Going to the light front with contour deformations

GE, E. Ferreira, A. Stadler, in preparation

Gernot Eichmann
LIP & IST Lisboa

Light Cone 2021: Physics of Hadrons on the Light Front
Dec 1, 2021
Motivation

Spin and orbital angular momentum
3D imaging of the nucleon and nuclei
Flavor structure of proton, pion and kaon
Origin of mass

Quark-gluon structure of hadrons and nuclei

- Flavor structure of proton, pion and kaon
- Spin and orbital angular momentum
- 3D imaging of the nucleon and nuclei
- Origin of mass

Encoded in parton distributions, defined on the light front: PDFs, GPDs, TMDs, TDAs

Large experimental efforts
JLab, EIC, COMPASS/AMBER, PANDA, JPARC, LHC, ...
Parton distributions

Hadron-to-hadron correlator
\[G(z, P, \Delta) = \langle P_f | T \Phi(z) O \Phi(0) | P_i \rangle \]

Bethe-Salpeter WF:
vacuum-to-hadron correlator
\[\Psi(z, P) = \langle 0 | T \Phi(z) \Phi(0) | P \rangle \]

<table>
<thead>
<tr>
<th>[\int dq^- \int d^2 q_\perp \int dq^-]</th>
<th>(G(q, P, \Delta = 0))</th>
<th>(G(q, P, \Delta))</th>
<th>(\Psi(q, P))</th>
</tr>
</thead>
<tbody>
<tr>
<td>TMD</td>
<td>GTMD</td>
<td>LFWF</td>
<td></td>
</tr>
<tr>
<td>PDF</td>
<td>GPD</td>
<td>PDA</td>
<td></td>
</tr>
</tbody>
</table>

Light-front wave functions:
coefficients of Fock expansion in light-front quantization

Brodsky, Pauli, Pinsky, Phys. Rept. 301 (1998)

Belitsky, Radyushkin, Phys. Rept. 418 (2005)
Lorcé, Pasquini, Vanderhaeghen, JHEP 05 (2011)
...
Parton distributions

\[G(z, P, \Delta) = \langle P_f | T \Phi(z) \mathcal{O} \Phi(0) | P_i \rangle \]

Hadron-to-hadron correlator

\[\Psi(z, P) = \langle 0 | T \Phi(z) \Phi(0) | P \rangle \]

Bethe-Salpeter WF:

vacuum-to-hadron correlator

<table>
<thead>
<tr>
<th>Integration</th>
<th>(G(q, P, \Delta = 0))</th>
<th>(G(q, P, \Delta))</th>
<th>(\Psi(q, P))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\int d^2 q_\perp \int dq^-)</td>
<td>TMD</td>
<td>GTMD</td>
<td>LFWF</td>
</tr>
<tr>
<td>PDF</td>
<td>GPD</td>
<td>PDA</td>
<td></td>
</tr>
</tbody>
</table>

Light-front wave functions:
coefficients of Fock expansion in light-front quantization

\[\text{Brodsky, Pauli, Pinsky, Phys. Rept. 301 (1998)} \]

Progress in lattice QCD:
Quasi-PDFs, pseudo-PDFs, ...

\[\text{Ji, PRL 110 (2013),} \]
\[\text{Radyushkin, PLB 767 (2017),} \]
\[\text{Lin et al., PPNP 100 (2018),} \]
\[\text{Constantinou et al., PPNP 121 (2021)} \]

Nakanishi representation

\[\text{Nakanishi 1963, 1969, 1988} \]
\[\text{Kusaka, Williams, PRD 51 (1995)} \]
\[\text{Sauli, Adam, PRD 67 (2003)} \]
\[\text{Karmanov, Carbonell, EPJ A 27 (2006)} \]
\[\text{Frederico, Salmè, Viviani, PRD 85 (2012)} \]

Many continuum studies of LFWFs, PDFs, GPDs, TMDs, ...

\[\text{Tiburzi, Miller, PRD 65 (2002)} \]
\[\text{Nguyen, Bashir, Roberts, Tandy, PRC 83 (2011)} \]
\[\text{Chang et al., PRL 110 (2013)} \]
\[\text{Frederico, Salmè, Viviani, PRD 89 (2014)} \]
\[\text{Mezrag et al., PLB 741 (2015)} \]
\[\text{de Paula et al., PRD 94 (2016)} \]
\[\text{Mezrag, Segovia, Chang, Roberts, PLB 783 (2018)} \]
\[\text{Bednar, Cloet, Tandy, PRL 124 (2020)} \]
\[\text{Ding et al., PRD 101 (2020)} \]
\[\text{Serna et al., EPJ C 80 (2020)} \]
\[\text{Freese, Cloet, PRC 103 (2021)} \]
\[\text{Zhang et al., PLB 815 (2021)} \]
\[\text{Ydrefors, Frederico, 2108.02146} \]

\[\text{...} \]

Belitsky, Radyushkin, Phys. Rept. 418 (2005)
Lorcé, Pasquini, Vanderhaeghen, JHEP 05 (2011)
...

Light-front wave function

\[LFWF = \text{BSWF integrated over } q^- \]

\[\psi(q^+, q^-) = \mathcal{N} P^+ \int_{-\infty}^{\infty} \frac{dq^-}{2\pi} \Psi(q, P) \]

Introduce **momentum partitioning** \(\alpha \in [-1, 1] \) through

\[q = k + \frac{\alpha}{2} P \quad \Rightarrow \quad q_1 = k + \frac{1+\alpha}{2} P \]
\[q_2 = -k + \frac{1-\alpha}{2} P \]

\(k^+ = 0 \)

Then:

LFWF:

\[\psi(\alpha, k) = \mathcal{N} P^+ \int_{-\infty}^{\infty} \frac{dq^-}{2\pi} \Psi(q, P) \bigg|_{q^+=\frac{1}{2} P^+, \quad q_\perp = k_\perp} \]

PDA:

\[\phi(\alpha) = \frac{1}{16\pi^3 f} \int d^2 k_\perp \psi(\alpha, k_\perp) \]

Light-front variables:

\[q^\pm = q^0 \pm q^8 \]

\[\int d^4 q = \frac{1}{2} \int d^2 q_\perp \int dq^+ \int dq^- \]

\(q_1^+ = \xi P^+ \)
\[q_2^+ = (1 - \xi) P^+ \]

\[\xi = \frac{1+\alpha}{2} \]

Gernot Eichmann (LIP Lisboa)
Example: monopole

BSWF

\[\psi = \psi(p, q, q_1, q_2) \]

\[\Gamma(q, P) = -\frac{m^2}{q^2 - m^2\gamma + i\epsilon} \]

BS amplitude: monopole

Propagators:

\[G_0(q, P) = \frac{i}{q_1^2 - m^2 + i\epsilon} \frac{i}{q_2^2 - m^2 + i\epsilon} \]

LFWF becomes

\[\psi(\alpha, x) = \frac{N}{i\pi m^2} \frac{1}{\alpha (1 - \alpha^2)} \int_{-\infty}^{\infty} dw \frac{1}{w - w_+} \frac{1}{w - w_-} \frac{1}{w - w_0} \]

3 poles in complex \(w \) plane:

\[w_{\pm} = \pm \left(t + \frac{1 + x - i\epsilon}{1 \pm \alpha} \right) \]

\[w_0 = \frac{x + \gamma - i\epsilon}{\alpha} \]

Result:

\[\psi(\alpha, x) = \frac{N}{m^2} \frac{1}{x + A} \frac{1 - |\alpha|}{x + A + (1 - |\alpha|)B} \]

\[A = 1 + (1 - \alpha^2) t \]

\[B = \gamma - 1 - t \]

Abbreviate:

\[t = -\frac{M^2}{4m^2} \in [-1, 0] \]

\[w = \frac{M}{2m} q^- \in \mathbb{R} \]

\[x = \frac{q_1^2}{m^2} > 0 \]

- vanishes at endpoints \(\alpha = \pm 1 \)
- falls off like \(1/x^2 \)
- support only for \(-1 < \alpha < 1 \)
 (not an analytic function!)
Example: monopole

\[
\int_{-\infty}^{\infty} dw
\]

\Rightarrow \text{ support only for } -1 < \alpha < 1, \not an analytic function, x, t \in \mathbb{R}

\Rightarrow \text{ analytic function in } \alpha^2 \text{ for any } x, t \in \mathbb{C}, \text{ for } -1 < \alpha < 1 \text{ result is the same}
Example: monopole

\[
\int_{-\infty}^{\infty} dw
\]

⇒ support only for \(-1 < \alpha < 1\), not an analytic function, \(x, t \in \mathbb{R}\)

⇒ analytic function in \(\alpha^2\) for any \(x, t \in \mathbb{C}\), for \(-1 < \alpha < 1\) result is the same
Example: monopole

\[\int_{-\infty}^{\infty} dw \]

\[\Rightarrow \text{support only for } -1 < \alpha < 1, \text{ not an analytic function}, \]
\[x, t \in \mathbb{R} \]

\[\Rightarrow \text{analytic function in } \alpha^2 \text{ for any } x, t \in \mathbb{C}, \]
\[\text{for } -1 < \alpha < 1 \text{ result is the same} \]
After integrating over w, poles in w become \textbf{branch cuts} in x:

$$w_{\pm} = \pm \left(t + \frac{1+\alpha}{1 \pm \alpha} \right)$$

$$w_0 = \frac{x + \gamma}{\alpha}$$

$$\Rightarrow\quad x_{\pm} = (1 \pm \alpha)(\pm w - t) - 1$$

$$x_0 = \alpha w - \gamma$$

These separate different \textbf{regions} in complex x plane:

As long as we stay inside this region, we will get correct result for the LFWF.
Example: monopole

After integrating over \(w \), poles in \(w \) become **branch cuts** in \(x \):

\[
\begin{align*}
 w_\pm &= \pm \left(x + \frac{1 + \alpha}{1 \pm \alpha} \right) \\
 w_0 &= \frac{x + \gamma}{\alpha}
\end{align*}
\]

\[
\Rightarrow \quad x_\pm = (1 \pm \alpha)(\pm w - t) - 1
\]

\[
x_0 = \alpha w - \gamma
\]

These separate different **regions** in complex \(x \) plane:

As long as we stay inside this region, we will get correct result for the LFWF

\(\Rightarrow \) Outside this region, the poles in \(w \) have moved to the wrong side of the **Euclidean** integration contour (would need to deform it as well)
Now, go to Euclidean metric:

\[k_E = \begin{bmatrix} k \\ k_4 \end{bmatrix} = \begin{bmatrix} k \\ ik^0 \end{bmatrix} \quad k_3 = \frac{k^- - k^+}{2}, \quad k_4 = \frac{k^+ + k^-}{2} \]

Drop index E.

BSWF depends on two four-vectors \(k, P \):

\[\Psi(q, P) = \Psi(x, \omega, t, \alpha) \quad q = k + \alpha \frac{P}{2} \]

⇒ LFWF & PDA:

\[k_E \cdot p_E = -k \cdot p = k_\perp \cdot p_\perp - \frac{1}{2} (k^- p^+ + k^+ p^-) \]

Three Lorentz invariants:

\[\begin{align*}
 x &= \frac{k^2}{m^2} = \frac{k_\perp^2}{m^2} \\
 \omega &= \hat{k} \cdot \hat{P} = -\frac{\omega + \alpha t}{2\sqrt{xt}} \\
 t &= \frac{P^2}{4m^2} = -\frac{M^2}{4m^2}
\end{align*} \]

- Can be integrated \textbf{numerically} (check for monopole: same result)
- BSWF is \textbf{Lorentz-invariant}, can be calculated in any frame (also rest frame)
- But now the \textbf{branch cuts} in complex \(x \) plane will look different, need to stay inside \(\mathcal{R}_\varepsilon \)
Euclidean variables

Branch cuts in complex \sqrt{x} plane:

- Correct result for LFWF inside R_ϵ
- Physical region $0 < M < 2m$ is imaginary axis: $\sqrt{t} = \frac{iM}{2m}$
 Not possible ⇒ must calculate for complex \sqrt{t}
- If cuts cross real \sqrt{x} axis, must deform contour to calculate PDA
Ultimately, we want to compute BSWF dynamically from its **Bethe-Salpeter equation**. Here: massive Wick-Cutkosky model (scalar ladder exchange)

Wick 1954, Cutkosky 1954, Nakanishi 1969

\[
\Gamma(q, P) = \int \frac{d^4q'}{(2\pi)^4} K(q, q', P) G_0(q', P) \Gamma(q', P)
\]

- Two parameters: overall coupling strength \(c \), mass ratio \(\beta = \mu/m \)
- Compute eigenvalue spectrum for complex \(\sqrt{\xi} = \frac{iM}{2m} \), bound states if \(\frac{1}{\lambda(t)} = c \)

Lines: direct result using contour deformations

Red dots: Nakanishi method

Virtual state if \(c \) too small, tachyon if \(c \) too large

GE, Duarte, Peña, Stadler, PRD 100 (2019)
Singularities in BSE

- **BSE must be solved for** \(\sqrt{x} \in R_\epsilon \)
- **BSE is integral equation** ⇒ must be solved along path \(\sqrt{x} \) that coincides with integration path \(\sqrt{x'} \), must lie inside \(R_\epsilon \) ⇒ need contour deformations

- **Kernel** has pole ⇒ after integrating over \(y \) and \(\phi \psi \), becomes branch cut in \(\sqrt{x'} \), automatically avoided if Re \(\sqrt{x'} \) and |\(\sqrt{x'} \)| increase along integration path

- **Propagators** have poles ⇒ branch cuts from before, automatically avoided if integration path connects \(\sqrt{x'} = 0 \ldots (1 + |\alpha|)\sqrt{i} \) and goes back to real axis

- **BS amplitude** may dynamically generate singularities at \(g^2/m^2 = -\mu^2 \) ⇒ avoided as long as \(\text{arg} \sqrt{i} < \text{arg}(iu) \)
Bethe-Salpeter amplitude

\[\Gamma(x, \omega, t, \alpha) = \int_0^\infty dx' \int_{-1}^1 dw' \int_{-1}^1 dy K(x, x', \Omega) G_0(x', \omega', t, \alpha) \Gamma(x', \omega', t, \alpha) \]

\[\Omega = \omega + y \sqrt{1 - \omega^2} \sqrt{1 - \omega'^2} \]

- BS amplitude falls off like \(1/x\)
- only weak dependence on \(\omega\) and \(\alpha\)
 \(\Rightarrow\) \(\alpha\) dependence in LFWF comes from propagators:

\[\psi(\alpha, x, t) \propto \int_{-\infty}^{\infty} d\omega \ G_0(x, \omega, t, \alpha) \Gamma(x, \omega, t, \alpha) \]

- LFWF needs \(\Gamma\) for \(\omega \in (-\infty, \infty)\), but
 BSE solution only known for \(\omega \in [-1, 1]\)

Use **Schlessinger point method** (SPM)
for analytic continuation

Schlessinger, Phys. Rev. 167 (1968)

\[f(\omega) = \frac{c_1}{1 + \frac{c_2 (\omega - \omega_1)}{1 + \frac{c_3 (\omega - \omega_2)}{1 + \frac{c_4 (\omega - \omega_3)}{\ldots}}}} \]

\(\alpha = 0.8, \sqrt{\lambda} = 0.2 + 0.2i\)
Light-front wave function

- Results agree with Nakanishi method
- LFWF vanishes at endpoints $\alpha = \pm 1$
- No expansion in moments involved, plain numerical result
- Also works above threshold (unphysical, no poles on 1st sheet, no resonances either)
Distribution amplitude

Results agree with Nakanishi method
integrate along
previous contour
PDA vanishes at endpoints
No expansion in moments involved,
plain numerical result
Also works above threshold (unphysical,
no poles on 1st sheet, no resonances either)

\[\phi(\alpha) = \frac{m^2}{(4\pi)^2} \int_0^\infty dx \psi(\alpha, x, t) \]

- Results agree with Nakanishi method
- PDA vanishes at endpoints \(\alpha = \pm 1 \)
- No expansion in moments involved, plain numerical result
- Also works above threshold (unphysical, no poles on 1st sheet, no resonances either)
Unequal masses

Straightforward to implement:

\[
G_0(q, P) = \frac{1}{q_1^2 + m_1^2} \frac{1}{q_2^2 + m_2^2}
\]

\[
m_1 = m (1 + \varepsilon), \quad m_2 = m (1 - \varepsilon)
\]

Results depend on mass difference \(\varepsilon \),
contour deformation works in same way

LFWF is no longer symmetric in \(\alpha \):

Gernot Eichmann (LIP Lisboa)
Complex conjugate poles

Typical situation for quark and gluon propagators in QCD within truncations

Straightforward to implement in scalar model, contour deformations work in same way

\[
D(q^2) = \frac{1}{2} \left(\frac{1}{q^2 + m^2 (1 + i\delta)} + \frac{1}{q^2 + m^2 (1 - i\delta)} \right) \\
= \frac{q^2 + m^2}{(q^2 + m^2)^2 + m^4 \delta^2}
\]

Careful when doing residue calculus in Minkowski space:

see also Tiburzi, Detmold, Miller, PRD 68 (2003)

\[\int_{-\infty}^{\infty} dw \]

\[\int_{-\infty}^{\infty} (1 + ie) dw\]

does not give correct limit for \(\delta \to 0\)
correct limit for \(\delta \to 0\), proper analytic continuation
Complex conjugate poles

Typical situation for quark and gluon propagators in QCD within truncations

\[D(q^2) = \frac{1}{2} \left(\frac{1}{q^2 + m^2 (1 + i\delta)} + \frac{1}{q^2 + m^2 (1 - i\delta)} \right) \]

\[= \frac{q^2 + m^2}{(q^2 + m^2)^2 + m^4 \delta^2} \]

LFWF and PDA:

One does not even need to know pole positions

\[q_{1,2}^2 / m^2 = -u^2 \Rightarrow \text{avoided as long as arg } \sqrt{\epsilon} < \text{arg}(iu) \]

works for general singularities in n-point functions!
Summary

- We explored new method to compute LFWF & PDA using contour deformations & analytic continuations
 GE, Ferreira, Stadler, in preparation

- Method is fast and efficient

- Can integrate **numerically** without explicit knowledge of singularities in the integrand
 (as long as confined to certain region)

- Proof of concept for scalar model and Bethe-Salpeter wave function, but should work in same way for hadron-to-hadron correlators

\[
\mathcal{G}(z, P, \Delta) = \langle P_f | T \Phi(z) \mathcal{O}(0) | P_i \rangle \quad \Psi(z, P) = \langle 0 | T \Phi(z) \Phi(0) | P \rangle
\]

Thank you!