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•  Recent work by Li &Vary, de Teramond & Brodsky, 
Ahemedy et al., Chabysheva & Hiller intended to 
include non-vanishing quark masses and extend LF 
Holography from (1+2) to (1+3) dimensions


• Scheckler & I 2101.00100 realized it was necessary 
to include longitudinal dynamics to obtain complete 
set of states in (1+3)


• Paper was written because I wanted to understand 
what was going on

Colin M. Weller & Gerald A. Miller



Summary of LF Holography

•  Brodsky et al. Phys. Rept. 584, 1– 105 (2015), arXiv:1407.8131 [hep-ph].  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Spectroscopy & massless pion ✓

x is held fixed, need longitudinal confining equation 
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Longitudinal dynamics
Veff = U⊥(ζ) + V∥(x)

[ m2
1

x
+

m2
2

1 − x
+ V∥] Xn(x) = M2

∥ Xn(x) .

ψ(x, b) =
φ(ζ)

ζ
Xn(x)

∫
1

0

|Xn(x) |2

x(1 − x)
dx = 1

χn(x) = Xn(x)/ x(1 − x)

Early applications ( ): 
 

m1,2 = 0, V∥ = 0
X(x) = x(1 − x), χ = 1

Comment: QCD potential is not a sum of two independent 
terms. Product wave functions form a basis



Longitudinal dynamics with 
Hermitian confining potential ( )H∥

H∥χn = M2
n χn ’t Hooft, Callen et al, Brower et al,Ellis …

∫ dx χ*n (x)χm(x) = δnm

⟨n |H∥ |m⟩ = ∫ dx dy χ*n (x)H∥(x, y)χm(y)

H∥(x, y) =
m2

x(1 − x)
δ(x − y) + V||(x, y)

Confining potential is off-diagonal in momentum, because it depends on the 
relative spatial coordinate   (Miller & Brodsky 2019),  canonically conjugate to 

momentum fraction x
z̃

⟨n |H∥ |m⟩ = ∫ dx
m2

x(1 − x)
χ*n (x)χm(x) + ∫ dx dyχ*n (x)V||(x, y)χm(y) .



Three V∥
VLV(x)χn(x) = − σ2∂x x(1 − x)∂x χn(x)

(VtH χn)(x) =
g2

π
P∫

1

0
dy

χn(x) − χn(y)
(x − y)2

P
f(x, y)

(x − y)2
≡

1
2

[
f(x, y)

(x − y + iϵ)2
+

f(x, y)
(x − y − iϵ)2

]

P Comes from confining potential proportional to 
Includes quark self-energy, m is current quark mass

| z̃ |e−ϵ|z̃|

(ϵ → 0)

3

2

1

χ(x) = 𝒩 exp[−1/(2κ2)(−m2
1 /x + m2

2 /(1 − x))]

Invariant mass wave function (IMWF) (Brodsky:2014yha)

1,2 use ∫ dx χ*n (x)χm(x) = δnm



∫
1

0

|Xn(x) |2

x(1 − x)
dx = 1Using 

Xn(x) ≡ x(1 − x)χn(x)

⟨n |H∥ |m⟩ = ∫
dx

x(1 − x)
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m2
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Xm(x) + ⟨n |V∥ |m⟩

⟨n |V|| |m⟩ = ∫
dx dy

x(1 − x)
X̃n(x)

x(1 − x)

y(1 − y)
V||(x, y)Xm(y)

The potential in red box is not Hermitian, thus tilde on  Xn

With X-normalization ’t Hooft eq. becomes
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P∫ dy
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(x − y)2

• Chabysheva & Hiller
• Chabysheva & Hiller solved this eq
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Differences between two potentials
VLV(x)χn(x) = − σ2∂x x(1 − x)∂x χn(x)

(VtH χn)(x) =
g2

π
P∫

1

0
dy

χn(x) − χn(y)
(x − y)2

  from confining potential proportional to 
 

VtH | z̃ |e−ϵ|z̃|

2

1

Similarities first - both have same chiral limit ground state χn → 1

Both obey M2
∥ ∫

1

0
dx χn(x) = ∫

1

0
dx χn(x)[ m2

1

x
+

m2
2

1 − x ]  vanishes at x=0,1χn
Potentials seem similar, but no:  coordinate space

⟨z̃ |VLV(x) | z̃′￼⟩ =
σ2

2π
z̃z̃′￼ei (z̃′￼− z̃)

2
j1(

z̃′￼− z̃
2 )

z̃′￼− z̃
,

High energy spectrum is very different M2
LV ∼ k2, M2

tH ∼ k



Wave equation & spectrum for IMWF

Use m1,2 = m, y2 ≡
1

x(1 − x)

−
κ4

m2
ϕ′￼′￼+ m2y2ϕ = M2ϕ,If ϕ(y) = e

−m2y2

2κ2

Wave equation exists

M2 = κ2, 3κ2, 5κ2⋯ independent of m

Not very reasonable 



Small current quark masses

M2
∥(LV) = 2σm + 4m2 m = 15 MeV, σ = 620 MeV

t′￼Hooft χ0(x) ∝ xβ(1 − x)β, β =
3
π

m
g

M2
∥(tH) = 2

π
3

gm + 4m2 .

m = 3.5 MeV g = 2700 MeV

Both models have 1+1 dimensional version of Gell-Mann 
Oakes Renner

Spectra of two models different because of parameters

With this ’t Hooft model preserves spectrum of original LF holography because 

excited states of very high mass in unobserved region of spectra



Coordinate-space confinement 
χ(z̃) ≡ ∫

1

0

dx

2π
eixz̃χ(x) . ρ(z̃) ≡ |χ(z̃) |2

4

g = 2700 MeV, and � = 0.00126. Thus, these two models
contain a (1+1)-dimensional version of the Gell-Mann-
Oakes-Renner [17] relation in which the squared mass
of the ground state is proportional to the current quark
mass.
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FIG. 1: Plots of the resulting density, ⇢(z̃), and z̃
2
⇢(z̃)

are given for all three models. The discrepancy between
the models in ⇢(z̃) is small but finite, and the 1/z̃2

asymptotic behavior is confirmed.

It is worthwhile to note that the use of current-quark
masses in the ’t Hooft model causes the two di↵erent
models to obtain very di↵erent masses of the first ex-
cited state. Ref [2] obtains excitation energies of approx-
imately 1 GeV and associates these values with excited
states of the pion. In the present work, using modern
values of the current quark masse [16] gives the lowest
excited state a mass on the order of g, or about 3 GeV.
This is high enough into the continuum of states with
large widths to be unobservable. Thus, the version of
the ’t Hooft model used here preserves the spectra pro-
duced by LFHQCD.

The confining aspects of the ’t Hooft model have
been well-studied long ago [11, 13], using a momentum-
space (x) dependence approach based on studying the
cancellation of infrared singularities. Another, possibly
more intuitive approach, may be obtaining by examin-
ing coordinate-space wave functions that depend on the
canonically conjugate spatial variable, z̃. An intuitive
way to think about this variable is that it is the separa-
tion between the quark and anti-quark in the direction
of motion of a pion moving with high momentum.
Coordinate-space wave functions are obtained using

the transformation

�(z̃) ⌘
Z

1

0

dxp
2⇡

e
ixz̃

�(x). (20)

It is useful to examine the density ⇢(z̃) ⌘ |�(z̃)|2, a
real-valued quantity, for the three models are shown in
Fig. 1(a). These results seem very similar because of the
relatively small quark masses of the three models. The
densities seem to go to 0 for large absolute values of z̃.
They do, but there in an interesting feature seen by plot-
ting z̃

2
⇢(z̃) in Fig. 1(b): the densities fall as 1/z̃2.

This behavior may be understood by making a asymp-
totic expansion, obtained by using e

iz̃x = 1/(iz̃)@xeiz̃x

and the feature that �(x) vanishes at the end points.
Then

lim
|z̃|!1

�(z̃) =
i

z̃

Z
1

0

dxp
2⇡

e
ixz̃

@x�(x). (21)

Squaring this quantity leads to the stated 1/z̃2 depen-
dence.
The similarity of the behaviors for small masses sug-

gests that the chiral limit should be examined. In this
case, �(x) = 1 for all three models. Then a simple closed-
form expression for �(z̃) can be obtained. The resulting
density, ⇢�(z̃) is given by

⇢�(z̃) =
2

⇡

sin2 z̃/2

z̃2
, (22)

an expression that accounts explicitly for the oscillatory
behavior as well as the 1/z̃2 asymptotic behavior. One
may also examine the spatial extent of the pion wave
function by considering the mean-square value of z̃2, that
is given by the ground-state expectation value:

h�|z̃2|�i = 2

⇡

Z 1

�1
dz sin2(z̃/2) = 1. (23)

In the chiral limit the pion has an infinite spatial extent,
true for all three models.
It is necessary to see how or if this infinite size conflicts

with current understanding. First note that the elastic
pion form factor of LFHQCD has already been computed
using �(x) = 1; see e.g. Ref. [18]. The infinite extent is
buried within the integrals needed to compute the elastic
form factor, a consequence the ability to probe with only
transverse momentum transfers; see e.g. the review [19].

Chiral limit    ρχ(z̃) =
2
π

sin2 z̃ /2
z̃2

⟨χ | z̃2 |χ⟩ =
2
π ∫

∞

−∞
dz sin2(z̃ /2) = ∞

Longitudinal size is infinite

ρ(z̃)

z̃

z̃2ρ(z̃)

z̃



Infinitely long pion

• No problem for form factor, only transverse 
momentum transfer


• Infinite size like Ioffe time ,  for pion to ΔE qq̄ = 0

π

q

q̄



Summary

• The three models of longitudinal confinement are 
very different, LV ~ harmonic oscillator, tH linear, 
IMWF- potential depends on quark mass


• Consequences of hermiticity have been explored


• Product wave functions are basis states, better to 
use Hermitian, slight conflict with holography,


• Pion has infinite longitudinal size in chiral limit


