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Motivation

The traditional motivation for the Parton Distribution approach to the study of
hadronic structure is based on the ideas of factorization and scaling. These
ideas have worked well in DIS, where the PDFs are determined, which are
Lorentz scalars.

For large enough Q, scaling is seen as a weak dependence of the PDFs on Q as

illustrated by the compilation by the Particle Data Group.
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Source: PDG 2020
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Deeply-virtual Compton scattering (DVCS) has been proposed to determine the

generalized-parton distributions (GPDs) of hadrons. A hard, virtual photon

with momentum q, q2 = −Q2, with Q much larger than the characteristic

hadronic scales, probes the quark content of the hadronic target. The detection

of the outgoing, real photon provides information not contained in DIS.
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Handbag diagram for VCS, including the leptonic part
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It is usually assumed that to allow for the extraction of the GPDs, the
experiments should be set-up in (approximately) collinear kinematics. Such
kinematics may not always be realized in concrete experiments.

We propose to first analyze the experimental data in terms of
Lorentz-invariant amplitudes, Compton form factors (CFFs).

By definition, the CFFs can be determined in any suitable kinematics. Once
they are measured, theorists may use them to extract the GPDs.

Here, we present our work on VCS off the 4He nucleus, motivated by a
considerable numbers of experiments about VCS on 4He, one of the most recent
example is the work of R. Dupré et al., CLAS collaboration at Jefferson Lab2

We shall in particular discuss the importance of considering all CFFs to analyze

the data.

2R. Dupré et al., Phys. Rev. C 104, 025203 (2021))
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Formal Framework

In Compton scattering the physical amplitudes can be written in terms of a
leptonic and a hadronic part

MVCS(λ′, λ, h′) =
∑
h

LρVCS(λ′, λ)ε∗ρ(q, h)
1

q2
ε∗µ(q′, h′)Tµνεν(q, h)

The leptonic part is given by

LρVCS(λ′, λ) = ū(k ′, λ′)γρu(k, λ)

The tensor Tµν must be transverse to q′µ and qν .

In order not to introduce unwarranted restrictions, it is important to use the
most general form of that tensor operator consistent with EM gauge invariance.

The quark-gluon structure of hadrons is supposed to manifest itself most
transparently in processes where the hadrons are subjected to strongly virtual
probes.

The amplitudes must scale with the virtuality Q to allow for a partonic
interpretation.
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To obtain the complete amplitudes, one must add the ones associated with the
Bethe-Heitler (BH) process. These amplitudes can be written as the
convolution of the leptonic (QED) amplitude and a hadronic amplitude, which
involves the electro-magnetic form factor of the 4He nucleus, which is well
known. We use the parametrisation by Frosch et al.3.

As the Bethe-Heitler amplitudes follow directly from QED, we concentrate here
on the question what is the most general form of the Compton tensor Tµν and
can we estimate the effects on the analysis of the data by using a restricted
form.

In particular we shall pay attention to the situation where the BH process does
not contribute to the total amplitude. This situation occurs when the EM form
factor of the 4He nucleus vanishes. The model of Frosch et al., that very well
interpolates the data, gives us the clue.

3R.F. Frosch, J.S. McCarthy, R.E. Rand, and M.R. Yearian, Phys. Rev.
180, 874 (1967)
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R.F. Frosch, J.S. McCarthy, R.E. Rand, and M.R. Yearian, Phys. Rev. 180, 874 (1967).
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Note the node in the 4He form factor at Q = 0.624 GeV/c. This node is

important, because it marks the point where the contribution of the BH

process changes sign. At this point both the BH amplitude and its interference

with the hadronic amplitude vanish.
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Tensor Formulations

In the thesis of Metz4 the Compton tensor is denoted as Mµν and the CFFs for
a scalar particle, denoted as B1, B2, B3, B4, and B19, are defined by the
following equations:

Mµν = B1M
µν
1 + B2M

µν
2 + B3M

µν
3 + B4M

µν
4 + B19M

µν
19 ,

Mµν
1 = −q′ · q gµν + qµq′

ν
,

Mµν
2 = −(P · q)2 gµν − q′ · q PµPν + P · q (P

µ
q′
ν

+ qµP
ν

),

Mµν
3 = q′

2
q2 gµν + q′ · q q′µqν − q2 q′

µ
q′
ν − q′

2
qµqν ,

Mµν
4 = P · q (q′

2
+ q2) gµν − P · q (q′

µ
q′
ν

+ qµqν)− q2 P
µ
q′
ν − q′

2
qµP

ν

+q′ · q (P
µ
qν + q′

µ
P
ν

),

Mµν
19 = (P · q)2 q′

µ
qν + q′

2
q2 P

µ
P
ν − P · q q2 q′

µ
P
ν − P · q q′2 Pµqν ,

Note that for the case q′
2

= 0, the tensors Mµν
3 and Mµν

19 do not contribute to

the hadronic amplitude.

4
A. Metz, Virtuelle Comptonstreuung un die Polarisierbarkeiten des Nukleons (in German), PhD thesis,

Universität Mainz, 1997.
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A novel projection method

We have proposed a method5 that is free of poles ab initio. The back bone of
the Compton tensor is

dµναβ = gµνgαβ − gµβgνα.

We note that dµναβ is symmetric under the simultaneous interchange
µ↔ ν, α↔ β and changes sign by the interchanges µ↔ α, and ν ↔ β.
Using this back bone we construct pieces of “DNA” by contracting it with the
three basis four vectors. With an obvious notation we write them as follows:

Gµν(q′q) = q′αd
µναβqβ = q′ · q gµν − qµq′

ν
,

Gµν(qq) = qαd
µναβqβ = q2 gµν − qµqν ,

Gµν(q′q′) = q′αd
µναβq′β = q′2 gµν − q′

µ
q′
ν
,

Gµν(Pq) = Pαd
µναβqβ = P · q gµν − qµP

ν
,

Gµν(q′P) = q′αd
µναβPβ = P · q′ gµν − P

µ
q′
ν
.

The momentum P is the sum of the hadron momenta: P = p′ + p.

5
B.L.G. Bakker and C.-R. Ji, Few-Body Syst., 58, 1 (2017)
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Given these building blocks we write the transverse tensor as

Tµν
DNA :=

5∑
i=1

SiT (i)µν
DNA = S1G

µν(q′, q)+S2G
µλ(q′, q′)G ν

λ (q, q)

+S3G
µλ(q′, P̄)G ν

λ (P̄, q)+S4

(
Gµλ(q′, P̄)G ν

λ (q, q) + Gµλ(q′, q′))G ν
λ (P̄, q)

)
+S5G

µλ(q′, q′)P̄λP̄λ′Gλ
′ν(q, q).

Where the Si are the CFFs in the DNA construction. By direct computation

one may check that the DNA representation is simply related to Metz’s .

T
(1)
DNA = −M1, T

(2)
DNA = M3, T

(3)
DNA = −M2, T

(4)
DNA = M4, T

(5)
DNA = M19.

Note that for the case q′
2

= 0, the CFFs S2 and S5 do not contribute to the

hadronic amplitude.
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Kinematics
We shall l work in the target rest frame (TRF) with the z-axis along the three
momentum q of the virtual photon. The amplitudes can be expressed in terms
of three invariants and the azimuthal angles φ, which is the angle between the
leptonic plane, defined by the momenta k and k ′ and the hadronic plane
defined by p and p′. The momentum P = p′ + p as well as the momentum
∆ = p′ − p are in the hadronic plane, while q is in the intersection line of the
two planes.

The relevant invariants are the mass M of the hadronic target and

Q2 = −q2, xBj =
Q2

(2p · q)
, y =

p · q
p · k =

Q2

2EbMxBj
,

shad = (p + q)2 = M2 +
1− xBj

xBj
Q2,

thad = (p − p′)2, uhad = (p − q′)2.

Eb is the energy of the incoming electron; it determines the overall energy and

momentum scales. The invariants thad and uhad depend on the azimuthal angle

φ. The invariants xBj and y are both limited to the interval [0, 1].
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The kinematical domain for fixed M and Eb is parametrized by the scattering
angle θe of the electron. Q2 in GeV2/c2. The plots below are for M = 3.7373
GeV/c2 and Eb = 6.064 GeV/c2.
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The curves are lines of constant θe. This angle runs from θe = 0, the lowest

curve, to θe = π, the highest, in steps of π
18

. Q2 is largest for xBj → 1.
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This plot demonstrates that for small values of Q2, say Q2 ∼ 1− 2 GeV2/c2,
the curves for constant θe are flat for 0.2 - 0.3 < xBj < 1.
The Mandelstam variables thad and uhad for large Q are:

thad → −
1− cosϑ

2xBj
Q2 +O(M2), uhad → −

1 + cosϑ

2xBj
Q2 +O(M2).

The quantity ϑ = θ′C − θC is the photon scattering angle in the hadronic CMF.
For small values of ϑ, which are relevant here, it is close to the scattering angle
in the TRF.

If ϑ→ 0, thad goes to zero up to corrections of O(M2), thus thad does not
strictly vanish in the forward limit. This shows that to neglect thad in the
analysis of the data is not precise.

For large Q and small ϑlim one finds |t| > ϑ2
lim

4xBj
Q2.

For any value of the scattering angle greater than 0, t remains of order Q2.

Moreover, if the target mass M is not small compared to Q, which is the case

in e.g. the VCS-on-4He experiment done at Jlab, one must go to almost

completely forward kinematics and Q2 very large to make thad small compared

to Q2, which implies xBj ≈ 1.
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Because the Mandelstam variable t plays a special role, we consider its
behaviour at large Q2 in more detail. Its expression in terms of the invariants is

t = −Q2
Q2(1− xBj) + 2M2x2

Bj − Q(1− xBj)
√

Q2 + 4M2x2
Bj cosϑ

2xBj(Q2(1− xBj) + M2xBj)

where the angle ϑ is the polar angle of the emitted photon momentum in the
CMF. For a value of xBj = 0.9 and the electron scattering angle θe = π we find
the behaviour:
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t, large Q limit

It is clear that the asymptotic limit is bad for small ϑ, but becomes more

accurate for ϑ→ π. Note that in the whole domain t ∼ Q2. (Units: GeV2/c2.)
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For values of xBj in the range 0.1 - 0.3 the details are different. For xBj = 0.132
and θe = π/18 we find

t

large Q
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Although the accuracy of of the large-Q limit is different, the behaviour t ∼ Q2

is the same. The choice of θe corresponds to the CLAS collaboration

kinematics.
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Model Calculation

p p’

q’q

p’p

q q’

s-channel u-channel

As a benchmark model one may consider the tree-level case, which of course
describes completely structureless particles. Any deviation of the cross sections
from the predictions of this model implies that the hadron has structure.

The tree-level DVCS amplitude corresponds to the CFFs

Stree
1 = −

(
1

shad −M2
+

1

uhad −M2

)
, Stree

3 =
2

(shad −M2)(uhad −M2)
.

Thus, only 2 out of 5 CFFs contribute. We note that at large Q, S3 is of
relative order 1/Q2 compared to S1.

Because we study the relative importance of the CFFs, we do not include the

factors −e and 2e for the charges of the elektron and the 4He nucleus,

respectively.
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VCS Amplitudes squared

Because the Bethe-Heitler and the coherent VCS processes are coherent, their
amplitudes must be added when the cross section for the process
e + 4He→ e′ + 4He + γ is calculated. Then the complete squared amplitudes
can be split into a Bethe-Heitler part, a VCS part and a part that is obtained
by the interference of the two amplitudes:

|Atot|2 = |ABH + AVCS|2

= |ABH|2 + |AVCS|2 + A∗BHAVCS + ABHA
∗
VCS.

As the BH amplitude does not depend on the CFFs, we shall not discuss it
here, but rather concentrate on the VCS squared amplitude.

The values of the quantities Q2, xBj, and thad for which we show the results are
taken from the paper by Dupré et al., namely

xBj = 0.132, Q2 = 1.143, xBj = 0.170, Q2 = 1.423, xBj = 0.255, Q2 = 1.902
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VCS cross section and CFFs

Including the leptonic part of the VCS amplitudes, we calculate the physical
squared VCS amplitude including the leptonic part.

xBj = 0.132, Q2 = 1.143, t/Q2 = −0.172058, ϑ = 0
Amp2

11 Amp2
13 Amp2

33 Total
0.00328065 −1.87056 266.638 264.771

xBj = 0.170, Q2 = 1.423, t/Q2 = −0.217369, ϑ = 0
Amp2

11 Amp2
13 Amp2

33 Total
0.00393712 −1.44797 129.874 128.448

xBj = 0.255, Q2 = 1.902, t/Q2 = −0.321459, ϑ = 0
Amp2

11 Amp2
13 Amp2

33 Total
0.00609192 −1.12551 94.0326 50.8667

The units are GeV for Q and 1/GeV2 for the (partial) amplitudes squared.

(1/GeV2 ≈ 0.4 mbarn)
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Comments
(i) The partial contribution (13) is negative, the contributions that are diagonal
in the CFF label are positive.
(ii) Although the CFF S3 is of order 1/Q2 compared to S1, it dominates in the
squared amplitude.

It is clear from these results that, when extracting the CFFs from the data, it is
dangerous to rely on what has been considered the dominant CFF, in this case
S1. The two CFFs we have included are not realistic. To begin with, they are
both real, while there is no reason for all CFFs to be real.

When the CFFs are complex, a beam spin asymmetry may show up in the VCS
cross section. The common understanding is that the beam spin asymmetry is
due to the interference part of the cross section

A∗BHAVCS + ABHA
∗
VCS

However, since ABH is proportional to the 4He form factor, which has a node at
Q = 0.624 GeV/c, which in the low-Q part of the kinematic domain, one may
perform a crucial experiment by measuring the beam spin asymmetry
checking the minimum number of CFFs.

If no beam spin asymmetry is measured, the minimal number of CFFs may
be 1. If the beam spin asymmetry does not vanish, it is proof that at least
two CFFs are involved and one of them must be complex.
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Kinematics for the node in the 4He form factor
For the values of xBj and Q2quoted in Dupré’s paper we find the following
nodal loci in the xBj − ϑ-plane.

xBj = 0.132, xBj = 0.170 , xBj = 0.255 .
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The nodal position is ∆2 = 0.389941GeV2/c2; the angle ϑ is the polar angle of the emitted photon in the CMF.
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Beam Spin Asymmetry
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xBj = 0.132, xBj = 0.170. (For xBj = 0.255 the node cannot be reached).

For the two kinematics from the CLAS experiment the BSA is tiny.
Remarkably, the form of the BSA is not a pure sine, because the coefficient of
this sine depends on cosφ and cos2φ.
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Summary and conclusions

I Our treatment of Virtual Compton Scattering is entirely
phenomenological.

I We have discussed the number of Compton Form factors for a
scalar target. This number is three.

I We have presented a model-independent form of the
Compton tensor, containing all three CFFs.

I We have demonstrated that the partial tensors Tµν
i , (i = 1, 2, 3)

have different asymptotic behaviour as functions of Q2. This
behaviour is expected to compensate for the behaviour of the CFFs
for large Q2.
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I For illustration, we have used the tree-level Compton tensor and
modifications.

I We found that for the kinematics in the CLAS experiment at Eb = 6
GeV, the contribution of the part S1T

µν
1 is much smaller than the

contribution of the part S3T
µν
3 .

I Even without interference of the Bethe-Heitler process, there may occur a
single-spin symmetry in VCS. This result is obtained because the VCS
amplitude is the coherent sum of two parts, one related to the CFF S1,
the other to S3.
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