Pion off-shell electromagnetic form factors with the light-front approach models Light Cone 2021 Nov. 29 - Dec. 4, 2021 – Jeju Booyoung Hotel – South Korea

Jurandi Leão^{a,b}

^aLaboratório de Física Téorica e Computacional - LFTC, UCS (Brazil) ^bInstituto Federal de São Paulo - IFSP (Brazil) Collaborators: J. P. B. C. de Melo (LFTC-UCS, Brazil), T. Frederico (ITA, Brazil), H. Choi (KNU, Koreia) and Chueng R. Ji (NCSU, USA)

December 1, 2021

- Motivations
- Off Shell Electromagnetic Form Factors
- Extraction of pion form factors through experimental cross section
- Results
- Conclusions

- Hadronic form factors: important source information for hadrons strucuture
- Off-shell effects: electroproduction $\implies {}^{1}H(e, e'\pi^{+})n$ (Fig. 1)
- Cross section: σ_L , σ_T , σ_{LT} e σ_{TT}
- Extraction of the pion's electromagnetic form factors: $F_1(Q^2, t) = F_2(Q^2, t)$

Ref:

Ho-Meoyng Choi et al. "Pion off-shell electromagnetic form factors: Data extraction and model analysis." In: *Physical Review D* 100.11 (2019), p. 116020

イロト イポト イヨト イヨト 一日

Motivations

Electroproduction experiment

Figure 1: $e \ p \longrightarrow e' \ \pi^+ \ n$ scattering

Off Shell Electromagnetic Form Factors

- Off-shell case \implies Two Electromagnetic Form Factors: F_1 and F_2
- Most simple structure:

$$< p'|\mathcal{O}|p> = (p'+p)^{\mu}F_1(Q^2,t) + (p'-p)^{\mu}F_2(Q^2,t)$$

 $\implies \mathcal{O}$ is the electromagnetic current operator

• Vertex:

$$\Gamma_{\mu} = \left[(p+p')_{\mu}G_1 + (p'-p)_{\mu}G_2 \right]$$

and,

$$q^{\mu}\Gamma_{\mu} = [\Delta^{-1}(p') - \Delta(p)^{-1}]$$

where $\Delta(p) = \frac{1}{p^2 - m_{\pi}^2 - \prod(p) + i\epsilon}$

Off Shell Electromagnetic Form Factors

From the Ward-Takahashi identity, we have to:

$$(p'^2 - p^2)G_1(q^2, p^2, p'^2) + q^2G_2(q^2, p^2, p'^2) = \Delta^{-1}(p') - \Delta^{-1}(p)$$

that, with the normalization $G_1(q^2 = 0) = 1$:

$$G_2(q^2, p^2, p'^2) = \frac{(p'^2 - p^2)[G_1(0, p^2, p'^2) - G_1(q^2, p^2, p'^2)]}{q^2}$$

In the case, where $p^2 = t$ and $p'^2 = m_{\pi}^2$:

$$F_2(Q^2, t) = \frac{t - m_\pi^2}{Q^2} \left[F_1(0, t) - F_1(Q^2, t) \right]$$

when $F_i(Q^2,t) \equiv G_i(q^2,t,m_\pi^2)$ (i=1,2) and $Q^2=-q^2$

Leão, J. (LFTC - UCS, Brazil)

Off Shell Electromagnetic Form Factors

Solving, we obtain:

$$\Gamma_{\mu} = (p'+p)_{\mu}F_1(Q^2,t) + q_{\mu}\frac{(t-m_{\pi}^2)}{Q^2} \left[F_1(0,t) - F_1(Q^2,t)\right]$$

And defining

$$g(Q^2, t) \equiv \frac{F_2(Q^2, t)}{t - m_\pi^2}$$

we obtain:

$$F_1(Q^2, t) - F_1(0, t) + Q^2 g(Q^2, t) = 0$$

This Equation allows us to extract the form factors from the off-shell pion. The form factors $F_2(Q^2, t)$ and $g(Q^2, t)$ disappear in the on-shell limit $t = m_{\pi}^2$. Ref: Choi et al., "Pion off-shell electromagnetic form factors: Data extraction and model analysis" 230° 7

Leão, J. (LFTC - UCS, Brazil)

LC2021

Extraction of pion form factors through experimental cross section

The electromagnetic form factor of the pion is given as a function of the cross section:

$$F_{\pi}^{2} = \frac{N}{4\hbar c} \frac{1}{(eG_{\pi NN}(t))^{2}} \frac{(t - m_{\pi}^{2})^{2}}{-Q^{2}t} \frac{d\sigma_{L}}{dt}$$

The cross section is given as:

$$\frac{d\sigma_L}{dt} = \frac{16\pi}{137N} \frac{-tQ^2}{(t-m_\pi^2)} G_{\pi NN}^2(t) F_\pi^2(Q^2,t) \left(\frac{197.3}{10}\right)^2$$

We also have to:

$$\frac{d\sigma_L}{dt} = \frac{16\pi}{137N} \frac{-tQ^2}{(t-m_\pi^2)} \left[H\right]^2 \left(\frac{197.3}{10}\right)^2$$

where $H \equiv F_{\pi} \cdot G_{\pi NN}$ Leão, J. (LFTC - UCS, Brazil) LC2021 LC2021 LC2021 LC2021 LC2021 LC2021 LC2021

Extraction of pion form factors through experimental cross section

 ${\cal H}$ can be extracted from the cross section:

$$H^{2} = \frac{137N}{16\pi} \frac{(t - m_{\pi}^{2})^{2}}{-tQ^{2}} \frac{d\sigma_{L}}{dt} \left(\frac{10}{197.3}\right)^{2}$$

Where $G_{\pi NN}(t)$ is given by:

$$G_{\pi NN}(t) = G_{\pi NN}(m_\pi^2) \left(\frac{\Lambda_\pi^2 - m_\pi^2}{\Lambda_\pi^2 - t}\right)^n$$

with $G_{\pi NN}(m_{\pi}^2) = 13.4$, $\Lambda_{\pi} = 0.80$ GeV and n = 1. Therefore:

$$F_{\pi}^{2} = \frac{137N}{16\pi} \frac{1}{G_{\pi NN}(t)} \frac{(t - m_{\pi}^{2})^{2}}{-Q^{2}t} \frac{d\sigma_{L}}{dt} \left(\frac{10}{197.3}\right)^{2}$$

Leão, J. (LFTC - UCS, Brazil)

Constituent Quark Models in Light Front

The elements of the electromagnetic current matrix:

$$J^{\mu} = -i2e \frac{m^2}{f_{\pi}^2} N_c \int \frac{d^4k}{(2\pi)^4} Tr \left[S(k)\gamma^5 S(k-p')\gamma^{\mu} S(k-p)\gamma^5 \right] \Gamma(k,p') \Gamma(k,p)$$

where
$$S(p) = \frac{1}{\not p - m + i\epsilon}$$
 and $N_c = 3$.

For the non-symmetric vertex model:

$$\Gamma^{NSV}(k,p) = \frac{N}{(p-k)^2 - m_R^2 + i\epsilon}$$

For the symmetric vertex model:

$$\Gamma^{SV}(k,p) = \frac{C}{k^2 - m_R^2 + i\epsilon} + \frac{C}{(p-k)^2 - m_R^2 + i\epsilon}$$

Leão, J. (LFTC - UCS, Brazil)

December 1, 2021

First results

Figure 2: (a) Form factor $F_{\pi}^1(Q^2, t)$ for the non-symmetric model; (b) Form factor $F_{\pi}^1(Q^2, t)$ for the symmetric model

Ref:

HP Blok et al. "Charged pion form factor between Q2 = 0.60 and 2.45 GeV2. I. Measurements of the cross section for the 1 H (e, $e^{i}\pi^{+}$) n reaction." In: *Physical Review C* 78.4 (2008), p. 045202 GM Huber et al. "Charged pion form factor between Q2 = 0.60 and 2.45 GeV2. II. Determination of, and results for, the pion form factor." In: *Physical Review C* 78.4 (2008), p. 045203 Choi et al., "Pion off-shell electromagnetic form factors: Data extraction and model analysis" $\Im \bigcirc 11/2$

Leão, J. (LFTC - UCS, Brazil)

LC202

Figure 3: Comparison between the form factors for the two models symmetric and non-symmetric

First results

Figure 4: Cross section

Ref:

Blok et al., "Charged pion form factor between Q2 = 0.60 and 2.45 GeV2. I. Measurements of the cross section for the 1 H (e, e' π +) n reaction"

Huber et al., "Charged pion form factor between Q2 = 0.60 and 2.45 GeV2. II. Determination of, and results for, the pion form factor"

Choi et al., "Pion off-shell electromagnetic form factors: Data extraction and mode Eanalysis" 200 - 13/1

Leão, J. (LFTC - UCS, Brazil)

First results

Figure 5: Cross section

Ref:

Blok et al., "Charged pion form factor between Q2 = 0.60 and 2.45 GeV2. I. Measurements of the cross section for the 1 H (e, e' π +) n reaction"

Huber et al., "Charged pion form factor between Q2 = 0.60 and 2.45 GeV2. II. Determination of, and results for, the pion form factor"

Choi et al., "Pion off-shell electromagnetic form factors: Data extraction and modelanalysis" 200 14/19

Leão, J. (LFTC - UCS, Brazil)

Figure 6: (a) Form factor $F^1(Q^2, t)$ and (b) $g(Q^2, t)$ for the non-symmetric model

Figure 7: (a) Form factor $F^1(Q^2, t)$ and (b) $g(Q^2, t)$ for the symmetric model

Figure 8: The master equation - symmetric model

Leão, J. (LFTC - UCS, Brazil)

LC2021

December 1, 2021 17 / 19

500

Conlusions

- We reviewed some of the calculations for (Choi et. al., 2019);
- We verified that our calculations indicate that they do not depend on models;
- The graphs show that our result agrees with the references;
- We will continue our study for other models and parameters;
- The present approach will also be applied to other pseudoscalar mesons, for example: the kaon.

Choi et al., "Pion off-shell electromagnetic form factors: Data extraction and model analysis" Blok et al., "Charged pion form factor between Q2 = 0.60 and 2.45 GeV2. I. Measurements of the cross section for the 1 H (e, $e^{,\pi+)}$ n reaction" Huber et al., "Charged pion form factor between Q2 = 0.60 and 2.45 GeV2. II. Determination of, and results for, the pion form factor"

18 / 19

→ Ξ → < Ξ →</p>

Thanks to the Organizers Light-Cone 2021 - Juju Island, Korea

Support LFTC, IFSP and Brazilian Agencies: FAPESP, CNPq and CAPES

