\widetilde{\chi}}(ae^\eta k_-, ae^{-\eta} k_+, aR^{-1}(\phi)oldsymbol{k}_\perp) rac{dk_+ dk_- d^2oldsymbol{k}_\perp}{(2\pi)^4} \end{aligned}$$