

COMPASS results on nucleon spin and structure

Fabienne KUNNE CEA/IRFU Saclay, France

- Nucleon longitudinal & transverse spin
- Quark Fragmentation functions
- Generalized parton distributions
- π induced Drell-Yan and J/Psi production

COMPASS at CERN

160-200 GeV

polarized muon beam DIS

pion beam: Drell-Yan

Long solid polarized targets,

LH2 target

& nuclear targets for DY

-2

Nucleon spin - longitudinal

How is the nucleon spin distributed among its constituents?

Nucleon Spin
$$\frac{1}{2} = \frac{1}{2}\Delta\Sigma + \Delta G + L$$

quark gluon orbital momentum

 $\Delta\Sigma$: sum over u, d, s, \overline{u} , \overline{d} , \overline{s} can take non half-integer value: superposition of several spin states

$$\Delta q = \overrightarrow{q} - \overrightarrow{q}$$
Parton spin parallel or antiparallel to nucleon spin

$\Delta \Sigma$ Today:

Precise world data on polarized DIS:

$$g_1 + SU_f(3)$$
 $a_0 = \Delta \Sigma \sim 0.3$

Quark spin contribution ~ 30%

Confirmed by results from Lattice QCD on $\Delta\Sigma_{u,d,s}$

Large experimental effort on:

- ΔG measurement also because $a_0 = \Delta \Sigma - n_f (\alpha_s/2\pi) \Delta G$ (AB scheme)
- 3D mapping of nucleon and constraining L through DVCS and Hard Exclusive Meson Production

QCD fits- World data on g_1^p and g_1^d

DIS

Polarized Deep Inelastic Scattering

→ Nucleon spin structure functions g₁

 \rightarrow g₁ (x,Q²) as input to global QCD fits for extraction of $\Delta q_f(x)$ and $\Delta g(x)$

However x and Q^2 coverage in DIS not yet sufficient for precise Δg Need to use constraint from pp data (as in DSSV, NNPDF... fits)

PLB753 (2016) 18

NLO pQCD fit to g₁ DIS world data

- Assume functional forms for $\Delta\Sigma$, ΔG and Δq^{NS}
- Use DGLAP equations, relating $\Delta\Sigma$, ΔG evolutions.
- Fit g₁^p, g₁^d, g₁ⁿ DIS world data. (SU₃)
- Extract $\Delta\Sigma$ ΔG Quarks Gluons

∆G not well constrained using DIS only

Obtain solutions with $\Delta G>0$ and $\Delta G<0$ Solution with $\Delta G>0$ agrees with result from DSSV++ which uses RHIC pp data

 $\Delta\Sigma$ well constrained in valence region

$$\Delta\Sigma$$
= 0.31 (5) at Q²=3 (GeV/c)²

Still large uncertainty coming from the bad knowledge of functional forms

Global fits to polarized PDFs (I)

Fits to world data, including \vec{p} \vec{p} collider data. Many fitters. Some examples:

Blue: **DSSLV** from DSSV14 w. replicas and MC average

Green: NNPDFpol1.1

DLSSV: PRD100, 114027 (2019)

More realistic evaluation of uncertainties

Still some discrepancies in Δs sign and in Δd position of minimum

 \sim unknown $\triangle G$, below x \sim 0.05

Gluon helicity \(\Delta G/G \) direct measurement

Results are in agreement with fits from NNPDF and DSSV++ using RHIC pp data, which gave:

$$\int_{0.05}^{0.2} \Delta g(x) dx \simeq 0.20$$

Quark helicities from semi-inclusive DIS >

$$l^{
ightarrow}p^{
ightarrow}
ightarrow l\;h^{+/-}$$
 X

Outgoing hadron tags quark flavor (via quark fragmentation functions)

Flavour separation of quark helicities:

NB: The SIDIS extraction uses input of quark Fragmentation Functions, not that well determined yet, especially for the strange quark sector.

COMPASS π and K multiplicities vs z in (x,y) bins

- More than 1200 points in total, various Q² staggered vertically for clarity
- Strong z dependance
- $M(\pi^+) \sim M(\pi^-)$ and $M(K^+) > M(K^-)$

PLB 764 (2017) 001 PLB 767 (2017) 133

Kaons- Quark fragmentation functions from NLO fits

Extensive sets of SIDIS kaon data COMPASS PLB 767 (2017) 133 change significantly flavor decomposition of FFs (& PDFs)

Ex1: **DEHSS-17** fit to quark FF, includes recent kaon SIDIS data.

Ex:2: JAM18 w/wo SIDIS data
Combined fit of PDFs and FFs (prelim)

Also simultaneous/ iterative fits of PDFs & FFs:

Ex: Borsa, Sasso, Stratmann, PRD96 (2017)

& JAM20-sidis, PRD104 (2021) 016015

SIA + SIDIS data: strong preference for smaller strange to nonstrange PDF ratio, and enhanced DsK'

 \rightarrow worth revisiting $\Delta s(x)$ extraction from SIDIS data

F. Kunne

R_K= M(K⁻)/ M(K⁺) kaon muliplicity ratio at high z

Motivation: High z region not studied so far

 $\mu p \rightarrow \mu' K X$

Most experimental and theoretical uncertainties cancel in ratio

Simple estimation at LO, proton target with assumptions (D_{unf} neglected...): and assuming $S = \bar{S}$.

→ R_K lower bound driven by light quarks :

$$R_{\rm K} = \frac{4\bar{\mathbf{u}}D_{\rm fav} + \mathbf{s}D_{\rm str}}{4\mathbf{u}D_{\rm fav} + \bar{\mathbf{s}}D_{\rm str}}.$$

 $R_{\rm K} > \frac{\bar{\rm u}}{{\rm u}}$ for a proton target

 $R_{\rm K} > \frac{\bar{\rm u} + \bar{\rm d}}{{\rm u} + {\rm d}}$ for a deuteron target

In contradiction with data:

M(K⁻) / M(K⁺) ratio well below expectations at high z

$M(K^-)/M(K^+)$ Results vs missing mass M_X

High z kaon \rightarrow reduced phase space for other particles Study missing mass behaviour $M_{V} = A_{T}$

 $M_X = \sqrt{M_p^2 + 2M_p \nu (1-z) - Q^2 (1-z)^2}$

- M(K⁻)/ M(K⁺) shows unexpected strong rise with M_X
- Suggests to take into account the available phase space for hadronisation, in the formalism

$R_p = M(\bar{p})/M(p)$

Stronger suppression of \overline{p} vs p, compared to \overline{K} vs \overline{K} .

PLB 807 (2020) 135600

Transverse Momentum Dependent distributions TMDs

Quark Nucleon	U	L	T
U	number density $f_1^{q,g}(x, k_T^2)$		Boer-Mulders $h_1^{\perp q,g}(x,k_T^2)$
L		Helicity $g_{1L}^{q,g}(x, \mathbf{k}_{T}^{2})$	worm-gear L $h_{1L}^{\perp q,g}(x, \mathbf{k_T^2})$
T	Sivers $f_{1T}^{\perp q,g}(x, k_T^2)$	Kotzinian- Mulders worm-gear T $g_{1T}^{\perp q,g}(x,k_T^2)$	Transversity $h_1^{q,g}(x, k_T^2)$ Pretzelosity $h_{1T}^{\perp q,g}(x, k_T^2)$

Transverse Momentum Dependent distr.: TMDs

Importance of hadron transverse momentum p_T : P_T dependence results from:

- intrinsic k_{\perp} of the quarks
- p_{\perp} generated in the quark fragmentation

Global analyses of SIDIS, Drell-Yan and Z production data with TMD Q² evolution

TMDs- Collins and Sivers functions (SIDIS)

• Access via **SIDIS**, transversely polarized target

$$\mu p^{\uparrow} \rightarrow \mu h^{+/-} X$$

Measure simultaneously several azimuthal asymmetries, out of which:

Collins: Outgoing hadron direction & quark transverse spin

Sivers: Nucleon spin & quark transverse momentum k_T

Collins TMD
fragmentation
function, depends
on spin, and
hadron p_T

Sivers

Unpolarized quark fragmentation function

$$A_{Siv} = \frac{\sum_{q} e_{q}^{2} \left(f_{1Tq}^{\perp} \otimes D_{q}^{h} \right)}{\sum_{q} e_{q}^{2} \cdot q \otimes D_{q}^{h}}$$

TMDs, Collins asymmetry → Transversity h₁

- Large signal for proton target.
 (compatible with zero for deuteron target)
- Same signal strength seen by HERMES and COMPASS, although different Q² (times 4)

Several combined analyses of polarized SIDIS data

HERMES p, COMPASS p and d, and BELLE FF

NB: asymmetries also measured for π and K

HERMES PLB 693(2010) COMPASS PLB 744 (2015)

F. Kunne

Anselmino et al., PRD87(2013) 094019)

TMDs, Sivers asymmetry → Sivers function

Correlation between Nucleon spin & quark transverse momentum k_T

Large signal with proton target.

Was measured compatible with zero on deuteron

Compared to COMPASS, HERMES (smaller Q²) has larger signal

Anselmino et al., JHEP04 (2017)046

TMDs Collins & Sivers. Recent global fits

Many global analyses of SIDIS, Drell-Yan, pp and e+e-.

Great progress: theoretical developments, large data sets, uncertainty studies

JAM20, Etchevaria et al., Anselmino et al., Radici, Bacchetta, Kang et al., D'Alesio et al., Boglione et., Bury et al. ..

e.g.:

TMDs, Transversity h₁ / tensor charge

More data on deuteron needed COMPASS projection for 2022 data, pol. 6LiD:

With 2022 data, expect improvement on uncertainties by factors of : ~2 (u), ~ 3 (d)

TMDs, new approach: weighted asymmetries

SIDIS, target transverse spin

$$A_{Siv}^{(p_T^h/zM)}(x,z) = 2 \frac{\sum_q e_q^2 f_{1T}^{\perp(1) q}(x) \cdot D_1^q(z)}{\sum_q e_q^2 f_1^q(x) \cdot D_1^q(z)},$$

$$f_{1T}^{\perp(1)}(x,Q^2) = \int d^2 k_T \frac{k_T^2}{2M^2} f_{1T}^{\perp}(x,k_T,Q^2).$$

Sivers asymmetry, with weight p_T/zM No more convolution of TMDs and FFs but a product of integrals.

→ extract first moment of Sivers without assumption on k_T dependence

Point by point extraction using h+ and h- asym (NH3 target)^x

TMDs, Target spi-dnependent azimuthal asymmetries

Leading twist asymmetries

		- Deculte on TMDs are above starious like on
LO LSA/TSA	twist-2: PDF \otimes F	Results on TMDs are characterised by an unprecedented precision, covering a wider
$A_{UL}^{\sin(2\phi_h)}$	$h_{1L}^{\perp q}\otimes H_{1q}^{\perp h}$	kinematic range and many observables.
A_{LL}	$g_{1L}^q\otimes D_{1q}^h$,	
$A_{UT}^{\sin(\phi_h - \phi_S)}$	$f_{1T}^{\perp q}\otimes D_{1q}^h$:	vers
$A_{UT}^{\sin(\phi_h + \phi_S - \pi)}$	1q	ollins
$A_{UT}^{\sin(3\phi_h - \phi_S)}$	$h_{1T}^{\perp q}\otimes H_{1q}^{\perp h}$	etzelosity: (deviation of spin ensity from spherical shape)
$A_{LT}^{\cos(\phi_h - \phi_S)}$	$g^q_{1T}\otimes D^h_{1q}$	
	$A_{UT}^{\sin(\phi_h - \phi_S)}$ $A_{UT}^{\sin(\phi_h + \phi_S - \pi)}$ $A_{UT}^{\sin(3\phi_h - \phi_S)}$	$egin{array}{ccccccc} A_{UL}^{\sin(2\phi_h)} & h_{1L}^{\perp q} \otimes H_{1q}^{\perp h} \ & A_{LL} & g_{1L}^q \otimes D_{1q}^h & g_1 \ & A_{UT}^{\sin(\phi_h-\phi_S)} & f_{1T}^{\perp q} \otimes D_{1q}^h & Sin \ & A_{UT}^{\sin(\phi_h+\phi_S-\pi)} & h_1^q \otimes H_{1q}^{\perp h} & Constant \ & A_{UT}^{\sin(3\phi_h-\phi_S)} & h_{1T}^{\perp q} \otimes H_{1q}^{\perp h} & Constant \ & A_{UT}^{\sin(3\phi_h-\phi_S)} & h_{1T}^{\perp q} \otimes H_{1q}^{\perp h} & Constant \ & A_{UT}^{\sin(3\phi_h-\phi_S)} & h_{1T}^{\perp q} \otimes H_{1q}^{\perp h} & Constant \ & C$

Example $A_{UL}(x)$

F. Kunne -22

TMDs, Sivers gluon

Sivers asymmetry:

correlation between nucleon transverse spin & parton transverse momentum.

Measured in SIDIS with transversely polarized target, (already done for quarks), now for **gluons** from azimuthal asymmetry for **PGF** process

$$A_{PGF}^{Siv,d} = -0.14 \pm 0.15 \text{(stat.)} \pm 0.10 \text{(syst.)}$$

 $\langle x_g \rangle = 0.13$

$$A_{PGF}^{Siv,p} = -0.26 \pm 0.09 \text{(stat.)} \pm 0.06 \text{(syst.)}$$

 $\langle x_g \rangle = 0.15$

COMPASS Phys. Lett. B 772, 854 (2017).

TMDs, ρ^0

COMPASS first Collins and Sivers measurement A.Moretti SPIN21

ρ⁰ Collins

positive asymmetry opposite to π +, as expected from models large at small p_T

ρ⁰ Sivers

positive asymmetry, similarly to π +, as expected

F. Kunne -24

GPDs - Generalized Parton Distributions

Physics goals:

160 GeV μ beam

 μ $p \rightarrow \mu'$ $p \gamma$

- 3D mapping of nucleon
- access to Orbital Angular Momentum

Determine 4 GPDs : H, E, H, E (Re and Im parts) via 'exclusive' processes: DVCS (γ) and DVMP (ρ , ω , ϕ)

DVCS interferes with Bethe-Heitler process

→ Can use interference terms or pure DVCS production with appropriate combinations of beam sign and polarization.

Way to it:

- Collect very large sample of data, for various observables and several kinematic variables
- Global analyses to extract 4x2 Compton Form Factors CFFs
- Deconvolutions to finally access GPDs.

See SPIN 2021, J.Giarra talk

DVCS- t-slope of Cross-section (COMPASS)

Measurement of proton transverse size vs x_B

$$\sigma^{\text{DVCS}}/\text{dt} \sim \exp^{-B|t|}$$

B(x_B) = $\frac{1}{2} < r_{\perp}^{2} (x_{B}) >$

Combining data from μ + and μ - beams measure t-slope of DVCS cross section \rightarrow x dependence of transverse size of the nucleon

New preliminary COMPASS result:

2016 data :prelim. result 3 x more stat. expected from 2017 data

Drell-Yan and J/ ψ from π induced dimuon production

Drell-Yan : - polarized NH₃ target → results on TMDs (SIDIS/DY sign change)

- W target → Lam-Tung relation study

J/ψ **production** high statistics data:

- **J/**Ψ TSA and cross-section analysis in progress
- study production mechanism, two processes:

q-qbar annihilation → quark TMDs

g g fusion → gluon TMDs

- search for **J/**ψ pairs

TMDs in polarized Drell-Yan

m induced Drell-Yan on polarized NH3: $\begin{array}{c} \text{COMPASS Drell-Yan } & 4.3 < M_{\mu\nu}/(\text{GeV}/c^2) < 8.5 \\ \text{o} & 2015 \\ \text{o} & 2015 + 2018 \ (\sim 50\%) \ \text{preliminary} \\ \\ A_T^{\sin(2\phi_{\text{CS}} - \phi_{\text{S}})} \\ A_T^{\sin(2\phi_{\text{CS}} + \phi_{\text{S}})} \end{array}$

-0.1

 $\pi N \rightarrow \mu^{+} \mu^{-}$

Sivers $\sim 1\sigma$ above zero Transversity $\sim 2\sigma$ below zero Pretzelosity $\sim 1\sigma$ above zero

Sivers function:

- Non-vanishing orbital angular momentum
- Process dependence expected :

Sign change between SIDIS and Drell-Yan

both measured in COMPASS at similar hard scale

0.2

0.1

Preliminary results on Lam-Tung relation

 π induced Drell-Yan, W target. π W \rightarrow μ ⁺ μ

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} \propto \frac{3}{4\pi} \frac{1}{\lambda + 3} \left[1 + \lambda \cos^2 \theta_{CS} + \mu \sin 2\theta_{CS} \cos \varphi_{CS} + \frac{\nu}{2} \sin^2 \theta_{CS} \cos 2\varphi_{CS} \right] \quad \text{at LO}$$

Data deviate from pQCD calculation

→ Presence of non-zero TMD BoerMulders contribution

Lam-Tung violation quantity 2 ν - (1- λ)

Non zero cos 2φ dependence

- Possible violation of Lam-Tung relation
- cos 2φ dependence
- Results compatible with previous data

J/ ψ pair production in π –N collisions

Search for J/ψ pairs

Goals:

- · investigate possible intrinsic charm
- search for T_{4c} states

2-J/ψ cross-section estimation for NH₃, Al and W targets: (25, 4 and 21 events)

Result consistent with single parton scattering (SPS) mechanism:

$$q \overline{q} \rightarrow 2 J/\psi$$

 $g g \rightarrow 2 J/\psi$

No sign of intrinsic charm d u c c̄ c c̄

Summary –

Gluon and quark contribution to nucleon spin

Gluon Δ G/G=0.1 at x=0.1 (photon gluon fusion process) agrees with RHIC $\int \Delta$ G ~ 0.2 Unknown contribution at low x

Quarks : $\frac{1}{2} \Delta \Sigma \sim 0.15$ from global QCD fit of g_1 world data; agrees with Lattice QCD Flavor decomposition from SIDIS, down to x ~0.004.

Quark Fragmentation functions:

High z data for K^-/K^+ and pbar/p hadron multiplicity ratios

- Data disagree with current NLO QCD calculations at high z and low v
- Unexpected rise of ratio $M(K^+)$ / $M(K^-)$ with missing mass, suggesting to take into account the available phase space for hadronisation in formlism.

Transverse Momentum Dependent parton distributions

Extensive and precise results on all azimuthal asymmetries Global analyses

GPDs via DVCS: b slope prelim. result Many data coming and promising framework for global analyses.

Polarized Drell-Yan First ever measurement → Sivers asymmetry (sign change vs SIDIS)
Angular distributions: TMDs, Lam-Tung relation...