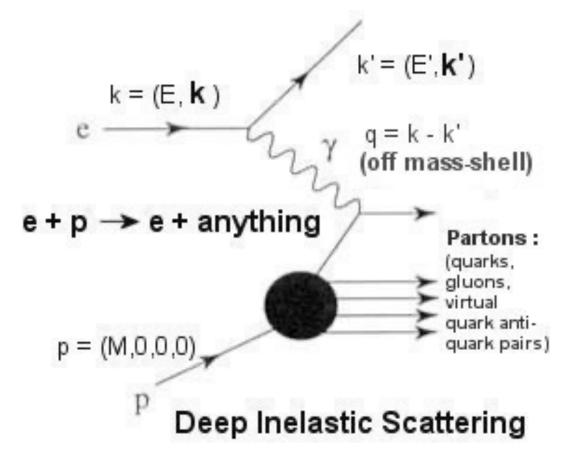

Nucleon Parton Distributions from Lattice QCD

Jiunn-Wei Chen National Taiwan U.

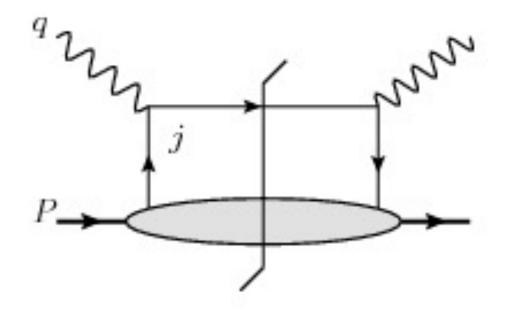
Collaborators (LP3, MSULat): Saul D. Cohen, Tomomi Ishikawa, Zhouyou Fan, Carson Honkala,

Xiangdong Ji, Luchang Jin, Ruizi Li, Huey-Wen Lin, Yu-Sheng Liu, Andreas Schafer, Yi-Bo Yang, Jianhui Zhang, Rui Zhang, Yong Zhao

The complicated world inside a proton



Parton structures:1d mom+spin PDF to 3d GPD & TMD to Wigner (and beyond?) [BNL, JLab, J-PARC, COMPASS, GSI, EIC, LHeC, ...] to applications (Higgs, new physics...) Can we determine these distributions theoretically?


PDFs from QCD---a light cone problem!

- The number of quark anti-quark pairs diverges (manifestation of non-perturbative nature of the problem): an infinite body problem!
- Lattice QCD
- Euclidean lattice: light cone operators cannot be distinguished from local operators $t^2 - r^2 = 0$ $-t^2 - r^2 = 0$

Measuring Parton Distributions Using DIS experiments

Parton Distribution Function (PDF) in QCD

The struck parton moves on a light cone at the leading order in the twist-expansion.

$$q(x,\mu^2) = \int \frac{d\xi^-}{4\pi} e^{ix\xi^-P^+} \left\langle P \left| \overline{\psi}(0)\lambda \cdot \gamma \Gamma \psi(\xi^-\lambda) \right| P \right\rangle$$

PDFs from QCD---a light cone problem!

- Euclidean lattice: light cone operators cannot be distinguished from local operators
- Moments of PDF given by local twist-2 operators (twist = dim - spin); limited to first few moments but carried out successfully

$$\langle x^n \rangle$$

Beyond the first few moments

- Smeared sources: Davoudi & Savage
- Gradient flow: Monahan & Orginos
- Current-current correlators: K.-F. Liu & S.-J. Dong; Braun & Müller; Detmold & Lin; QCDSF; Qiu & Ma
- Xiangdong Ji (Phys. Rev. Lett. 110 (2013) 262002): quasi-PDF: computing the xdependence directly. (variation: pseudo-PDF, Radyushkin; w/ Karpie, Orginos, Zafeiropoulos)

Ji's idea


• Quark PDF in a proton: $(\lambda^2 = 0)$

$$q(x,\mu^2) = \int \frac{d\xi^-}{4\pi} e^{ix\xi^-P^+} \left\langle P \left| \overline{\psi}(0)\lambda \cdot \gamma \Gamma \psi(\xi^-\lambda) \right| P \right\rangle$$

- Boost invariant in the z-direction, rest frame OK
- Quark bilinear op. always on the light cone
- What if the quark bilinear is slightly away from the light cone (space-like) in the proton rest frame?

• Then one can find a frame where the quark bilinear is of equal time but the proton is moving.

Then one can find a frame where the quark bilinear is of equal time but the proton is moving.

- Then one can find a frame where the quark bilinear is of equal time but the proton is moving.
- Analogous to HQET: need power corrections & matching---LaMET (Large Momentum Effective Theory)

- Then one can find a frame where the quark bilinear is of equal time but the proton is moving.
- Analogous to HQET: need power corrections & matching---LaMET (Large Momentum Effective Theory)

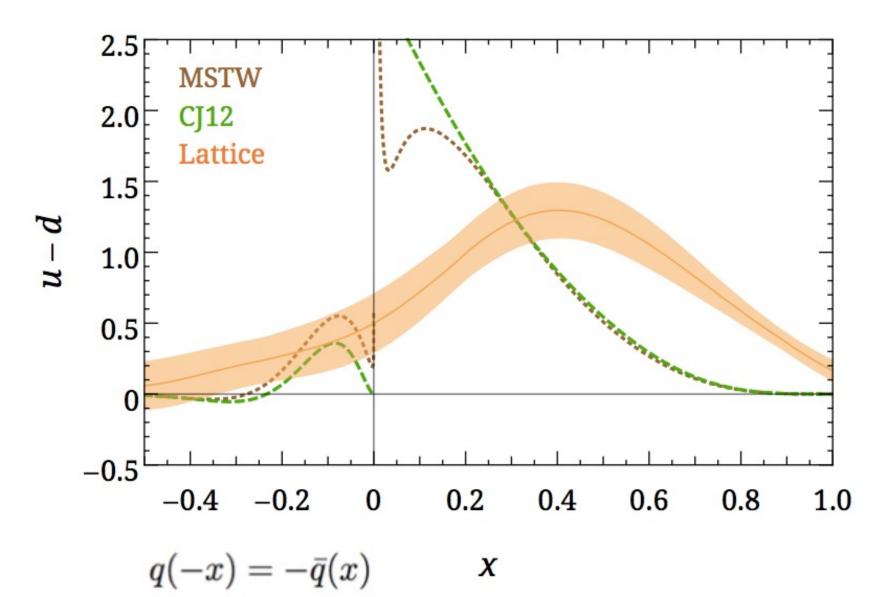
$$ilde{q}(x,\Lambda,P_z) = \int rac{dy}{|y|} Z\left(rac{x}{y},rac{\mu}{P_z},rac{\Lambda}{P_z}
ight) q(y,\mu) + \mathcal{O}\left(rac{\Lambda^2_{ ext{QCD}}}{P_z^2},rac{M^2}{P_z^2}
ight) + \dots$$

Matching

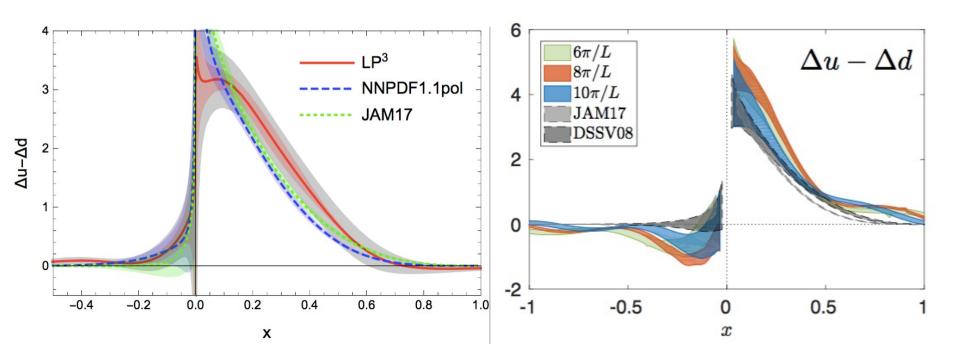
$$ilde{q}(x,\Lambda,P_z) = \int rac{dy}{|y|} Z\left(rac{x}{y},rac{\mu}{P_z},rac{\Lambda}{P_z}
ight) q(y,\mu) + \mathcal{O}\left(rac{\Lambda_{ ext{QCD}}^2}{P_z^2},rac{M^2}{P_z^2}
ight) + \dots$$

Xiong, Ji, Zhang, Zhao (GPD: Ji, Schafer, Xiong, Zhang; Xiong, Zhang) Factorization (Ma, Qiu; Li; OPE: Izubuchi, Ji, Jin, Stewart, Zhao), Linear divergence, LPT (Ishikawa, Ma, Qiu, Yoshida; JWC, Ji, Zhang; Xiong, Luu, Meissner; Rossi, Testa; Constantinou et al.) Multiplictive Renormalizability (Ji, Zhang, Zhao; Ishikawa, Ma, Qiu, Yoshida; Green, Jansen, Steffens; Zhang, Ji, Schäfer, Wang, Zhao; Li, Ma, Qiu), RI (Monahan & Orginos; Yong & Stewart; Constantinou et al.; LP3), NPR(Constantinou et al.; LP3), E vs. M spaces (Carlson et al.; Briceno et al.), Renormalon (Braun, Vladimirov, Zhang; Liu, Chen), Modeling (Xing et al.,...),...

Lattice Setup (isovector proton PDF)


- Lattice: $64^3 \times 96$
 - a = 0.09 fm $L \approx 5.8 \text{ fm}$
- Fermions: MILC highly improved staggered quarks (HISQ) Clover (valence)

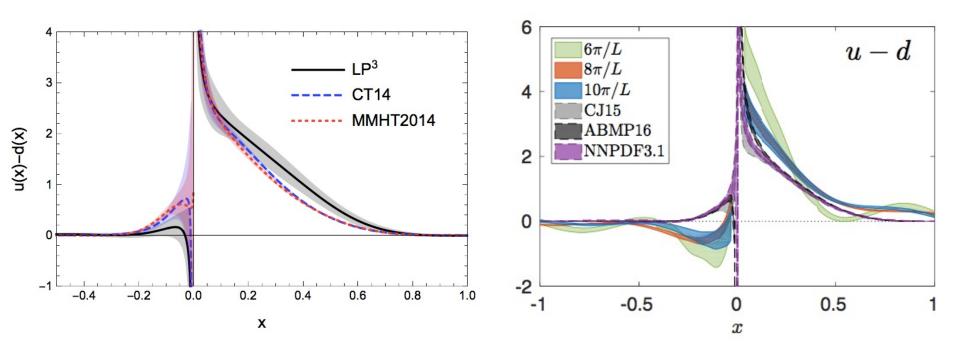
 $N_f = 2 + 1 + 1 \qquad M_\pi \approx 135 \text{ MeV}$


• Gauge fields/links: hypercubic (HYP) smearing (one step), 884 config.

•
$$P^{z} = n \frac{2\pi}{L} = 2.2, 2.4, 3.0 \text{ GeV} (n = 10, 12, 14)$$

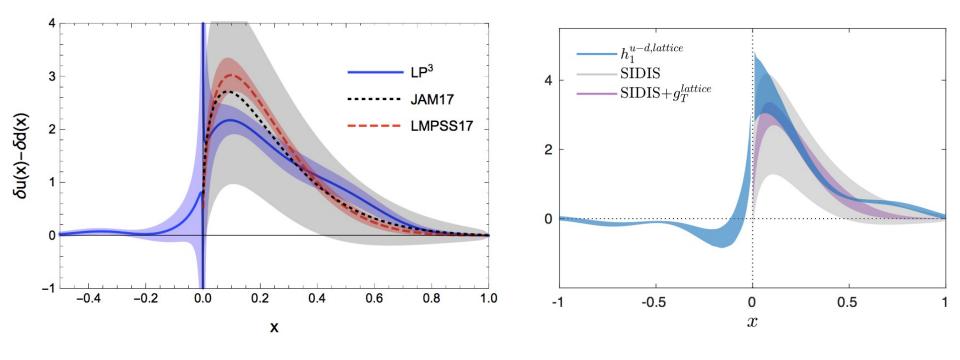
(high momentum smearing: Bali, Lang, Musch, Schafer; smaller energy gap)

LP3 (1402.1462)


Helicity

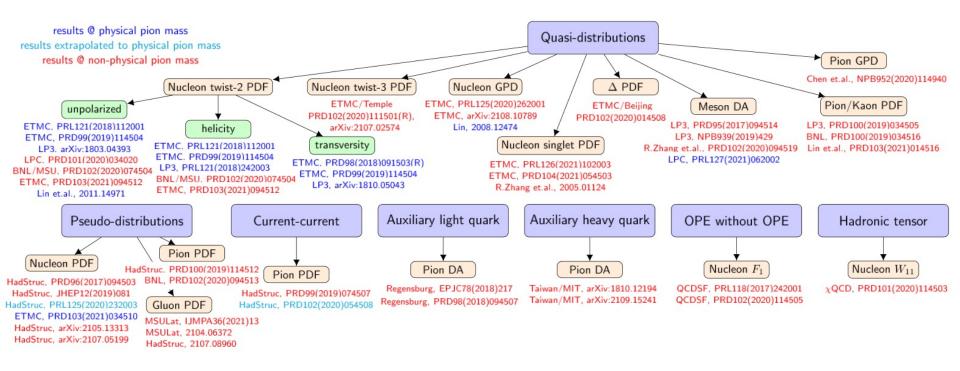
LP3(1807.07431,PRL)

ETMC(1803.02685,PRL)


Parton Density

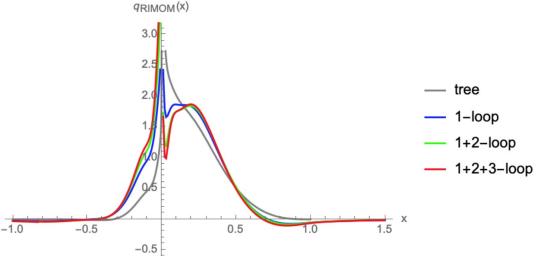
LP3(1803.04393)

ETMC(1803.02685)


Transversity

LP3 (1810.05043)

ETMC(1803.02685)


A lot more recent lattice computations. See Krzysztof Cichy's review on Lattice2021 (2110.07440).

Power Corrections

- $\mathcal{O}(M^2/(P^z)^2)$ corrections computed to all orders (JWC et al. 1603.06664)
- Renormalon effect: Braun, Vladimirov, Zhang (1810.00048) $\mathcal{O}(\Lambda_{\rm QCD}^2/x^2 P_z^2)$; But the slow convergence is not seen in bubble diagrams at 3-loops

(w/ Wei-Yang Liu 2010.06623)

• We need

$$\frac{\pi}{a} \gg P_z \gg \frac{1}{z_{max}} \gg \Lambda_{QCD}, m_\pi \gg \frac{\pi}{L}$$

Now we have

6.8 > 3 >> 0.15 ~ 0.2,0.14 > 0.1 (GeV)

• We need

$$\frac{\pi}{a} \gg P_z \gg \frac{1}{z_{max}} \gg \Lambda_{QCD}, m_\pi \gg \frac{\pi}{L}$$
 Now we have

6.8 > 3 >> 0.15 ~ 0.2,0.14 > 0.1 (GeV)

• Finite volume effect: ChPT (w/ Wei-Yang Liu 2011.13536). Less than 1% when $P_z/M \ge 1$ and $m_{\pi}L \ge 3$.

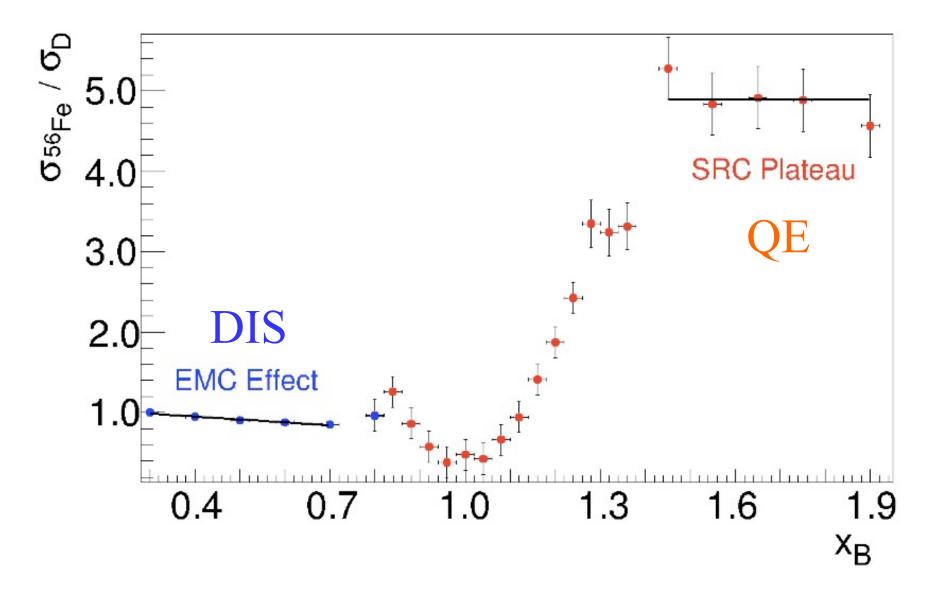
(JWC, Ji, PLB523 (2001) 107; PRL 87 (2001) 152002; PRL 88 (2002) 052003; JWC, Stewart, PRL 92 (2004) 202001; Arndt, Savage, NPA697 (2002) 429)

• We need

$$\frac{\pi}{a} \gg P_z \gg \frac{1}{z_{max}} \gg \Lambda_{QCD}, m_\pi \gg \frac{\pi}{L}$$

Now we have
 $6.8 > 3 >> 0.15 \sim 0.2, 0.14 > 0.1 \text{ (GeV)}$

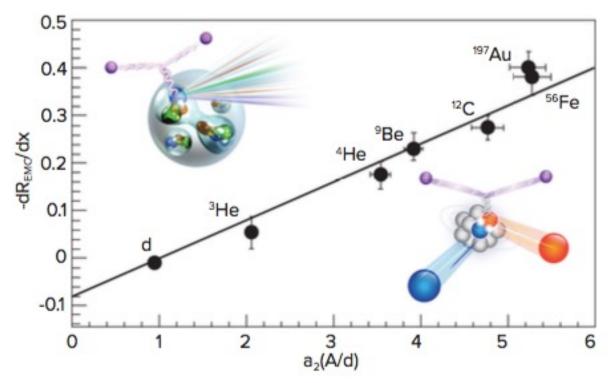
• long tail and NPR: Hybrid (2008.03886) or selfrenormalization (2103.02965) (LPC)


• We need

$$\frac{\pi}{a} \gg P_z \gg \frac{1}{z_{max}} \gg \Lambda_{QCD}, m_\pi \gg \frac{\pi}{L}$$

Now we have
 $6.8 > 3 \gg 0.15 \sim 0.2, 0.14 > 0.1 \text{ (GeV)}$

• Continuum limit: Residual divergence seen in RI/MOM for a rest pion state (χ QCD 2012.05448).


Outlook

- Rapid progress made since 2013
- Further error study (non-singlet)
- Singlet PDF's: s, c, b and gluons
- If it works, complimentary to exp.: PDF (sea asymmetry, small and large x's, non-valence partons), DA, GPD, TMD, Wigner distributions ... and

Higinbotham, Miller, Hen, Rith, CERN Cour. 53N4 (2013) 24

An Astonishing Empirical Result! Weinstein et al., PRL106, 052301 (2011)

EFT w/ Detmold, Lynn, Schwenk, PRL 119 (2017) 262502 :

- EMC-SRC linear relation reproduced
- Some a₂ reproduced ab initioly
- Remaining problem: EMC slope from LQCD (only need deuteron)

Backup slides

First (isovector) LPDF Computation

- Lattice: $24^3 \times 64$
- $a \approx 0.12 \text{ fm}$ $L \approx 3 \text{ fm}$ • Fermions: MILC highly improved staggered quarks (HISQ) Clover (valence) $N_f = 2 + 1 + 1$ $M_\pi \approx 310 \text{ MeV}$
- Gauge fields/links: hypercubic (HYP) smearing, 461 config.

•
$$P^z = \frac{2\pi}{L}n = n \times 0.43 \ GeV$$
 $n = 1, 2, 3...$

Review: Ji's LPDF (LaMET)

$$\begin{split} \widetilde{q}(x,\mu^2,P^z) &= \int \frac{dz}{4\pi} e^{-ixzP^z} \left\langle P \left| \overline{\psi}(0)\lambda \cdot \gamma \Gamma \psi(z\lambda) \right| P \right\rangle \\ &\equiv \int \frac{dz}{2\pi} e^{-ixzP^z} h(zP^z)P^z \end{split}$$

$$\lambda^{\mu} = (0, 0, 0, 1)$$

• Taylor expansion yields $\overline{\psi}\lambda \cdot \gamma\Gamma \left(\lambda \cdot D\right)^n \psi = \lambda_{\mu_1}\lambda_{\mu_2}\cdots \lambda_{\mu_n}O^{\mu_1\cdots\mu_n}$ op. symmetric but not traceless $\left(\lambda_{\mu_1}\lambda_{\mu_2} - g_{\mu_1\mu_2}\lambda^2/4\right)$

Review: Ji's LPDF (LaMET)

$$\langle P \left| O^{(\mu_1 \cdots \mu_n)} \right| P \rangle = 2a_n P^{(\mu_1} \cdots P^{\mu_n)}$$

- LHS: trace, twist-4 $O(\Lambda_{QCD}^2/(P^z)^2)$ corrections, parametrized in this work
- RHS: trace $\mathcal{O}(M^2/(P^z)^2)$
- One loop matching $\alpha_s \ln P^z$, OPE

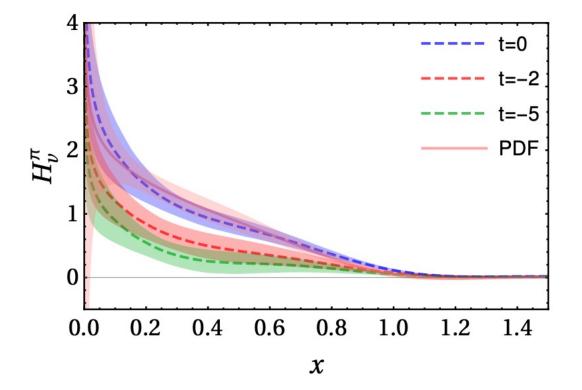
$$ilde{q}(x,\Lambda,P_z) = \int rac{dy}{|y|} Z\left(rac{x}{y},rac{\mu}{P_z},rac{\Lambda}{P_z}
ight) q(y,\mu) + \mathcal{O}\left(rac{\Lambda^2_{ ext{QCD}}}{P_z^2},rac{M^2}{P_z^2}
ight) + \dots$$

Non-Perturbative Renormalization + Matching

$$ilde{q}(x,\Lambda,P_z) = \int rac{dy}{|y|} Z\left(rac{x}{y},rac{\mu}{P_z},rac{\Lambda}{P_z}
ight) q(y,\mu) + \mathcal{O}\left(rac{\Lambda^2_{ ext{QCD}}}{P_z^2},rac{M^2}{P_z^2}
ight) + \dots$$

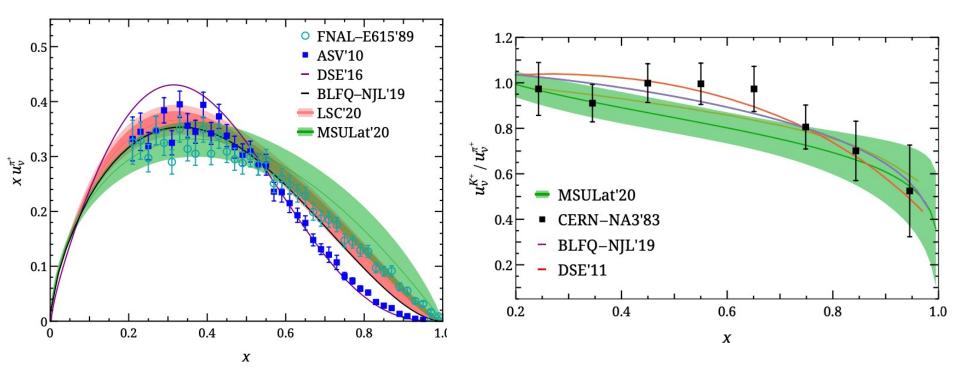
- NPR (RI/MOM scheme), γt $p^2 = -\mu_R^2$ Landau gauge $p_z = p_z^R$
- RI/MOM to $\overline{\rm MS}$ performed at one loop

Rossi & Testa's criticism


(1706.04428, 1806.00808)

- Criticism: The twist-4 effect is $O(1/(aP_z)^2)$ from dimensional analysis instead of $O(\Lambda_{QCD}^2/P_z^2)$
- This can be avoided by renormalizing the quark bilinear operators non-perturbatively such that one can go to continuum limit where the lattice spacing dependence disappears.
- The matching formula should be between the renormalized quasi-PDF and PDF, not between bare quasi-PDF and PDF as in earlier versions.

Advantages of RI/MOM


- RI/MOM: Quasi-PDF is renormalized nonperturbatively by performing an off-shell subtraction. Continuum limit can be taken afterwards to recover rotation symmetry, s.t.
- (1) power divergent mixing to lower moments removed
- (2) power divergent mixing with higher twist (same dim. different spin) also removed (Rossi and Testa problem)

Generalized Parton Distributions

JWC, HW Lin, JH Zhang (1904.12376)

Meson Valence Quark Distributions

HW Lin, JWC, Z Fan, JH Zhang, R Zhang (2003.14128)