PDFs off the lightcone

Parton Densities

Pseudodistributions on the lattice Link self-energy Renormalization Rest-frame density Higher twists

Evolution i

Evolution z_3^2 -dependence Matching Range of applicabil Dynamic fermions

Pseudodistributions: PDFs off the lightcone A.V. Radyushkin (ODU/Jlab)

Light Cone 2021 December 3, 2021

Supported by JSA, and by U.S. DOE Grant

Hadrons and Partons

PDFs off the lightcone

Parton Densities

Light-cone PDFs
Pseudodistributions
on the lattice
Link self-energy
Renormalization
Rest-frame density
Higher twists
Lattice & oPDFs

lattice

Evolution z_3^2 -dependence Matching Range of applicabilit Dynamic fermions Recent work

- Experimentally, we work with hadrons
- Theoretically, we works with quarks

Can be described in coordinate or momentum space

$$\langle p|\phi(0)\phi(z)|p\rangle = \frac{1}{\pi^2} \int d^4k \, e^{-ikz} \, \chi(k,p)$$

Concept of PDFs does not rely on spin complications

Light-cone PDFs

PDFs off the lightcone

Parton Densities

Light-cone PDFs

Pseudodistribution on the lattice Link self-energy Renormalization Rest-frame density Higher twists

Evolution z_3^2 -dependence Matching Range of applic

 $k^{+} = xp^{+}$ k f(x)

In coordinate representation:
 PDF f(x) is given by Fourier
 transform of loffe-time distribution

$$f(x) = \frac{p^+}{2\pi} \int_{-\infty}^{\infty} dz^- e^{-ixp^+z^-} \mathcal{I}(p^+z^-)$$

- Matrix element M(z, p) on the light cone $z^2 = 0$, we took $z = z^-$
- Infectime $\nu = p^+z^-$
- ITD: $M(z,p)|_{z=z^-} = \mathcal{I}(p^+z^-) = \mathcal{I}(\nu)$

$$f(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} d\nu \, e^{-ix\nu} \, \mathcal{I}(\nu)$$

• Observation: ν -dependence governs x-dependence

PDFs off the liahtcone

Light-cone PDFs

- Take z off the light cone: $z^2 < 0$
- By Lorentz invariance M(z, p) depends on z through $(pz) \equiv -\nu$ and z^2 : $M(z, p) = \mathcal{M}(-(pz), -z^2)$
- $\mathcal{M}(\nu, -z^2)$: pseudo-ITD
- Pseudo \equiv off the light cone, $z^2 \neq 0$
- Using Schwinger's α -representation, it is possible to show that, for any contributing Feynman diagram, for arbitrary z^2 and arbitrary p^2

$$\mathcal{M}(\nu, -z^2) = \int_{-1}^1 dx \, e^{ix\nu} \, \mathcal{P}(x, -z^2)$$

- $\mathcal{P}(x, -z^2) = \text{pseudo-PDF}$, or PDF off the light cone
- ullet $e^{ix
 u}=e^{-ix(pz)}$: decomposition over plane waves with momentum k=xp
- "Canonical" limits -1 < x < 1
- Negative x correspond to anti-particles
- Note: x is Lorentz invariant: same "on" and "off" LC

Pseudodistributions on the lattice

PDFs off the lightcone

- Parton
 Densities
 Light-cone PDFs
 Pseudodistributions
 on the lattice
 Link self-energy
 Renormalization
 Rest-frame density
 Higher twists
 Lattice & pPDFs
- EVOlution In lattice data

 Evolution z_3^2 -dependence

 Matching

 Range of applicabilit

 Dynamic fermions

 Recent work

- On the lattice: cannot take "z" on the light cone Need to take it off the light cone!
- Take $z = \{0, 0, 0, z_3\}$ (X. Ji (2013), quasi-PDF approach, $p_3 \to \infty$)
- Pseudo-PDF approach is based on key observation: It does not matter if ν was obtained as $-(p_+z_-)$ or as p_3z_3 : the function $\mathcal{M}(\nu, -z^2)$ is the same!
- For $z=z_3$, we have $\nu=p_3z_3$ and $-z^2=z_3^2$
- Pseudo-PDF strategy: map lattice data on $M(z_3,p)$ in terms of ν and z_3^2 and extrapolate $\mathcal{M}(\nu,z_3^2)$ to $z_3^2=0$
- lacktriangle Need to understand various types of z^2 -dependence of $\mathcal{M}(
 u,z_3^2)$
- Important to realize: dependence of M(z, p) on z comes (1) through dependence on (pz) and (2) remaining dependence on z for a fixed (pz)

Link-related z_3^2 -dependence

PDFs off the lightcone

Parton
Densities
Light-cone PDFs
Pseudodistributions
on the lattice
Link self-energy
Renormalization
Rest-frame density
Higher twists

lattice data

Evolution z_3^2 -dependence

Matching

Range of applicabil

Dynamic fermions

Recent work

- Specific source of z^2 -dependence In QCD: gauge link $\hat{E}(0,z;A)$
- It comes together with ultraviolet divergences: linear $\sim z_3/a$ and logarithmic $\ln \left(z_3^2/a^2\right)$, where $a \sim$ UV cut-off, e.g. lattice spacing a_L
- At one loop, UV terms have been calculated in lattice perturbation theory (Ji et al., 2016)
- Result close to that obtained using Polyakov regularization $1/z^2 \to 1/(z^2-a^2)$ for gluon propagator in coordinate space, with $a=a_L/\pi$

$$\Gamma_{\rm UV}(z_3, a) \sim -\frac{\alpha_s}{2\pi} C_F \left[2 \frac{|z_3|}{a} \tan^{-1} \left(\frac{|z_3|}{a} \right) - \ln \left(1 + \frac{z_3^2}{a^2} \right) \right]$$

- 1-loop result exponentiates in higher orders, producing $\sim e^{-2\alpha_s z_3/3a}$ factor for large z_3
- Vertex corrections produce extra $\frac{\alpha_s}{2\pi} C_F \ln\left(1+z_3^2/a^2\right)$ term exponentiating in higher orders

Renormalization

PDFs off the lightcone

Parton
Densities
Light-cone PDFs
Pseudodistributions
on the lattice
Link self-energy
Renormalization
Rest frame density

Rest-frame density Higher twists Lattice & pPDFs

lattice data

Evolution z_3^2 -dependence

Evolution z_3^2 -dependence Matching Range of applicability Dynamic fermions Recent work

- Link-related UV divergences have the same structure as in HQET
- They are multiplicatively renormalizable (Qiu et al., Ji et al., Green et al. 2017)
- UV regulator a appears only in the combination z_3/a
- UV-sensitive terms form a factor $Z(z_3^2/a^2)$
- lacktriangle This factor is an artifact of having a non-lightlike z
- It has nothing to do with the lightcone PDFs
- \bullet We should build modified function $Z^{-1}(z_3^2/a^2)\mathcal{M}(\nu,z_3^2;a)$
- lacktriangledown To do this, one should know the $Z(z_3^2/a^2)$ factor
- Easier way out: consider reduced pseudo-ITD

$$\mathfrak{M}(\nu,z_3^2) \equiv \frac{\mathcal{M}(\nu,z_3^2)}{\mathcal{M}(0,z_3^2)} = \lim_{a \rightarrow 0} \frac{\mathcal{M}(\nu,z_3^2;a)}{\mathcal{M}(0,z_3^2;a)}$$

 $\bullet \ \ Z(z_3^2/a^2)$ factors cancel, and $\mathfrak{M}(\nu,z_3^2)$ has finite $a\to 0$ limit

Rest-frame density and Z factor

PDFs off the lightcone

Parton
Densities
Light-cone PDFs
Pseudodistributions
on the lattice
Link self-energy
Renormalization
Rest-frame density
Higher twists

Evolution in lattice data

Evolution

z₃²-dependenc

Matching

Evolution z_3^2 -dependence Matching Range of applicability Dynamic fermions Recent work

- Exploratory study in quenched approximation (Orginos et al. 2017), is still the most precise pPDF calculation
- Allows to study basic aspects of hadron dynamics on the lattice
- Rest-frame density $\mathcal{M}(0, z_3^2)$ is produced by data at $p_3 = 0$

- $\mathcal{M}(0, z_3^2)$ serves as the UV renormalization factor
- ullet Red line is exponential of 1-loop result for link self-energy and vertex corrections with $lpha_s=0.19$
- Very strong effect from $Z(z_2^2) \sim e^{-c|z_3|/a|}$

Higher-twist effects

PDFs off the lightcone

Parton Densities

on the lattice Link self-energy Renormalization Rest-frame density **Higher twists** Lattice & pPDFs

lattice data Evolution z_3^2 -dependence

Evolution z_3^2 -dependence Matching Range of applicabili Dynamic fermions Recent work

- From phenomenology: $f(x,k_\perp) \sim e^{-k_\perp^2/\Lambda^2} f(x)$, with $\Lambda \sim 300$ MeV
- Reflect finite hadron size
- Translates into $\mathcal{P}(x,z_3^2) \sim e^{-z_3^2\Lambda^2/4}f(x)$ for pPDF
- Translates into $\mathcal{M}(\nu,z_3^2)\sim e^{-z_3^2\Lambda^2/4}I(\nu)$ for pITD

- Small correction compared to $Z(z_3^2)$
- Also: cancels in the $\mathcal{M}(\nu, z_3^2)/\mathcal{M}(0, z_3^2)$ ratio
- If $\mathcal{M}(\nu,z_3^2)\sim e^{-z_3^2\Lambda^2/4}I(\nu)$ is not perfect, some residual HT terms $\sim z_3^2\lambda^2$ may remain, with $\lambda\lesssim 100$ MeV
- Strategy: fit residual HT from data

Pseudo-PDF strategy in action

PDFs off the lightcone

Parton

Light-cone PDFs
Pseudodistributions
on the lattice
Link self-energy
Renormalization
Rest-frame density
Higher twists
Lattice & pPDFs

Evolution z_3^2 dependence Matching Range of applicability Dynamic fermions

- Exploratory lattice study of reduced pseudo-ITD $\mathfrak{M}(\nu,z_3^2)$ for the valence u_v-d_v parton distribution in the nucleon [Orginos et al. 2017]
- Lattice QCD calculations in quenched approximation
- $32^3 \times 64$ lattices, lattice spacing a = 0.093 fm
- Pion mass 601(1) MeV and nucleon mass 1411(4)MeV
- Six lattice momenta $p_i (2\pi/L)$, with $2.5\,\mathrm{GeV}$ maximal momentum
- $lackbox{ }$ Real part of lightcone ITD $\mathcal{I}(
 u)$ corresponds to cosine Fourier transform of $q_v(x)=u_v(x)-d_v(x)$

$$\mathcal{R}(\nu) \equiv \operatorname{Re} \mathcal{I}(\nu) = \int_0^1 dx \, \cos(\nu x) \, q_v(x)$$

On the lattice, we extract the reduced pseudo-ITD

$$\mathfrak{M}(
u,z_3^2) \equiv rac{\mathcal{M}(
u,z_3^2)}{\mathcal{M}(0,z_3^2)}$$

Reduced loffe-time distributions

PDFs off the lightcone

Lattice & nPDFs

Left: Real part of the ratio M(Pz₃, z₃²)/M(0, z₃²) as a function of z₃
 Taken at six values of P ⇒ curves have Gaussian-like shape

 $\bullet \Rightarrow Z(z_3^2)$ link factor cancels in the ratio

 $\operatorname{Re}\mathfrak{M}(Pz_3,z_3^2)$ 0.8 0.6 0.4 0.2 0.9

- Right: Same data, as functions of $\nu = Pz_3$ (z_3^2 varies from point to poiint)
- Data practically fall on the same universal curve
- Data show no polynomial z_3 -dependence for large z_3 though z_3^2/a^2 changes from 1 to ~ 200
- Apparently no higher-twist terms in the reduced pseudo-ITD

Evolution z_3^2 -dependence

PDFs off the lightcone

Densities
Light-cone PDFs
Pseudodistributions
on the lattice
Link self-energy
Renormalization
Rest-frame density

Evolution

z₃²-dependence

Matching

Range of applical

 \bullet After cancellation of z_3^2 -dependence from $Z(z_3^2)$ and (hopefully) HT:

lacktriangledown Remaining z_3^2 -dependence corresponds to perturbative (DGLAP) evolution

At one loop,

$$\mathfrak{M}^{(1)}(\nu, z_3^2) = -\frac{\alpha_s}{2\pi} C_F \ln(z_3^2) \int_0^1 du \, B(u) \, \mathfrak{M}^{(0)}(u\nu)$$

Altarelli-Parisi (AP) evolution kernel

$$B(u) = \left[\frac{1+u^2}{1-u}\right]_+$$

- Example of $z_3\text{-dependence}$ for "magic" loffe-time value $\nu=3\pi/4\approx 2.36$
- Shows "perturbative" $\ln\left(1/z_3^2\right)$ for small z_3
- Close to a constant for z₃ > 6a
- Finite-size ("HT") effect in 1-loop terms

Evolution in lattice data

PDFs off the lightcone

Parton
Densities
Light-cone PDFs
Pseudodistributions
on the lattice
Link self-energy
Renormalization
Rest-frame density
Higher twists
Lattice & pPDFs

Evolution in lattice data

Evolution z_3^2 -dependence

Matching

Range of applicabili

Dynamic fermions

- Points corresponding to $7a \le z_3 \le 13a$ values
- Some scatter for points with $u \gtrsim 10$
- Otherwise, practically all the points lie on a universal curve
- No z_3^2 -evolution visible in large- z_3 data
- Points in $a \le z_3 \le 6a$ region
- All points lie higher than the curve based on the $z_3 \ge 7a$ data
- Perturbative evolution increases real part of the pseudo-ITD when z₃ decreases
- Observed higher values of $\operatorname{Re}\mathfrak{M}$ for smaller- z_3 points are a consequence of evolution

Matching relations

PDFs off the lightcone

Parton
Densities
Light-cone PDFs
Pseudodistributions
on the lattice
Link self-energy
Renormalization
Rest-frame density
Higher twists

lattice data
Evolution z_3^2 -dependence

z₃-dependence
Matching
Range of applical

Range of applicability
Dynamic fermions
Recent work

 \bullet Matching condition between reduced pseudo-ITD and $\overline{\rm MS}$ ITD (Y. Zhao 2017, A.R. 2017)

$$\mathfrak{M}(\nu, z_3^2) = \mathcal{I}(\nu, \mu^2) - \frac{\alpha_s(\mu)}{2\pi} C_F \int_0^1 dw \, \mathcal{I}(w\nu, \mu^2) \times \left\{ B(w) \left[\ln \left(z_3^2 \mu^2 \frac{e^{2\gamma_E}}{4} \right) + 1 \right] + \left[4 \frac{\ln(1-w)}{1-w} - 2(1-w) \right]_+ \right\}$$

Building MS ITD

- Points in $a < z_3 < 4a$ region $\mu = 1/a_L \approx$ 2.15 GeV , $\alpha_s/\pi = 0.1$
- Evolved points have a rather small scatter
- The curve corresponds to the cosine transform of a normalized $\sim x^a (1-x)^b$ distribution with a=0.35 and b=3
- Upper curve: ITD of the CJ15 global fit PDF for μ =2.15 GeV

Range of applicability

PDFs off the lightcone

Parton
Densities
Light-cone PDFs
Pseudodistributions
on the lattice
Link self-energy
Renormalization
Rest-frame density
Higher twists
Lattice & pPDFs

Evolution z_3^2 dependence Matching

Range of applicability
Dynamic fermions
Recent work

Rule of thumb: use perturbation theory when correction is small

$$\begin{split} \mathfrak{M}(\nu, z_3^2) = & \mathcal{I}(\nu, \mu^2) - \frac{\alpha_s(\mu)}{2\pi} C_F \int_0^1 dw \, \mathcal{I}(w\nu, \mu^2) \\ & \times \left\{ B(w) \, \left[\ln \left(z_3^2 \mu^2 \frac{e^{2\gamma_E}}{4} \right) + 1 \right] + \left[4 \frac{\ln(1-w)}{1-w} - 2(1-w) \right]_+ \right\} \end{split}$$

- $\bullet \;\;$ Factor $e^{2\gamma_E}/4\approx 1/1.2$ relates scales in $\overline{\rm MS}$ and " z^2 " scheme
- Suggesting $\Lambda_{z^2} \approx \Lambda_{\overline{\rm MS}}/1.1$
- Next step: $\mathfrak{M}(\nu, z_3^2) = \mathcal{I}(\nu, \mu^2)$ when α_s correction is zero
- lacktriangle This happens when $\mu pprox 4/z_3$, because of large correction from $\ln(1-w)$
- Numerically: $\mathcal{I}(\nu, (2\,\mathrm{GeV})^2) \approx \mathfrak{M}(\nu, (0.4\,\mathrm{fm})^2)$
- Take $\mu = 1$ GeV: $\mathcal{I}(\nu, (1 \text{GeV})^2) \approx \mathfrak{M}(\nu, (0.8 \text{ fm})^2)$
- lacktriangle \Rightarrow for $a_L \sim 0.1$ fm , PT is formally applicable till $z_3 \sim 8 a_L$
- lacktriangle Caution: data show deviation from $\ln(z_3^2)$ for $z_3\gtrsim 5a_L$
- lacktriangle Finite hadron size effects in $\mathcal{O}(\alpha_s)$ terms

0.32 0.36 0.76 0.76 0.73 0.73 0.73 0.73 0.73 0.73 0.73

Dynamic fermions (Joo et al., 2019)

PDFs off the lightcone

Parton Densities Light-cone PDFs Pseudodistributions on the lattice Link self-energy Renormalization Rest-frame density

attice data Evolution z_3^2 -dependence Matching Range of applicabili Dynamic fermions

Reduced ITD for two lattice spacings

- Z-factor Re $\mathcal{M}(0, z_3^2)$ for two lattice spacings
- Essentially universal function of z/a
- Curve is given by perturbative formula for the link Z(z/a) factor with $\alpha_s=0.26$
- $a_L = 0.094$ data are described by PT formula with $\alpha_s = 0.24$

PDF from dynamic fermions (2019)

PDFs off the lightcone

Parton

Light-cone PDFs
Pseudodistributions
on the lattice
Link self-energy
Renormalization
Rest-frame density
Higher twists
Lattice & pPDFs

lattice data

Evolution

z₃²-depender

Matching
Range of applicabili

Dynamic fermions

 $\begin{tabular}{ll} \bullet & {\rm Light\text{-}cone\ ITD\ for\ } \mu=2\ {\rm GeV} \\ {\rm extracted\ from\ } a=0.127\ {\rm fm\ data} \\ \end{tabular}$

PDF compared to global fits

3 lattice spacings (Karpie et al. 2021)

PDFs off the lightcone

Parton
Densities
Light-cone PDFs
Pseudodistributions
on the lattice
Link self-energy
Renormalization
Rest-frame density
Higher twists
Lattice & pPDFs

lattice data

Evolution z_3^2 -dependence

Matching

Range of applicabili

Dynamic fermions

3

(i) 2

0.0 0.2 0.4 0.6 0.8 1.0

• Z-factor Re $\mathcal{M}(0,z_3^2)$ is clearly a function of z_3/a_L

CT18

NNPDF3.1

MSHT20 JAM20

This work

- $lacktriangledown_s$ decreases with $a_L.$ Check if it is $lpha_s(1/a_L)$
- Since $\alpha_s(1/a_L) = 2\pi/[b_0 \ln(1/a\Lambda)]$, we plot $1/\alpha_s$ versus $\ln(1/a_L)$
- $\bullet~$ Fit corresponds to $\Lambda=200$ MeV, and $\beta_0=11.4$
- Since $\beta_0 = 11 2N_f/3$, contribution of quark loops into α_s in this simulation is not visible
 - Comparison with global fits
 - Lattice result is smaller for small x
 - Pion mass was taken 440 MeV
 - lacktriangle Too large to give realistic PDF for small x
 - Higher twists $\lesssim 0.15 \, \Lambda_{
 m QCD}^2 z_3^2$

PDFs off the lightcone

Parton
Densities
Light-cone PDFs
Pseudodistributions
on the lattice
Link self-energy
Renormalization
Rest-frame density
Higher twists
Lattice & pPDFs

lattice data

Evolution z_3^2 -dependence

Matching

Range of applicabili

Dynamic fermions

Recent work

 Collaboration with NNPDF: fitting lattice points like experimental data (2020)

Unpolarized gluon PDFs

Theory: Balitsky, Morris, A.R. (2019)

Lattice: HadStruc (2021)

Transversity distributions

Theory and Lattice: HadStruc (2021)

 Polarized gluon PDFs: In progress Theory: Balitsky, Morris, A.R. (2021)

Lattice: HadStruc, ongoing

PDFs off the lightcone

Parton
Densities
Light-cone PDFs
Pseudodistributions
on the lattice
Link self-energy
Renormalization
Rest-frame density
Higher twists
Lattice & pPDFs

lattice data

Evolution z_3^2 -dependence

Matching

Range of applicabil

Dynamic fermions

Recent work

- Psedodistribution approach allows to study hadron structure in a way similar to experimental study of DIS
- Instead of structure functions $W(x,Q^2)$, we study loffe-time distributions $\mathcal{M}(\nu,z_3^2)$
- z_3 is probing scale, like 1/Q in DIS
- Detailed studies of ν and z_3^2 -dependence decipher subtleties of hadron dynamics