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Nonfactorizable corrections induced by charm-quark loops in exclusive FCNC B-

decays (i.e. B- decays induced by flavour-changing neutral currents) are discussed.

We show that a consistent calculation of the appropriate QCD correlation function

requires the full generic three-particle distribution amplitude (3DA) of the B-

meson ⟨0|q̄(x)Gµν(y)b(0)|B(p)⟩ with non-aligned arguments: Expanding the latter 3DA

amplitude near the light cone, one finds that the B-decay correlation function is

dominated by the regions x2 ∼ 0 and y2 ∼ 0 but (x − y)2 ̸= 0. As the result, for a

proper description of the amplitudes of FCNC B-decays, the full dependence of the

3DA on the variable (x− y)2 is necessary.
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Motivation

FCNC b → s and b → d transitions do not occur at the tree level in SM and proceed

via loops, where t, c and u-quarks contribute.
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BRs of FCNC decays are small; on the other hand, new particles may show up

virtually in the loops. Therefore, FCNC decays are most popular candidates for

indirect search of physics BSM.
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Illustration: B → Kl+l− decay 0 <
√
s < (MB − MK), s - momentum squared of l+l−

pair.
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• In the charmonia region, charm contribution dynamically enhanced and dominates.

• Far from the charmonia region, top dominates (black dashed).

Still, to study possible NP effects, need to gain theoretical control over charm

contribution
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• Account of hard gluon exchanges lead to the four-quark operators

Hb→sc̄c
eff = −GF√

2
VcbV

∗
cs {C1(µ)O1 + C2(µ)O2}

with

O1 = s̄jγµ(1− γ5)c
i c̄iγµ(1− γ5)b

j, O2 = s̄iγµ(1− γ5)c
i c̄jγµ(1− γ5)b

j,

and the similar terms with c → u (i, j color indices). The SM Wilson coefficients at

the scale µ0 = 5 GeV [corresponding to C2(MW ) = −1]: C1(µ0) = 0.241, C2(µ0) = −1.1.

These operators lead to factorizable contributions to the amplitudes of exclusive

FCNC B-decays.

• Soft gluon exchanges between the charm-quark loop and the B-meson loop lead to

nonfactorizable contributions to the amplitudes.
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• Nonfactorizable corrections are comparable with factorizable contributions

How do we know that? Compare charmonia in l+l−-annihilation and in FCNC B-

decays:
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The patterns of charmonia in charm contribution to vacuum polarization (left) and in

B → Kl+l− (right) are different. The difference is due to nonfactorizable contributions.

• In some cases, factorizable charm contribution vanishes and thus only

nonfactorizable charm contributes (e.g in B → γγ)

We need formalism to calculate nonfactorizable charm effects in QCD.
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Charming loops
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At q2 ≪ 4m2
c, the charm loop may be calculated in pQCD.

Factorizable part: product of B → Mf form factor and the charm polarization

function.

Nonfactorizable part:

A(q, p) =
1

(2π)8

∫ dk

m2
s − k2

∫
dye−i(k−p′)y

∫
dxe−iκxdκΓcc(κ, q) ⟨0|s̄(y)G(x)b(0)|Bs(p)⟩.

The 3DA depends on 5 variables xp, yp, x2, y2, xy (p2 = M 2
B) and may be parametrized

as follows:

⟨0|s†(y)G(x)b(0)|Bs(p)⟩ =
∫
dλe−iλyp

∫
dωe−iωxpΦ(ω, λ)

[
1 +O

(
Λ2
QCDx

2,Λ2
QCDy

2,Λ2
QCD(x− y)2

)]
.

Φ(ω, λ) is peaked at λ, ω ∼ ΛQCD/mb.
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3DA contributions in ffs vs charming loops
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• Ffs 3Da contribution to the heavy-to-light ffs (left panel): if the light s-quark is

energetic, a soft gluon emission cannot change its direction so that the points x = 0,

x′ and x are on the same line. The diagram is dominated by the LC configuration

x2 = x′2 = 0, and x′ = ux, 0 < u < 1. Due to this property the leading contribution may

be calculated via ⟨0|s̄(x)Gµν(ux)b(0)|Bs(p)⟩.

• FCNC The situation is more difficult in FCNC (right panel): We show that the

dominant contribution comes from x2 = 0, y2 = 0, i.e. both are on the LC, but xy ̸= 0.

I.e., if x is along the “+” direction, then y along the “−” direction.

Unpleasant consequence - we need to know ⟨0|s̄(y)Gµν(x)b(0)|Bs(p)⟩, where points 0, x

and y are not located along the same line, y ̸= ux.
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A(q, p) =
1

(2π)8

∫ dk

m2
s − k2

∫
dye−i(k−p′)y

∫
dxe−iκxdκΓcc(κ, q) ⟨0|s̄(y)G(x)b(0)|Bs(p)⟩.

⟨0|s†(y)G(x)b(0)|Bs(p)⟩ =
∫
dλe−iλyp

∫
dωe−iωxpΦ(ω, λ)

[
1 +O

(
Λ2
QCDx

2,Λ2
QCDy

2,Λ2
QCD(x− y)2

)]
.

• LC contribution of 3DA

The contribution of the LC term in 3DA, Φ(ω, λ), to A(q, p) is easy to calculate.

A(q, p) =
∞∫
0

dλ
∞∫
0

dω Φ(λ, ω)Γcc (−ωp, q)
1

m2
s − (λp− p′)2

.

• The triangle charming loop is easily calculable

Γcc(κ, q) =
1

8π2

1∫
0

du
1∫
0

dv
θ(u + v < 1)

m2
c + 2uvκq − u(1− u)κ2 − v(1− v)q2

.

The ω-integral is peaked at ω ∼ ΛQCD/mb so the gluon is soft:

κ = −ωp and κ2 ∼ O(Λ2
QCD) ≪ m2

c.

• The s-quark propagator takes the form

m2
s − (λp− p′)2 = m2

s − λq2 − (1− λ)p′2 + (1− λ)λM 2
B.

In the bulk of λ-integration the virtuality of the s-quark propagator is O(MB).
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• off-LC contribution of 3DA

The difficulty of the problem is the existence of two heavy quark scales, one of which

is much heavier than the other:

ΛQCD ≪ mc ≪ mb, and ΛQCDmb/m
2
c ≃ 1

We need to sum all powers of the parameter λQCDmb/m
2
c.

Contributions of other terms to the amplitude A(q, p) relative to the Φ(ω, λ) term:

Λ2
QCDy

2 → ΛQCD

mb
, Λ2

QCDx
2 →

Λ3
QCDmb

m4
c

, Λ2
QCDxy → ΛQCDmb

m2
c

.

Nonfactorizable corrections are expressed via

⟨0|s†(y)G(x)b(0)|Bs(p)⟩ =
∫
dλe−iλyp

∫
dωe−iωxpΦ(ω, λ)

[
1 +O

(
Λ2
QCDx

2,Λ2
QCDy

2,Λ2
QCD(x− y)2

)]
,

The new result is that the knowledge of its functional dependence on (x − y)2 is

essential for a proper resummation of large ΛQCDmb/m
2
c corrections.

Previosuly, it way asserted that the 3DA with aligned arguments

xµ = uyµ, on the LC x2 = 0, y2 = 0 and (x− y)2 = 0

is sufficient to calculate nonfactorizabe contributions.

One needs the off-LC contributions. A challenge for future calculations
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Conclusions and outlook

• A serious open theoretical problem in FCNC B-decays is the contribution of

charming loops which “pollute” the differential distributions.

• At q2 ≪ 4m2
c, a consistent description of charming loops requires the knowledge of

off-LC 3DAa.

• In QCD, B-meson 3DAs with non-aligned arguments involve new Lorentz structures

compared to LC 3DAs. Respectively, new invariant amplitudes arise.

⟨0|s̄(y)Gαβ(uy)b(0)|B(v)⟩ =
∫
dλe−iλyv

∫
dωe−iωuyv

yαvβ
yv

− yβvα
yv

Φ(λ, ω).
For non-aligned case, new structures and new amplitudes arise:

⟨0|s̄(y)Gαβ(x)b(0)|B(v)⟩ =
∫
dλe−iλxv

∫
dωe−iωyv

×1

2

xαvβ
xv

− xβvα
xv

+
yαvβ
yv

− yβvα
yv

ΦS(λ, ω) +

xαvβ
xv

− xβvα
xv

− yαvβ
yv

+
yβvα
yv

ΦA(λ, ω)

 .
ΦS = Φ from (1), whereas ΦA is new. If the contributions induced by ΦA are not

suppressed, a consistent calculation of the decay amplitude A needs further inputs.

Detailed investigations are underway.


