Photon-to-nucleon transition distribution amplitudes and backward time-like Compton scattering.

K.M. Semenov-Tian-Shansky
National Research Centre Kurchatov Institute: Petersburg Nuclear Physics Institute, Gatchina, Russia, National Research University Higher School of Economics, Saint Petersburg, Russia

November 30, 2021

Outline

(1) Introduction: Forward and backward kinematical regimes, DAs, GPDs, TDAs;
(2) Nucleon-to-photon TDAs: definition and properties;
(3) Physical contents of $\mathcal{M} \mathcal{M}$ and γN TDAs;
(4) Near-backward TCS within the TDA framework;
(3) Cross section estimates for JLab, EIC and EicC;
(6) Summary and Outlook.

In collaboration with: B. Pire, L. Szymanowski,

Physics Reports 940 (2021) 0-120		
	Contents lists available at ScienceDirect	physics mipomis
	Physics Reports	$\underline{\square}$
ELSEVIER	journal homepage: www.elsevier.com/locate/physrep	

Transition distribution amplitudes and hard exclusive reactions with baryon number transfer
B. Pire ${ }^{\text {a }}$, K. Semenov-Tian-Shansky ${ }^{\text {b,c,* }}$, L. Szymanowski ${ }^{\text {d }}$

Factorization regimes for hard meson production

- J. Collins, L. Frankfurt and M. Strikman'97: the collinear factorization theorem for

$$
\gamma^{*}(q)+N\left(p_{1}\right) \rightarrow N\left(p_{2}\right)+\mathcal{M}\left(p_{\mathcal{M}}\right) .
$$

Generalized Bjorken limit $t \sim 0$ (near-forward kinematics):

$$
-q^{2}=Q^{2}, W^{2}-\text { large } ; \quad x_{B}=\frac{Q^{2}}{2 p_{1} \cdot q}-\text { fixed } ; \quad-t=-\left(p_{2}-p_{2}\right)^{2}-\text { small. }
$$

- Description in terms of nucleon GPDs and meson DAs.

A complementary regime in the generalized Bjorken limit:

PHYSICAL REVIEW D, VOLUME 60, 014010
Hard exclusive pseudoscalar meson electroproduction and spin structure of the nucleon
L. L. Frankfurt, ${ }^{1,2}$ P. V. Pobylitsa, ${ }^{2,3}$ M. V. Polyakov,, , ${ }^{2,3}$ and M. Strikman ${ }^{2,4, *}$

$$
\text { Received } 5 \text { February 1999; published } 4 \text { June 1999) }
$$

"......Therefore the factorization theorem is valid also for the production of leading baryons

$$
\gamma^{*}(q)+p \rightarrow B(q+\Delta)+M(p-\Delta) \ldots .^{\prime \prime}
$$

- $u \sim 0$ (near-backward kinematics): nucleon-to-meson TDAs B. Pire,
L. Szymanowski'05, 07 and nucleon DAs. Factorization theorem: same status as nucleon e.m. FF.

GPDs, DAs, GDAs and TDAs

- Main objects: matrix elements of QCD light-cone $\left(z^{2}=0\right)$ operators.
- Quark-antiquark bilinear light-cone operator:

$$
\langle A| \bar{\Psi}(0)[0 ; z] \Psi(z)|B\rangle
$$

\Rightarrow PDFs, meson DAs, meson-meson GDAs, GPDs, transition GPDs, etc.

- Three-quark trilinear light-cone $\left(z_{i}^{2}=0\right)$ operator:

$$
\langle A| \Psi\left(z_{1}\right)\left[z_{1} ; z_{0}\right] \Psi\left(z_{2}\right)\left[z_{2} ; z_{0}\right] \Psi\left(z_{3}\right)\left[z_{3} ; z_{0}\right]|B\rangle
$$

- $\langle A|=\langle 0| ;|B\rangle$ - baryon; \Rightarrow baryon DAs;
- Let $\langle A|$ be a meson state $(\pi, \eta, \rho, \omega, \ldots)|B\rangle$ - nucleon; \Rightarrow nucleon-to-meson TDAs.
- Let $\langle A|$ be a photon state $|B\rangle$ - nucleon; \Rightarrow nucleon-to-photon TDAs.
- $\langle A|=\langle 0| ;|B\rangle$ - baryon-meson state; \Rightarrow baryon-meson GDAs.
$\mathcal{M} N$ and γN TDAs have common features with:
- baryon DAs: same operator;
- GPDs: $\langle B|$ and $|A\rangle$ do not carry the same longitudinal momentum \Rightarrow skewness:

$$
\xi=-\frac{\left(p_{A}-p_{B}\right) \cdot n}{\left(p_{A}+p_{B}\right) \cdot n}
$$

Nucleon e.m. FF in QCD: a well known example

Delayed scaling regime:
LO pQCD description of the nucleon e.m. FF:

Brodsky \& Lepage'81
Efremov \& Radyushkin'80

Volume 84, Number 7 PHYSICAL REVIEW LETTERS 14 February 2000
$G_{E_{r}} / G_{M_{p}}$ Ratio by Polarization Transfer in $\vec{e} p \rightarrow e \vec{p}$
(The Jefferson Lab Hall A Collaboration)

- Importance of higher twist corrections!

Questions to address with $\mathcal{M} N$ and γN TDAs

Why this is interesting?

- γ and various mesons $\left(\pi^{0}, \pi^{ \pm}, \eta, \eta^{\prime}, \rho^{0}, \rho^{ \pm}, \omega, \phi, \ldots\right)$ probe different spin-flavor combinations.
- Impact parameter picture: baryon charge distribution in the transverse plane.
- A view of the meson cloud and electromagnetic cloud inside a nucleon?
- Possible access to the 5-quark components of the nucleon LC WF?

Learn more about QCD technique

- A testbed for the QCD collinear factorization approach.
- A challenge for the lattice QCD \& functional approaches based on DS/BS equations.

Cross channel counterpart reactions: P̄ANDA, JPARC and photoproduction at JLab

- Complementary experimental options and universality of TDAs.

A list of key issues:

- What are the properties and physical contents of nucleon-to-meson and nucleon-to-photon TDAs?
- What are the marking signs for the onset of the collinear factorization regime?
- Can we access backward reactions experimentally?

Leading twist-3 γN TDAs I

B.Pire, L.Szymanowski and K.S.' 15 VN TDAs; $\left(n^{2}=p^{2}=0 ; 2 p \cdot n=1\right.$; LC gauge $A \cdot n=0$).

- $\frac{2^{5}}{2}=16$ TDAs:

$$
\left\{V_{1 \mathcal{E}, 1 T, 2 \mathcal{E}, 2 T}^{\gamma N}, A_{1 \mathcal{E}, 1 T, 2 \mathcal{E}, 2 T}^{\gamma N}, T_{1 \mathcal{E}, 1 T, 2 \mathcal{E}, 2 T,, 3 \mathcal{E}, 3 T, 4 \mathcal{E}, 4 T}^{\gamma N}\right\}\left(x_{1}, x_{2}, x_{3}, \xi, \Delta^{2}, \mu^{2}\right)
$$

Proton-to- γ TDAs:

$$
\begin{aligned}
& 4(P \cdot n)^{3} \int\left[\prod_{k=1}^{3} \frac{d z_{k}}{2 \pi} e^{i x_{k} z_{k}(P \cdot n)}\right]\left\langle\gamma\left(p_{\gamma}, s_{\gamma}\right)\right| \varepsilon_{c_{1} c_{2} c_{3}} u_{\rho}^{c_{1}}\left(z_{1} n\right) u_{\tau}^{c_{2}}\left(z_{2} n\right) d_{\chi}^{c_{3}}\left(z_{3} n\right)\left|N^{p}\left(p_{N}, s_{N}\right)\right\rangle \\
& \quad=\delta\left(x_{1}+x_{2}+x_{3}-2 \xi\right) m_{N}\left[\sum_{\substack{\Upsilon=1 \mathcal{E}, 1 T \\
2 \mathcal{E}, 2 T}}\left(v_{\gamma}^{\gamma N}\right)_{\rho \tau, \chi} V_{\curlyvee}^{\gamma N}\left(x_{i}, \xi, \Delta^{2} ; \mu^{2}\right)\right. \\
& \left.\quad+\sum_{\substack{\Upsilon=1 \mathcal{E}, 1 T \\
2 \mathcal{E}, 2 T}}\left(a_{\curlyvee}^{\gamma N}\right)_{\rho \tau, \chi} A_{\gamma}^{\gamma N}\left(x_{i}, \xi, \Delta^{2} ; \mu^{2}\right)+\sum_{\substack{\Upsilon=1 \mathcal{E}, 1 T, 2 \mathcal{E}, 2 T \\
3 \mathcal{E}, 3 T, 4 \mathcal{E}, 4 T}}\left(t_{\gamma}^{\gamma N}\right)_{\rho \tau}, \chi_{\gamma}^{\gamma N}\left(x_{i}, \xi, \Delta^{2} ; \mu^{2}\right)\right] .
\end{aligned}
$$

How to build Dirac structures?

- E.m. gauge invariance.
- Leading twist-3.
- $P=\frac{p_{N}+p_{\gamma}}{2} ; \Delta=\left(p_{\gamma}-p_{N}\right) ; \sigma_{P \mu} \equiv P^{\nu} \sigma_{\nu \mu}$; $\xi=-\frac{\Delta^{2} \cdot n}{2 P \cdot n}$

- C : charge conjugation matrix;

Leading twist-3 γN TDAs II

- Just 4 (in fact 3) γN TDAs are relevant in the $\Delta_{T}=0$ limit.

$$
\begin{aligned}
& \left(v_{1 T}^{\gamma N}\right)_{\rho \tau, \chi}=\frac{1}{m_{N}}\left[\left(\mathcal{E}^{*} \cdot \Delta_{T}\right)-\frac{2 \Delta_{T}^{2}}{1-\xi}\left(\mathcal{E}^{*} \cdot n\right)\right](\hat{p} C)_{\rho \tau}\left(\gamma_{5} U^{+}\right)_{\chi} ; \\
& \left(v_{2 \mathcal{E}}^{\gamma N}\right)_{\rho \tau, x}=\frac{1}{m_{N}}(\hat{p} C)_{\rho \tau}\left[\left(\gamma_{5} \sigma^{\Delta_{T} \varepsilon^{*}} U^{+}\right)_{x}-\frac{m_{N}\left(\mathcal{E}^{*} \cdot n\right)}{2(1+\xi)}\left(\gamma_{5} \hat{\Delta}_{T} U^{+}\right)_{x}\right] ; \\
& \left(t_{1 T}^{\gamma N}\right)_{\rho \tau, \chi}=\frac{1}{m_{N}}\left[\left(\varepsilon^{*} \cdot \Delta_{T}\right)-\frac{2 \Delta_{T}^{2}}{1-\xi}\left(\varepsilon^{*} \cdot n\right)\right]\left(\sigma_{p \mu} C\right)_{\rho \tau}\left(\gamma^{5} \gamma^{\mu} U^{+}\right)_{\chi} ; \\
& \left(t_{2 \varepsilon}^{\gamma N}\right)_{\rho \tau, \chi}=\left[\left(\sigma_{p \mathcal{E}^{*}} C\right)_{\rho \tau}-\frac{2\left(\mathcal{E}^{*} \cdot n\right)}{(1-\xi)}\left(\sigma_{p \Delta T} C\right)_{\rho \tau}\right]\left(\gamma^{5} U^{+}\right)_{\chi} ; \\
& \left(v_{2 T}^{\gamma N}\right)_{\rho \tau, \chi}=\frac{1}{m_{N}^{2}}\left[\left(\mathcal{E}^{*} \cdot \Delta_{T}\right)-\frac{2 \Delta_{T}^{2}}{1-\xi}\left(\mathcal{E}^{*} \cdot n\right)\right](\hat{p} C)_{\rho \tau}\left(\gamma_{5} \hat{\Delta}_{T} U^{+}\right)_{x} ; \\
& \left(a_{1 \varepsilon}^{\gamma N}\right)_{\rho \mathrm{r}, \chi}=\left(\hat{p} \gamma^{5} C\right)_{\rho \tau}\left[\left(\hat{\mathcal{E}}^{*} U^{+}\right)_{\chi}-\frac{m_{N}}{1+\xi}\left(\mathcal{E}^{*} \cdot n\right)\left(U^{+}\right)_{\chi}-\frac{2\left(\mathcal{E}^{*} \cdot n\right)}{1-\xi}\left(\hat{\Delta}_{T} U^{+}\right)_{\chi}\right] \text {; } \\
& \left(a_{1 T}^{\gamma N}\right)_{\rho \tau, \chi}=\frac{1}{m_{N}}\left[\left(\mathcal{E}^{*} \cdot \Delta_{T}\right)-\frac{2 \Delta_{T}^{2}}{1-\xi}\left(\mathcal{E}^{*} \cdot n\right)\right]\left(\hat{p} \gamma^{5} C\right)_{\rho \tau}\left(U^{+}\right)_{\chi} ; \\
& \left(a_{2 \mathcal{E}}^{\gamma N}\right)_{\rho \tau, \chi}=\frac{1}{m_{N}}\left(\hat{p} \gamma^{5} C\right)_{\rho \tau}\left[\left(\sigma^{\Delta_{\tau} \mathcal{E}^{*}} U^{+}\right)_{\chi}-\frac{m_{N}\left(\mathcal{E}^{*} \cdot n\right)}{2(1+\xi)}\left(\hat{\Delta}_{T} U^{+}\right)_{\chi}\right] ; \\
& \left(a_{2 T}^{\gamma N}\right)_{\rho \tau, \chi}=\frac{1}{m_{N}^{2}}\left[\left(\mathcal{E}^{*} \cdot \Delta_{T}\right)-\frac{2 \Delta_{T}^{2}}{1-\xi}\left(\varepsilon^{*} \cdot n\right)\right]\left(\hat{p} \gamma^{5} C\right)_{\rho \tau}\left(\hat{\Delta}_{T} U^{+}\right)_{\chi} ; \\
& \left(t_{2 T}^{\gamma N}\right)_{\rho \tau, \chi}=\frac{1}{m_{N}^{2}}\left[\left(\varepsilon^{*} \cdot \Delta_{T}\right)-\frac{2 \Delta_{T}^{2}}{1-\xi}\left(\varepsilon^{*} \cdot n\right)\right]\left(\sigma_{p \mu} C\right)_{\rho \tau}\left(\gamma^{5} \sigma^{\mu \Delta_{T}} U^{+}\right)_{\chi} ; \\
& \left(t_{3 \mathcal{E}}^{\gamma N}\right)_{\rho \tau, \chi}=\frac{1}{m_{N}}\left(\sigma_{p \Delta T} C\right)_{\rho \tau}\left[\left(\gamma^{5} \hat{\mathcal{E}}^{*} U^{+}\right)_{\chi}-\frac{m_{N}\left(\mathcal{E}^{*} \cdot n\right)}{(1+\xi)}\left(\gamma^{5} U^{+}\right)_{\chi}-\frac{2\left(\mathcal{E}^{*} \cdot n\right)}{(1-\xi)}\left(\gamma^{5} \hat{\Delta}_{T} U^{+}\right)_{\chi}\right] ; \\
& \left(t_{3 T}^{\gamma N}\right)_{\rho \tau, x}=\frac{1}{m_{N}^{2}}\left[\left(\mathcal{E}^{*}, \Delta_{T}\right)-\frac{2 \Delta_{T}^{2}}{1-\xi}\left(\mathcal{E}^{*} \cdot n\right)\right]\left(\sigma_{p \Delta_{T} C}\right)_{\rho \tau}\left(\gamma^{5} U^{+}\right)_{\chi} ; \\
& \left(t_{4 \mathcal{E}}^{\gamma N}\right)_{\rho \tau, x}=\frac{1}{m_{N}}\left[\left(\sigma_{p \mathcal{E}^{*}} C\right)_{\rho \tau}-\frac{2\left(\mathcal{E}^{*} \cdot n\right)}{1-\xi}\left(\sigma_{p \Delta_{T}} C\right)_{\rho \tau}\right]\left(\gamma^{5} \hat{\Delta}_{T} U^{+}\right)_{x} ; \\
& \left(t_{4 T}^{\gamma N}\right)_{\rho \tau, \chi}=\frac{1}{m_{N}^{3}}\left[\left(\mathcal{E}^{*}, \Delta_{T}\right)-\frac{2 \Delta_{T}^{2}}{1-\xi}\left(\mathcal{E}^{*}, n\right)\right]\left(\sigma_{p \Delta_{T} C}\right)_{p \tau}\left(\gamma^{5} \hat{\Delta}_{T} U^{+}\right)_{\chi} .
\end{aligned}
$$

Helicity contents I

- Light-front helicity amplitudes $\left(\lambda_{N}, \lambda_{u, u, d}=\uparrow, \downarrow\right.$ and $\left.\lambda_{\gamma}=\uparrow, \downarrow\right)$:

$$
T_{\lambda_{u} \lambda_{u}, \lambda_{d}}^{\lambda_{N}, \lambda_{\gamma}}
$$

- 4 processes in which helicity is conserved:

$$
3 \quad N^{p}(\uparrow) \rightarrow \operatorname{uud}(\uparrow \downarrow \downarrow)+\gamma(\uparrow) ; \quad+1 \quad N^{p}(\uparrow) \rightarrow \operatorname{uud}(\uparrow \uparrow \uparrow)+\gamma(\downarrow) ;
$$

- This corresponds to $4 \gamma N$ TDAs in the $\Delta_{T}=0$ limit:

$$
\begin{aligned}
V_{1 \mathcal{E}}^{\gamma p} & =\frac{1}{2^{1 / 4} \sqrt{1+\xi}\left(P^{+}\right)^{3 / 2}} \frac{1}{m_{N}}\left[T_{\uparrow \downarrow, \downarrow}^{\uparrow, \uparrow}+T_{\downarrow \uparrow, \downarrow}^{\uparrow, \uparrow}\right] ; \\
A_{1 \mathcal{E}}^{\gamma p} & =-\frac{1}{2^{1 / 4} \sqrt{1+\xi}\left(P^{+}\right)^{3 / 2}} \frac{1}{m_{N}}\left[T_{\uparrow \downarrow, \downarrow}^{\uparrow, \uparrow}-T_{\downarrow \uparrow, \downarrow}^{\uparrow, \uparrow}\right] ; \\
T_{1 \mathcal{E}}^{\gamma p} & =-\frac{1}{2^{1 / 4} \sqrt{1+\xi}\left(P^{+}\right)^{3 / 2}} \frac{1}{m_{N}}\left[T_{\downarrow \downarrow, \uparrow}^{\uparrow, \uparrow}+T_{\uparrow \uparrow, \uparrow}^{\uparrow, \downarrow}\right] ; \\
T_{2 \mathcal{E}}^{\gamma p} & =-\frac{1}{2^{1 / 4} \sqrt{1+\xi}\left(P^{+}\right)^{3 / 2}} \frac{1}{m_{N}}\left[T_{\downarrow \downarrow, \uparrow}^{\uparrow, \uparrow}-T_{\uparrow \uparrow, \uparrow}^{\uparrow, \downarrow}\right] .
\end{aligned}
$$

Helicity contents II

- At $\Delta_{T} \neq 0$: counting Δ_{T} factors in the Dirac structure \Leftrightarrow orbital angular momentum contribution to nucleon spin:
- 1 power of $\Delta_{T} \Leftrightarrow$ one unit of orbital angular momentum $L=1$;
- 2 powers of $\Delta_{T} \Leftrightarrow$ two units of orbital angular momentum $L=2$;
- 3 powers of $\Delta_{T} T_{4 \mathcal{E}}^{\gamma N} \sim T_{\downarrow \downarrow, \downarrow}^{\uparrow, \downarrow}$
- New information on density probabilities for orbital angular momentum contributions when a proton emits a photon:

$$
\frac{\left|V_{1 \mathcal{E}}^{\gamma \mathcal{P}}\right|^{2}+\left|A_{1 \mathcal{E}}^{\gamma \mathcal{P}}\right|^{2}}{\left|T_{1 \mathcal{E}}^{\gamma P}\right|^{2}+\left|T_{2 \mathcal{E}}^{\gamma p}\right|^{2}} \sim \frac{D_{h\left(u_{1}\right)=-h\left(u_{2}\right)}\left(x_{i}\right)}{D_{h\left(u_{1}\right)=+h\left(u_{2}\right)}\left(x_{i}\right)} .
$$

- "Is the nucleon brighter when u-quarks have equal helicities?"

Fundamental properties I: support \& polynomiality

B. Pire, L.Szymanowski, KS'10,11:

- Restricted support in x_{1}, x_{2}, x_{3} : intersection of three stripes $-1+\xi \leq x_{k} \leq 1+\xi\left(\sum_{k} x_{k}=2 \xi\right)$; ERBL-like and DGLAP-like I, II domains.

- Mellin moments in $x_{k} \Rightarrow \gamma N$ matrix elements of local 3-quark operators

$$
\left[i \vec{D}^{\mu_{1}} \ldots i \vec{D}^{\mu_{n_{1}}} \Psi_{\rho}(0)\right]\left[i \vec{D}^{\nu_{1}} \ldots i \vec{D}^{\nu_{n_{2}}} \Psi_{\tau}(0)\right]\left[i \vec{D}^{\lambda_{1}} \ldots i \vec{D}^{\lambda_{n_{3}}} \Psi_{\chi}(0)\right]
$$

Can be studied on the lattice!

- Polynomiality in ξ of the Mellin moments in x_{k} :

$$
\begin{aligned}
& \int_{-1+\xi}^{1+\xi} d x_{1} d x_{2} d x_{3} \delta\left(\sum_{k} x_{k}-2 \xi\right) x_{1}^{n_{1}} x_{2}^{n_{2}} x_{3}^{n_{3}} H^{\gamma N}\left(x_{1}, x_{2}, x_{3}, \xi, \Delta^{2}\right) \\
& =\left[\text { Polynomial of order } n_{1}+n_{2}+n_{3}\{+1\}\right](\xi)
\end{aligned}
$$

Fundamental properties II: spectral representation

- Spectral representation A. Radyushkin' 97 generalized for TDAs ensures polynomiality and support:

$$
\begin{aligned}
& H\left(x_{1}, x_{2}, x_{3}=2 \xi-x_{1}-x_{2}, \xi\right) \\
& =\left[\prod_{i=1}^{3} \int_{\Omega_{i}} d \beta_{i} d \alpha_{i}\right] \delta\left(x_{1}-\xi-\beta_{1}-\alpha_{1} \xi\right) \delta\left(x_{2}-\xi-\beta_{2}-\alpha_{2} \xi\right) \\
& \times \delta\left(\beta_{1}+\beta_{2}+\beta_{3}\right) \delta\left(\alpha_{1}+\alpha_{2}+\alpha_{3}+1\right) F\left(\beta_{1}, \beta_{2}, \beta_{3}, \alpha_{1}, \alpha_{2}, \alpha_{3}\right) ;
\end{aligned}
$$

- $\Omega_{i}:\left\{\left|\beta_{i}\right| \leq 1,\left|\alpha_{i}\right| \leq 1-\left|\beta_{i}\right|\right\}$ are copies of the usual DD square support;
- $F(\ldots)$: six variables that are subject to two constraints \Rightarrow quadruple distributions;
- Can be supplemented with a D-term-like contribution (with pure ERBL-like support):

$$
\frac{1}{(2 \xi)^{2}} \delta\left(x_{1}+x_{2}+x_{3}-2 \xi\right)\left[\prod_{k=1}^{3} \theta\left(0 \leq x_{k} \leq 2 \xi\right)\right] D\left(\frac{x_{1}}{2 \xi}, \frac{x_{2}}{2 \xi}, \frac{x_{3}}{2 \xi}\right) .
$$

Fundamental properties III: evolution

- Evolution properties of 3-quark light-cone operator: V. M. Braun, S. E. Derkachov, G. P. Korchemsky, A. N. Manashov'99.
- Evolution equations for TDAs: B. Pire, L. Szymanowski'07.
- Conformal basis (Jacobi and Gegenbauer polynomials):

$$
\psi_{N, n}^{(12) 3}\left(y_{1}, y_{2}, y_{3}\right)=(N+n+4)\left(y_{1}+y_{2}\right)^{n} P_{N-n}^{(2 n+3,1)}\left(y_{3}-y_{1}-y_{2}\right) C_{n}^{\frac{3}{2}}\left(\frac{y_{1}-y_{2}}{y_{1}+y_{2}}\right)
$$

- The conformal PWs:

$$
\begin{aligned}
& p_{N, n}^{(12) 3}(w, v, \xi)=\theta(|w| \leq \xi) \theta\left(|v| \leq \xi^{\prime}\right) \xi^{-N-2} \frac{1}{g_{N, n}} \\
& \times\left(1-\frac{v^{2}}{\xi^{\prime 2}}\right) C_{n}^{\frac{3}{2}}\left(-\frac{v}{\xi^{\prime}}\right)\left(1-\frac{w}{\xi}\right)^{n+2}\left(1+\frac{w}{\xi}\right) P_{N-n}^{2 n+3,1}\left(\frac{w}{\xi}\right) .
\end{aligned}
$$

- Conformal PW expansion for TDAs:

$$
H\left(w, v, \xi, \Delta^{2}\right)=\sum_{N=0}^{\infty} \sum_{n=0}^{N} p_{N, n}^{(12) 3}(w, v, \xi) h_{n, N}^{(12) 3}\left(\xi, \Delta^{2}\right)
$$

- SO(3) PW expansion of the conformal moments $h_{n, N}^{(12) 3} \Rightarrow$ cross-channel picture of baryon exchanges. Dual parametrization, see D. Müller, M.Polyakov, K.S.'15.

A connection to the quark-diquark picture

- Quark-diquark coordinates (one of 3 possible sets):

$$
v_{3}=\frac{x_{1}-x_{2}}{2} ; \quad w_{3}=x_{3}-\xi ; \quad x_{1}+x_{2}=2 \xi_{3}^{\prime} ; \quad\left(\xi_{3}^{\prime} \equiv \frac{\xi-w_{3}}{2}\right) .
$$

- The TDA support in quark-diquark coordinates:

$$
-1 \leq w_{3} \leq 1 ; \quad-1+\left|\xi-\xi_{3}^{\prime}\right| \leq v_{3} \leq 1-\left|\xi-\xi_{3}^{\prime}\right|
$$

- v_{3}-Mellin moment of γN TDAs: "diquark-quark" light-cone operator

$$
\begin{aligned}
& \int_{-1+\left|\xi-\xi_{3}^{\prime}\right|}^{1-\left|\xi-\xi_{3}^{\prime}\right|} d v_{3} H^{\gamma N}\left(w_{3}, v_{3}, \xi, \Delta^{2}\right) \\
& \sim h_{\rho \tau \chi}^{-1} \int \frac{d \lambda}{4 \pi} e^{i\left(w_{3} \lambda\right)(P \cdot n)}\left\langle\gamma\left(p_{\gamma}\right)\right| \underbrace{u_{\rho}\left(-\frac{\lambda}{2} n\right) u_{\tau}\left(-\frac{\lambda}{2} n\right) d_{\chi}\left(\frac{\lambda}{2} n\right)}_{\hat{\mathcal{O}}_{\rho \tau \chi}^{\{u\}\} d}\left(-\frac{\lambda}{2} n, \frac{\lambda}{2} n\right)}\left|N^{p}\left(p_{1}\right)\right\rangle .
\end{aligned}
$$

γN TDAs: an interpretation in the impact parameter space I

- A generalization of M . Burkardt' 00,$02 ; \mathrm{M}$. Diehl' 02 for v_{3}-integrated TDAs.
- Fourier transform with respect to

$$
\mathbf{D}=\frac{\mathbf{p}_{\gamma}}{1-\xi}-\frac{\mathbf{p}_{N}}{1+\xi} ; \quad \Delta^{2}=-2 \xi\left(-\frac{m_{N}^{2}}{1+\xi}\right)-\left(1-\xi^{2}\right) \mathbf{D}^{2}
$$

- A representation in the DGLAP-like I and II domains:

γN TDAs: an interpretation in the impact parameter space II

- A representation in the ERBL-like domain:

- A possible view on the inner light (e.m. cloud) within the nucleon.

A picture complementary to photon pdf of the nucleon?

PRL 117, 242002 (2016)
PHYSICAL REVIEW LETTERS 9 DECEMBER 20

How Bright is the Proton? A Precise Determination of the Photon Parton Distribution Function

Building up a consistent model for TDAs

Key requirements:
(1) support in $x_{k} s$ and polynomialty;
(2) isospin + permutation symmetry;
(3) crossing πN TDA $\leftrightarrow \pi N$ GDA and chiral properties: soft pion theorem;

How to model quadruple distributions?

- No enlightening $\xi=0$ limit as for GPDs.
- $\xi \rightarrow 1$ limit fixed from chiral dynamics.
- A factorized Ansatz with input at $\xi=1$ designed in J.P. Lansberg, B. Pire, K.S. and L. Szymanowski'12
- N and $\Delta(1232)$ cross-channel exchanges $\Rightarrow D$-term-like contribution: \tilde{E} GPD v.s. TDA

How to check that the TDA-based reaction mechanism is relevant?

Distinguishing features

- Characteristic backward peak of the cross section. Special behavior in the near-backward region.
- Scaling behavior of the cross section in Q^{2} and specific counting rules
- Dominance of the transverse cross section σ_{T}
- For time-like reactions: specific angular distribution of the lepton pair $\sim\left(1+\cos ^{2} \theta_{\ell}\right)$.
- Pioneering analysis of backward $\gamma^{*} p \rightarrow \pi^{0} p$. A. Kubarovsky, CIPANP 2012.
- Analysis of JLab @ 6 GeV data (Oct.2001-Jan. 2002 run) for the backward $\gamma^{*} p \rightarrow \pi^{+} n$ K. Park et al. (CLAS Collaboration), PLB 780 (2018).
- Backward ω-production at JLab Hall C.
W. Li, G. Huber (The JLab F_{π} Collaboration), PRL 123, 2019
- S. Diehl et al. (CLAS collaboration), PRL 125 (2020): extraction of BSA in $\gamma^{*} p \rightarrow \pi^{+} n$.
- Feasibility studies for PANDA and JPARC.

More in Stefan Diehl's talk today!

Backward ω-production at JLab Hall C I

- TDA formalism for the case of light vector mesons (ρ, ω, ϕ) B. Pire, L. Szymanowski and K.S'15. $24 V N$ TDAs at the leading twist.
- The analysis W. Li, G. Huber et al. (The JLab F_{π} Collaboration), PRL 123, 2019
- Clear signal from backward regime of $e p \rightarrow e^{\prime} p \omega$.

- Full Rosenbluth separation: σ_{T} and σ_{L} extracted to address $\sigma_{\mathrm{T}} \gg \sigma_{\mathrm{L}}$ issue.

$$
2 \pi \frac{d^{2} \sigma}{d t d \phi}=\frac{d \sigma_{\mathrm{T}}}{d t}+\epsilon \frac{d \sigma_{\mathrm{L}}}{d t}+\sqrt{2 \epsilon(1+\epsilon)} \frac{d \sigma_{\mathrm{LT}}}{d t} \cos \phi+\epsilon \frac{d \sigma_{\mathrm{TT}}}{d t} \cos 2 \phi
$$

Backward ω-production at JLab Hall C II

- For $Q^{2}=2.45 \mathrm{GeV}^{2}: \sigma_{\mathrm{L}} / \sigma_{\mathrm{T}}<\mu^{2} / Q^{2}$ and $\sigma_{\mathrm{T}} \gg \sigma_{\mathrm{L}}$;

- Experiment v.s. the predictions of the cross-channel nucleon exchange model for $p \rightarrow \omega$ TDAs.
- Combined (CLAS and $F_{\pi}-2$ data for $\gamma^{*} p \rightarrow \omega p$).
- TDA-based predictions v.s. the Regge-based J.M. Laget's JML'18 model.

Time-like Compton scattering

$$
\gamma(q)+N\left(p_{1}\right) \rightarrow \gamma^{*}\left(q^{\prime}\right)+N\left(p_{2}\right) \rightarrow \ell \bar{\ell}+N\left(p_{2}\right)
$$

- Near-forward TCS E. Berger, M.Diehl, B.Pire'01:

$$
\text { large } q^{\prime 2}=Q^{\prime 2} \text { and } s ; \text { small }-t
$$

- Fixed $\tau=\frac{Q^{\prime 2}}{2 p_{1} \cdot q}=\frac{Q^{\prime 2}}{s-m_{N}^{2}}$: analog of the Bjorken variable.

(b)

$$
q^{\prime 2}=+Q^{\prime 2}>0
$$

- A complementary access to GPDs. Check of universality.

$$
\begin{aligned}
& \text { at LO }: \mathcal{H}_{T C S}=\mathcal{H}_{D V C S}^{*} ; \tilde{\mathcal{H}}_{T C S}=-\tilde{\mathcal{H}}_{D V C S}^{*} \\
& \text { at NLO } \mathcal{H}_{T C S}=\mathcal{H}_{D V C S}^{*}-i \pi Q^{2} \frac{d}{d Q^{2}} \mathcal{H}_{D V C S}^{*} ; \tilde{\mathcal{H}}_{T C S}=-\tilde{\mathcal{H}}_{D V C S}^{*}+i \pi Q^{2} \frac{d}{d Q^{2}} \tilde{\mathcal{H}}_{D V C S}^{*}
\end{aligned}
$$

- First experimental data on TCS from CLAS12 arXiv:2108.11746.

Backward time-like Compton scattering

$$
\gamma\left(q_{1}\right)+N\left(p_{1}\right) \rightarrow \gamma^{*}\left(q^{\prime}\right)+N\left(p_{2}\right) \rightarrow \ell \bar{\ell}+N\left(p_{2}\right)
$$

large s and $q_{2}^{2} \equiv Q^{2} ;$ fixed $x_{B} ;$ small $-u=-\left(p_{2}-q_{1}\right)^{2}$.

- γ_{T}^{*} dominance: $\left(1+\cos ^{2} \theta_{\ell}\right)$ angular dependence;
- large $-t$: small BH background?
- Crude cross section estimates: VMD $+\gamma^{*} N \rightarrow V N+$ crossing.

Calculation of the LO amplitude

- LO amplitude for $\gamma^{*}+N \rightarrow V+N^{p}$ computed as in B. Pire, K.S. and
L. Szymanowski'16;
- 21 diagrams contribute;

$\mathcal{M}^{\gamma^{*} N \rightarrow \gamma N^{\prime}} \approx \bar{u}\left(N^{\prime}\right) \widehat{\mathcal{E}}(q) u(N) \int d x_{i} d y_{i} D A\left(y_{i} ; Q^{2}\right) T_{H}\left(x_{i}, y_{i}, Q^{2}\right) \operatorname{TDA}\left(x_{i}, \xi, u ; Q^{2}\right)$.
- $\mathrm{DA}\left(y_{i} ; Q^{2}\right)=$ proton distribution amplitude;
- T_{H} : hard scattering amplitude, calculated in the collinear approximation.

$$
\text { C.f. } A(\xi)=\int_{-1}^{1} d x \frac{H(x, \xi)}{x \pm \xi \mp i \epsilon} \int_{0}^{1} d y \frac{\phi_{M}(y)}{y}
$$

- At leading order, the amplitude for the time-like process is the complex conjugate of space-like (i.e. electroproduction) amplitude.
- Scaling law for the amplitude:

$$
\mathcal{M}\left(Q^{2}, \xi\right) \sim \frac{\alpha_{s}\left(Q^{2}\right)^{2}}{Q^{4}}
$$

Vector meson dominance I

- J. J. Sakurai'1960s: vector meson dominance model

$$
\langle 0| J_{\mu}^{\mathrm{em}}(0)|\mathrm{V}\rangle=\varepsilon_{\mu} m_{\mathrm{V}}^{2} / f_{\mathrm{V}} ;
$$

- Coupling constants:

$$
\Gamma\left(\mathrm{V} \rightarrow e^{+} e^{-}\right) \approx \frac{1}{3} \alpha^{2} m_{\mathrm{V}}\left(f_{\mathrm{V}}^{2} / 4 \pi\right)^{-1}, \quad \mathrm{~V}=\rho, \omega, \phi
$$

- VMD for photoproduction reactions: A and B - hadron states

$$
[\gamma A \rightarrow B]=e \frac{1}{f_{\rho}}\left[\rho^{0} A \rightarrow B\right]+(\omega)+(\phi)
$$

Vector meson dominance II

- VMD-based model for nucleon-to-photon TDAs

$$
V_{\Upsilon}^{\gamma N}=\frac{e}{f_{\rho}} V_{\Upsilon}^{\rho_{T} N}+\frac{e}{f_{\omega}} V_{\Upsilon}^{\omega_{T} N}+\frac{e}{f_{\phi}} V_{\Upsilon}^{\phi_{T} N}
$$

- Check of consistency: transverse polarization of $V 16$ out of 24 leading twist-3 VN TDAs;
- Cross-channel nucleon exchange model for $V_{T} N$ TDAs:

- Dumbrajs et al.' ${ }^{\prime} 1982: \frac{f_{\rho}^{2}}{4 \pi}=2.26 ; \frac{f_{\omega}^{2}}{4 \pi}=18.4 ; \frac{f_{\phi}^{2}}{4 \pi}=14.3$.

Crossing $\gamma \rightarrow N$ to $N \rightarrow \gamma$ TDAs

- Crossing relation established in B.Pire, K.S., L. Szymanowski, PRD'95 for $\pi \rightarrow N$ and $N \rightarrow \pi$ TDAs.

$$
\begin{aligned}
V_{i}^{N \gamma}\left(x_{i}, \xi, u\right)= & V_{i}^{\gamma N}\left(-x_{i},-\xi, u\right) ; A_{i}^{N \gamma}\left(x_{i}, \xi, u\right)=A_{i}^{\gamma N}\left(-x_{i},-\xi, u\right) \\
& T_{i}^{N \gamma}\left(x_{i}, \xi, u\right)=T_{i}^{\gamma N}\left(-x_{i},-\xi, u\right) .
\end{aligned}
$$

BH contribution in the near-backward regime I

$$
\frac{d \sigma_{B H}}{d Q^{\prime 2} d t d(\cos \theta) d \varphi}=\frac{\alpha_{e m}^{3}}{4 \pi\left(s-M^{2}\right)^{2}} \frac{\beta}{-t L}\left[\left(F_{1}^{2}-\frac{t}{4 M^{2}} F_{2}^{2}\right) \frac{A}{-t}+\left(F_{1}+F_{2}\right)^{2} \frac{B}{2}\right]
$$

$$
A=\left(s-M^{2}\right)^{2} \Delta_{T}^{2}-t a(a+b)-M^{2} b^{2}-t\left(4 M^{2}-t\right) Q^{\prime 2}
$$

$$
+\frac{m_{\ell}^{2}}{L}\left[\left\{\left(Q^{\prime 2}-t\right)(a+b)-\left(s-M^{2}\right) b\right\}^{2}+t\left(4 M^{2}-t\right)\left(Q^{\prime 2}-t\right)^{2}\right] ;
$$

$$
B=\left(Q^{\prime 2}+t\right)^{2}+b^{2}+8 m_{\ell}^{2} Q^{\prime 2}-\frac{4 m_{\ell}^{2}\left(t+2 m_{\ell}^{2}\right)}{L}\left(Q^{\prime 2}-t\right)^{2} ;
$$

$$
a=2\left(k-k^{\prime}\right) \cdot p^{\prime}, \quad b=2\left(k-k^{\prime}\right) \cdot\left(p-p^{\prime}\right) ;
$$

$$
L=\left[(q-k)^{2}-m_{\ell}^{2}\right]\left[\left(q-k^{\prime}\right)^{2}-m_{\ell}^{2}\right]=\frac{\left(Q^{\prime 2}-t\right)^{2}-b^{2}}{4} ; \quad \beta=\sqrt{1-4 m_{\ell}^{2} / Q^{\prime 2}} .
$$

- BH contribution dominates in the near-forward regime: $\frac{F_{1}(t)}{t} \sim \frac{1}{t}$.

BH contribution in the near-backward regime II

- The BH cross section peaks once ℓ goes "on-shell": L-small.
- Effect of the cut in the lepton polar angle θ : keep the BH peak out of the near-backward kinematics.

- The left peak is very narrow.

Cross section estimates: BH v.s. near-backward TCS

$\gamma p \rightarrow e^{+} e^{-} p ; s=23 \mathrm{GeV}^{2} ; Q^{2}=3 \mathrm{GeV}^{2} ; \theta=\frac{\pi}{4}$

$$
\gamma \mathrm{P} \rightarrow \gamma^{*} \mathrm{p} ; \mathrm{s}=23 \mathrm{GeV}^{2} ; \mathrm{Q}^{2}=3 \mathrm{GeV}^{2} ; \theta=\frac{\pi}{4} ;
$$

Cross section estimates for JLab and EicC

- Quasi-real photoproduction

$$
\sigma_{e N}=\int d x \sigma_{\gamma N}(x) f(x) ; \quad x=\frac{s_{\gamma N}-m_{N}^{2}}{s_{e N}-m_{N}^{2}}
$$

- Weizsacker-Williams distribution

$$
\begin{gathered}
f(x)=\frac{\alpha_{\mathrm{em}}}{2 \pi}\left\{2 m_{e^{2} x}^{2}\left(\frac{1}{Q_{\max }^{2}}-\frac{1-x}{m_{e}^{2} x^{2}}\right)+\frac{\left((1-x)^{2}+1\right) \ln \frac{Q_{\max }^{2}(1-x)}{m_{e}^{2} x^{2}}}{x}\right\} . \\
\mathrm{E}_{\mathrm{e}}=11,24,119,220 \mathrm{GeV} ; \mathrm{u}=\mathrm{u}_{0}\left[\mathrm{~W}^{2}, \mathrm{Q}^{\prime 2}\right]: \theta=\frac{\pi}{4}
\end{gathered}
$$

- JLab Hall C: assuming luminosity $10^{38} \mathrm{~cm}^{-2} s^{-1}$ - plenty of events!
- EicC luminosity (reported in ArXiv:2110.094) is $50 \mathrm{fb}^{-} 1$ year - several tens of events.

Conclusions \& Outlook

(1) Nucleon-to-meson TDAs provide new information about correlation of partons inside hadrons. A consistent picture for the integrated TDAs emerges in the impact parameter representation.
(2) We strongly encourage to detect near forward and backward signals for various mesons (π, η, ω, ρ): there is interesting physics around!
(3) First evidences for the onset of the factorization regime in backward $\gamma^{*} N \rightarrow N^{\prime} \omega$ from JLab Hall C analysis and BSA measurements in $\gamma^{*} p \rightarrow \pi^{+} n$ from CLAS.
(4) PAC 48 decision is a challenge both for the experiment and for theory. New models for advanced feasibility studies. Regge-behavior for small x_{B} ?
(5) Backward time-like Compton scattering and backward DVCS may provide access to nucleon-to-photon TDAs. Seems to be sizable enough to be studied with JLab Hall C and A and future EicC. BH contribution is small in the near-backward regime.
(6) Dispersion relation and the subtraction constant.
(7) May be an addition to the ultraperipheral physics program at hadron colliders.

Thank you for your attention!

