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o Light-cone QFT
o Wavelet-based QFT
o Causality

@ Measurement
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Why scale-dependent functions?

L*(R) or not [*(R)?
d(x) = ¢a(x), dx — %

@ To localize a particle in an interval Ax the measuring device
requests a momentum transfer of order Ap~#h/Ax. ¢(x) at a
point x has no experimental meaning. What is meaningful, is
vacuum expectation of product of fields in a region around x

[MA Phys. Rev. D 81(2010)125003]
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Why scale-dependent functions?

L*(R) or not [*(R)?

d(x) = ¢a(x), dx — %

@ To localize a particle in an interval Ax the measuring device
requests a momentum transfer of order Ap~#h/Ax. ¢(x) at a
point x has no experimental meaning. What is meaningful, is
vacuum expectation of product of fields in a region around x

o If the particle, described by ¢(x), have been initially prepared
on the interval (x — %,x + %) the probability of registering
it on this interval is < 1: for the registration depends on the
strength of interaction and the ratio of typical scales related

to the particle and to the equipment.

[MA Phys. Rev. D 81(2010)125003]
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Why scale-dependent functions?

L*(R) or not [*(R)?

0(x) = Galx), dx — B2

@ To localize a partlcle in an interval Ax the measuring device
requests a momentum transfer of order Ap~#h/Ax. ¢(x) at a
point x has no experimental meaning. What is meaningful, is
vacuum expectation of product of fields in a region around x

o If the particle, described by ¢(x), have been initially prepared
on the interval (x — 5%, x + AX) the probability of registering
it on this interval is § 1. for the registration depends on the
strength of interaction and the ratio of typical scales related
to the particle and to the equipment.

@ Statement of existence: if a measuring equipment with a
given resolution a fails to register an object, prepared on
spatial interval of width Ax with certainty, then tuning the
equipment to all possible resolutions a’ would lead to the
registration. [ |¢a(x)|?dp(a,x) =1

[MA Phys. Rev. D 81(2010)125003]
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Continuous Wavelet Transform

[Carey, 1976,Bull. Austr. Math.
Soc. 15, 12; Duflo and Moore,
1976, J. Func. Anal., 21, 209]:

Let H be a Hilbert space, G be a
locally compact Lie group acting on
H, du(v),v € G be a left-invariant
measure on G, with a representation

U(v). V|¢) € H

16) = C1 /G U0 ) du(r) x| U (1))

|x) € H is the basic wavelet, which
satisfies the admissibility condition
G = i Jo IV ) Pdu(v) <
oo. (x|U*(v)|¢) are the coefficients
of wavelet decomposition
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Let
G:xX'=ax+bx,beR! acRy,

be the affine group R?, with

U(a, b)x(x) = %X (x - b)

a

being its (L!-normalized) representa-
tion. Then

0u0) = [ 2 (52 strax

are the wavelet coefficients of the
function ¢ € L?(R?) with respect to
the basic wavelet y.

P(x) =

Multiresolution quantum field theory

1 1 x—b d9bd:
Cx/adx <a> ¢a(b) 3




Multiresolution analysis (MRA)

Any function f(x) € W

can be written as a sum of
Increasing sequence of closed subspaces basic functions from V:

{ViYjez, V; € *(R): }
Q@ . .cVhcVicWwcC...CcL?R) f(X):ZCkQQ‘P(QX—k)-
@ clos 2 Ujez V; = L3(R) -
Q NjczV; = 0 Thus Vi = Vo & Wy, where

Wi = Vi \ Ve

Vo = VieW, = Voo Wod Wi,

Mallat sequence

© Vjand Vj,; are "similar":

f(x) eV, & f(2x) € Vjq1.

and so on. The basic func-

tions in orthogonal comple-

ments W; are referred to as
i i i wavelet functions

7 = 25 p(2x — k)

If a set of functions ¢ = ¢(x — k) forms
a basis in V{, then the scaling functions

2
form a basis in V;. XJk(X) = 2éx(2jx — k).
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Discrete wavelet transform. Orthogonal wavelets

Requirements of the orthonormality of basic functions and compact-
ness of their support on [0,2N — 1] for some N € N enables the it-
erative construction of the basic wavelets from the scaling equation:

P(x) = V2 hep(2x — k),
k

from where the basic wavelet functions are derived |. Daubechies.
“Orthonormal bases of compactly supported wavelets”. In: Comm.
Pure. Apl. Math. 41 (1988), pp. 909-996:

2N-1

X()=v2 > gkp(2x— k), gk = (1) hany1-k-
k=0

|. Daubechies. Ten lectures on wavelets. Philadelphie: S.I.A.M.,
1992
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Iterative wavelet algorithms

Haar wavelet: N=1,hg=h; = %

If {V;} chain is bounded from
above by the best resolution 1: 0<x<1,
space V), we can decompose

this data into projections on

Wy_1®..oWoa Wi Wod Vg

0: otherwise

+1, 0<x<1/2

x(x)=<¢-1, 1/2<x<1.
by applying a pair of filters (h, g): 0, otherwise
2N-1
- ,
=S 1 —
k=0 ¢ —
2N-1 0.5
- :
di” = Z gkCII<+2i’ 0
k=0
-0.5
where ¢! are coefficients of the 4

projection on Vj; di —on W;.

-0.5 0 0.5 1 1.5 2
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Euclidean scale-dependent QFT

Euclidean QFT (¢*): Se[¢] = Jgo [ 2+ m72¢2 T %qﬁ“} d’x

21 = N [ Does (—sf[qs] + [ J(x)¢(x>ddx) L 6(x) = (x19)

If we want the fields to depend on scale (and other parameters) of
observation, we need ¢.(x) 1= (x, a,0; x|®).
In isotropic [SO(d)-invariant] case

dadx
Ca

20l = [ Do (~Sutostl + [ outx) 500 %)

M. V. Altaisky. “Quantum field theory without divergences”. In:
Phys. Rev. D 81 (2010), p. 125003.

$(x) = ¢a(x) = (x,a,x9), dx—
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Feynman diagrams in multiscale QFT

O Each field B(k) is substituted by the scale component
P(k) = da(k) = X(ak)o(k).
@ Each integration in the momentum variable is accompanied by
the corresponding scale integration
d9k . d% da 1
(2m)d ~ (2m)d a G
© Each interaction vertex is substituted by its wavelet transform;

for the N-th power interaction vertex, this gives multiplication
N

by the factor H)”((a,-k,-).
i=1
The finiteness of the loop integrals is provided by the following
rule: There should be no scales a; in internal lines smaller than the
minimal scale of all external lines (A = minycg ak):

e da; & daj
~r 2 93 ~r o2 99
[ W & |G L

9 Mikhail Altaisky , Natalia Kaputkina , Robin Raj Multiresolution quantum field theory



Multiscale Green functions

The Green functions

" In Zwld]
" 5, (51) - - 60, ()

(Pay (x1) * ++ Pap(Xn)) e

)

J=0

are cumulants of the field ¢,(x).
The bare Green function in wavelet representation takes the form

X(a1p)X(—a2p)

(2) _
G~0 (31,32,P)— p2_|_m2

The integration over the internal scale variables a; results in a
squared wavelet cutoff factors £2(Ap) in each diagram line, where

d 2
=2 / (@PZ, [falk) = —the™ iy (x) = ™

for isotropic wavelets. Normalization condition f(0) = 1 corre-
sponds to the divergent theory in the infinite resolution limit A — 0.
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Scale-dependent vertex functions

As usual in functional renormalization group technique [c. wetterich. “Exact
evolution equation for the effective potential”. In: Phys. Lett. B 301.1 (1993), pp. 90 -94], W€ Can

introduce the effective action functional

dad¥x
Cyxa

)

Méa(x)] = — In Zw[Ja(x)] + / J2(x)6a(x)

the functional derivatives of which are the vertex functions.
We can express it in a form of perturbation expansion:

Caylda] = FEOA)) + Z/FEZ\))(ah b1,...,an, by)x
n=1

da1d?b; da,d?b,
Gai  Gan

X ¢ay(b1) - - ¢a,(bn)

The subscript (A) indicates the presence in the theory of minimal scale — the observation scale.
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Vertex renormalization ¢4 [MA Phys. Rev. D93(2016)105043]

1
| 1 3
r(4) - — " L 2 N \1//
2 : 3 2 ///l\ \(_7/4 /1\\\
1 2 _ 4
4
2
Using X1(k) = —1ke™ T wavelet results in the cutoff factor fi(x) =

e=*. In four dimensions in the relativistic limit s2 > 4m? we get

the following scaling equation for the coupling constant A = \¢(A):

N 3A220241—e" L.
—— e
op 1672 a? ’

where = —In A+ const, «a=As, s=pi+ po.
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Wavelet renormalization ]

»* M. V. Altaisky. “Unifying renormalization group and
the continuous wavelet transform”. In: Phys. Rev. D
93 (10 2016), p. 105043

Quantum electrodynamics: M. V. Altaisky and R. Raj. “Wavelet
regularization of Euclidean QED". In: Phys. Rev. D
102 (12 2020), p. 125021

Quantum chromodynamics: M. V. Altaisky. “Wavelet
regularization of gauge theories”. In: Phys. Rev. D
101 (10 2020), p. 105004

Stochastic dynamics: M. V. Altaisky, M. Hnatich, and
N. E. Kaputkina. “Renormalization of viscosity in
wavelet-based model of turbulence”. In: Phys. Rev.
E 98 (3 2018), p. 033116
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Wavelet bases in Minkowski space

E. Gorodnitskiy and M.Perel, J. Math. Phys. 45(2012)385203

In the Minkowski space we cannot define wavelet transform using
a single mother wavelet. This is because the group SO(1,1) of
Lorentz transformations is not a simply-connected group, but in-
cludes 4 connected components

chn shn chn —shn —chn shnp —chn —shn

shn chn)’ \shn —chn)’ \—shn chn/)’ \—shn —chnp
parametrized by the rapidity th(n) = v/c. Wavelet transform in
R requires 4 separate wavelets

dwdk
~ —1(wt—kx)
X(k)e :
,, 2tk

different from each other by their support in momentum space:

xj(x) =

A1 ¢ |w| > |k|,w >0, Ao i |w| > |k|,w <0,
Az |w| < |k|,w > 0, A |w| < [k|,w < 0.
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What we want is a Lorentz-invariant theory with the spacetime
regions being spanned by some wavelet basis in a way totally
symmetric with respect to the space and the time variables.

This goal is not easy to achieve because of the causality issues.

There is only one causality rela-

tion (<) in local QFT, but two

(<,C) in scale-dependent QFT
t

B
N .,
N ’
N
’
N A,
N
N4
X

Event A can causally affect event B only within the future-

directed light cone
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< —signal causality
C — the whole — the

part causality

M. V. Altaisky and N. E. Kaputkina. “Continuous wavelet
transform in quantum field theory”. In: Phys. Rev. D
88 (2 2013), p. 025015 M. Altaisky and N. Kaputkina.
“On the wavelet decomposition in light cone variables”.

In: Russian Physics Journal55.10 (2013), pp. 1177=1182

Multiresolution quantum field theory



Ca Usal SlteS [J.D.Christensen and L.Crane, J. Math. Phys. 46 (2005) 122502]

A set of regions A, B, C, ... € Z with two partial orders, such that:
© The subset relation C is a partial order on the set of regions:
ACBABCC = ACC ACA,
ACBANBCA — A=B

@ The partial order C has a minimum element: VA,() C A

© The partial order C has unions:
ACAUB, BCAUB;ifACCABCC = AUuBcCC
@ Relation < induces a strict partial order on the non-empty
regions: A< BAB<C = A<C, A£A
Q@ VA B, C:
ACBAB<C = A<C,
ACBANC=<B — C<A,
A<CANB<C = AUuB=<C

is called a causal site
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Measurements and probability

Probability theory: The measurement of S, = +%

P(65) = / P(é5164)P(64)Doa @

rules out either of s; = —%
In Euclidean space <ﬂwﬂole
(Pay (x1) - - - Pa,(Xn)) 4 b X
In Minkowski space we need light-
is well defined. front variables
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Light front variables

The standard (signal) ordering im-
plies a partial order on the set
©=AUBUCUD:

The regions, B and D, being separated by a space-like

A < B =< C, A < D =< C interval, are not causally ordered. In the picture B and D

are simultaneous, but in other Lorentz frames it may be
How can we define functional in-
tegration on ©7
In standard approach x™ is taken as a 'time’, so that B < D.
Polyzou, W.N. Phys. Rev. D 101(2020)096004

either B < D, or D < B.
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Path integration over event regions: one dimension

Transition amplitude:
1 41 2 2
quq17q27q3_>d07d1ad07CO'

<QI|Q> XX \/‘qu;i foT L[q(t)]dt
e lefe 7]

Feynman measure

n
Dq = H dq(t;), miax(t,- —ti_1) = 0.
i=1
I 2 Go+aq1+g2+gs3
¢ = ,

Discrete wavelet transform 2
2_Gotq1—92—qs
T m dO - ’
dy = / 2723 (27™t — nby) q(t)dt. 2
0 dl = do— a1
o CoV2
Integral over the scale variable <2 be- L -
comes discrete sum > d["Xmn(t) di = V2
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Wavelet transform on [0, T] ® [0, T] in (x™, x)-plane

To store the information of each 4 points of the j hierarchy level

(CJzk,Zm’ cJ2k+172m, Cék,2m+1’ Cék—i—l,Zm—i—l) we need 4 basic functions:

e(xMp(x7)  x(xH)e(x7)
xt )

This gives 4 different wavelet coefficients:

Cj+1 o Cék,2m + Cék,2m—|—1 + Cék+1,2m + Cék+1,2m+1
- 9

k,m 2

)

FCONES Cokom ~ Cokami1l T Orr1om — kil2mil

2
d(2),j+1 . Cék,Zm + Cék,2m+1 Cék-i—l 2m Cék+1 2m+1
= 5 ,
d(a)J+1 _ CJzk,zm - Cék,2m+1 C£k+1 2m C§k+1,2m+1

2
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Light front QFT in (1 + 1) dimensions

Considering the square domain D = [0, T] ® [0, T] in the (x™,x™)
plane, and the action functional

S[¢] = /d+/ @%—'Lf !¢4],

Oxt Ox—

originated from the standard Lagrangian of ¢* theory, We can for-
mally decompose the field ¢(x™, x ) into the scale components

Ox*x7) = D AT (N (x),

where the upper indices my, my € {h, g} designate the type of basic
function: x" = o, x& = x. Similar decomposition can be written
for a full four-dimensional case of ¢(x*,x™, x ).
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Correspondence to the ordinary theory

DWT-based generating functional

S[ my,my,.. ]+de1 sMy,.. Jml,m2,

Z[J] = /dekl";’? i ky k.. ki ko S kg
1,k

Mass term: = f¢2dx+dx +—> 2 Z‘ Jml,gl%rzzif mym
1, 2
Source term: fJ P(x)dxtdx™ — 3 JEdTE.

Kinetic term:
8¢ 8¢ 9P ax +d - _ dmi,mé ml,szml,ml Qmé,mg .
Oxt Ox— k] kb ke ska 2k — k2 ko — k) T
XM (xT)o -
= — [ X (X ()T X 0 00T -
J' kg oka N kG ' k3 Jokike o 9yt 8x
aank(X)

/
; e m,m . _ f m’ ( ) .
Connection coefficients Qj,k—k' 1= [ dxx [T (X) =55
J. M. Restrepo and G. K. Leaf. “Inner product computations using periodized Daubechies wavelets". In: /nternational

Journal for Numerical Methods in Engineering 40.19 (1997), pp. 3557-3578

22 Mikhail Altaisky , Natalia Kaputkina , Robin Raj Multiresolution quantum field theory



Thank You for your attention !

a

Wlbn¢ — / elk_b++lk+b_77,kj_bl F(k_’ k+’ kJ_)
A

dkydk_d’k,

X ?(ae"k,, ae "k, aR_1(¢)kl) (27.‘_)4
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