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INFN - Rome

In collaboration with:

Emanuele Pace & Rocco Alessandro (”Tor Vergata” Rome Univ.)

Sergio Scopetta, Matteo Rinaldi (Perugia Univ. & INFN)

Gabriele Perna (Perugia Univ.)

Alessio Del Dotto ( INFN LNF)

Giovanni Salmè (INFN-Rome) LC021 1 / 23



R. Alessandro, A. Del Dotto, E. Pace, G. Perna,G. Salmè and S. Scopetta, Light-Front
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Motivations
The quest of a reliable flavor decomposition needs sound information on the neutron
dynamical observables (structure functions, polarized and non, GPDs, TMDs, etc.).
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This has driven very accurate and long-lasting experimental efforts in developing effective
neutron targets to carefully investigate the electromagnetic responses of the neutron

⇒ the polarized 3He target, 90% neutron target
(e.g. H. Gao et al, PR12-09-014; J.P. Chen et al, PR12-11-007, @JLAB12)

A careful theoretical description of a polarized 3He is necessary for taking under control
the model-dependence in the extraction of the neutron properties.

Bonus: Nuclear Transverse-Momentum Distributions (TMDs) for addressing in a
novel way the dynamics inside the nucleus.
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On the theory side, we need i) to improve the description of the Nucleon inside the
nuclei, retaining as many general properties as possible, and hence ii) to validate sound
procedures for extracting dynamical information on the Nucleon, particularly the Neutron
In our approach, the key quantity for pursuing such a program is the

Nuclear Spectral Function (⇒ nucleon Green’s function in the medium)

Pσ′σ(k,E) = − 1

π
=m

{
〈Ψgr |a†k,σ′

1

E − H + iε
ak,σ|Ψgr 〉

}
with

H =
∑
α,β

〈α|H1|β〉 a†(α) a(β) +
1

2

∑
α,β,γ,η

〈αγ|H2|βη〉 a†(α) a†(γ)a(β) a(η) + . . . . . .

Probabilistic interpretation: the diagonal terms give the probability distribution to find a
Nucleon with given spin, momentum and removal energy in the ground state of the
interacting system, |Ψgr 〉. N.B. for 2H, → Nucleon Momentum Distribution.
This quantity is quite familiar in nuclear physics, less in hadron physics where the QFT
framework is needed, and one introduces the correlator,

Φτ (x , y) = 〈Ψgr |ψ̄τ (x)W(n̂ · A)ψτ (y)|Ψgr 〉

with W(n̂ · A) the link operator, needed for the gauge invariance.

In valence approximation, one can relate Pσ′σ(k,E) (given in a Poincaré covariant
framework) and Φτ (x , y) = 〈Ψgr |ψ̄τ (x)W(n̂ · A)ψτ (y)|Ψgr 〉 [R. Alessandro et al PRC in
press and arXiv:2107.10187]
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The Relativistic Hamiltonian Dynamics framework

Why a relativistic treatment ?
General answer: to develop a more advanced theory, appropriate for the kinematics at

JLAB12 and even more so for upcoming Electron-Ion Colliders

The Standard Model of Few-Nucleon Systems, where nucleon and pion degrees of
freedom are taken into account within a non relativistic framework, has achieved a
very high degree of sophistication [e.g. the NR 3He and 3H Spectral Functions in
Kievsky, Pace, G.S. Viviani PRC 56, 64 (1997)].

Covariance wrt the Poincaré Group, GP , is needed for describing processes involving
nucleons at large 4-momenta and pointing to high precision measurements.
This is the case if one studies, e.g., i) the nucleon structure functions (unpolarized
and polarized cases); ii) the nucleon GPDs and TMDs, iii) signatures of
short-range correlations; iv) exotics (e.g. 6-bag quarks in 2H), etc

At least, one should carefully deal with the boosts of the nuclear states, |Ψinit〉 and
|Ψfin〉!

The definitely preferred framework for embedding the successful non relativistic
phenomenology is composed by the

Light-front Relativistic Hamiltonian Dynamics (fixed dof) +
Bakamjian-Thomas (BT) construction of the Poincaré generators for an
interacting theory.
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In RHD+BT, one can address both Poincaré covariance and locality

General principles to be implemented in presence of interaction

F Poincaré covariance → The 10 generators, Pµ → 4D displacements and
Mνµ → Lorentz transformations, have to fulfill

[Pµ,Pν ] = 0, [Mµν ,Pρ] = −ı(gµρPν − gνρPµ),

[Mµν ,Mρσ] = −ı(gµρMνσ + gνσMµρ − gµσMνρ − gνρMµσ)

Also P and T have to be taken into account !

F F Macroscopic locality (≡ cluster separability (relevant in nuclear physics)): i.e.
observables associated with different space-time regions must commute in the limit of
large spacelike separation (i.e. causally disconnected), rather than for arbitrary
(microscopic-locality) spacelike separations (Keister-Polyzou, Adv. Nucl. Phys. 20, 225
(1991)).
This leads to a careful choice of the intrinsic relativistic coordinates.

Physical motivation: When a system is separated into disjoint subsystems by a
sufficiently large spacelike separation, then the subsystems behave as independent
systems.
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The Light-Front framework has several advantages:

7 Kinematical generators: i) three LF boosts (at variance with the dynamical
nature of the Instant-form boosts), ii) P̃ = (P+ = P0 + P3,P⊥), iii) Rotation
around the z-axis.

The LF boosts have a subgroup structure : then one gets a trivial separation of the
intrinsic motion (as in the non-relativistic case). Separation of intrinsic and global
motion is important to correctly treat the boost between initial and final states !

P+ ≥ 0 leads to a meaningful Fock expansion, once massless constituents are
absent

No square root in the dynamical operator P−, propagating the state in the
LF-time.

The infinite-momentum frame (IMF) description of DIS is easily included.

Drawback: the transverse LF-rotations are dynamical

But within the Bakamjian-Thomas construction of the generators in an interacting
theory, one can construct an intrinsic angular momentum fully kinematical!

F The Mass Operator, developed within a non relativistic framework,
is fully acceptable for a BT construction of the Poincaré generatorsF
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To complete the matter: the spin

Coupling spins and orbital angular momenta is easily accomplished in the Instant
Form of RHD (kinematical hyperplane t=0) through Clebsch-Gordan coefficients,
since in this form the three rotation generators are independent of interaction.

To embed the CG machinery in the LFHD one needs unitary operators, the
so-called Melosh rotations that relate the LF spin wave function and the canonical
one. For a particle of spin (1/2) with LF momentum k̃ ≡ {k+, ~k⊥}

|k; s, σ〉c =
∑
σ′

D
1/2
σ′,σ(RM (k̃)) |k̃; s, σ′〉LF

where

D
1/2
σ′,σ(RM (k̃)) is the standard Wigner function for the J = 1/2 case ,

RM (k̃) is the rotation between two rest frames of the moving particle. One reached
through a LF boost and the second through a canonical boost.

D
1
2 [RM (k̃)]σσ′ = χ†σ

m + k+ − ıσ · (ẑ × k⊥)√
(m + k+)2 + |k⊥|2

χσ′ = LF 〈k̃; sσ|k; sσ′〉c

χσ is a two-dimensional spinor.
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The spin-dependent LF Nuclear spectral function

Pσ′σ(k,E) = − 1

π
=m

{
〈Ψgr |a†k,σ′

1

E − H + iε
ak,σ|Ψgr 〉

}
=
∑

f(A−1)

〈k, στ ;ψf(A−1)
|ψA

JM〉 〈ψA
JM|ψf(A−1)

; k, σ′τ〉 δ(E − Ef(A−1)
+ EA)

with i) |k, στ〉: plane wave with momentum k in the system rest frame and spin along z
equal to σ, and ii) |ψf(A−1)

〉: a state of the (A− 1)-particle spectator system: fully

interacting !
⇒ Key ingredients: the overlaps 〈k, στ ;ψf(A−1)

|ψA
JM〉

The spin-dependent LF Nuclear Spectral Function can be defined through the formal
relation between the overlaps 〈k, στ ;ψf(A−1)

|ψA
JM〉LF in Light-front HD (hyperplane

x+ = 0) and the ones in Instant-form HD (hyperplane t = 0)

F Through the Bakamjian-Thomas construction, one is allowed to approximate

〈k, στ ;ψf(A−1)
|ψA

JM〉IF ' 〈k, στ ;ψf(A−1)
|ψA

JM〉NR

still preserving the Poincaré covariance and taking profit of the successful NR
phenomenology, in full [A. Del Dotto et al , PRC 95, 014001 (2017)].
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F For implementing the Macro-locality, it is crucial to distinguish between the cluster
reference frame, indicated by (1; 23) and the one of the whole system, (123), moving
wrt the Lab frame. The LF overlaps for 3He SF in terms of the IF ones are

< κ̃| × 2N state 3N bound state︷ ︸︸ ︷
〈Tτ ;α, ε; JJz ; τ1σ, κ̃ |

︷ ︸︸ ︷
j , jz ; ε3;

1

2
Tz〉LF =

∑
τ2τ3

∫
dk23

∑
σ′1

D
1
2 [RM (k̃)]σσ′1

√
(2π)3 2E(k)

√
κ+E23

k+ES

∑
σ′′2 ,σ

′′
3

∑
σ′2,σ

′
3

Dσ′′2 ,σ′2 (k̃23, k̃2) Dσ′′3 ,σ′3 (−k̃23, k̃3)

NR〈T , τ ;α, ε; JJz |k23, σ
′′
2 , σ

′′
3 ; τ2, τ3〉 〈σ′3, σ′2, σ′1; τ3, τ2, τ1; k23, k|j , jz ;B3;

1

2
Tz〉NR

where
Dσ′′i ,σ′i (±k̃23, k̃i ) =

∑
σi

D
1
2 [R†M (±k̃23)]σ′′i σi

D
1
2 [RM (k̃i )]σiσ

′
i

and the relevant LF momenta of the emitted constituent, in the two frames are
k⊥(123) = κ⊥(1; 23), k+(123) = ξ M0(123) = κ+(1; 23) M0(123)/M0(1, 23) with

M2
0(1, 23) =

m2 + |κ⊥|2

ξ
+

M2(23) + |κ⊥|2

(1− ξ)
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N.B. within LFHD, normalization and momentum sum rule are
automatically fulfilled !!
The LF spin-dependent spectral function for a system with polarization S, can be
macroscopically decomposed in terms of the available vectors:

the unit vector n̂ , ⊥ to the hyperplane nµxµ = 0. Our choice is
nµ ≡ {1, 0, 0, 1} ⇒ n̂ ≡ ẑ

the polarization vector S. Our choice: Ŝ ≡ ẑ

the transverse (wrt the ẑ axis) momentum component of the constituent, i.e.
k⊥(123) = p⊥(Lab) = κ⊥(1; 23)

One gets (τ = ±1/2, isospin third component)

Pτ
M,σ′σ(κ̃, ε, S) =

1

2

[
Bτ0,M + σ ·Fτ

M(κ̃, ε,S)
]
σ′σ

The scalar Bτ0,M = Tr
[
PτM,σ′σ(κ̃, ε, S)

]
yields the unpolarized spectral function ;

the pseudovector Fτ
M(κ̃, ε,S) = Tr

[
P̂τ
M(κ̃, ε, S) σ

]
is a linear combination of the

available pseudovectors,

Fτ
M(x , k⊥; ε,S) = SBτ1,M(. . . ) + k̂⊥ (S · k̂⊥)Bτ2,M(. . . ) + k̂⊥ (S · ẑ)Bτ3,M(. . . )

+ẑ (S · k̂⊥)Bτ4,M(. . . ) + ẑ (S · ẑ)Bτ5,M(. . . ) .

with x = κ+(1; 23)/M0(1; 23). N.B. The scalar functions Bτi,M(. . . ) depend on the
scalars at disposal, i.e. (N.B. for a J = 1/2 only the first 3)

|k⊥|, x , ε, (S · k̂⊥)2, (S · n̂)2 and (k̂⊥ × n̂) · S.
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By integrating the LF SF on κ−, equivalent to the integration on the ε ≡ internal
energy of the spectator system, one straightforwardly gets the LF spin-dependent
momentum distribution

N τ
σ′σ(x , k⊥;M,S) =

1

2
{b0,M(. . . ) + σ · fM(x , k⊥; S)}σ′σ

where fM(x , k⊥; S) is a pseudovector

f τM(x , k⊥; S) = Sbτ1,M(. . . ) + k̂⊥ (S · k̂⊥)bτ2,M(. . . ) + k̂⊥ (S · ẑ)bτ3,M(. . . )

+ẑ (S · k̂⊥)bτ4,M(. . . ) + ẑ (S · ẑ)bτ5,M(. . . )

The decomposition follows from the corresponding one of the SF, and the scalar
functions bτi,M(. . . ) are proper integrals over ε ≡the spectator energy, present in
Bτi,M(. . . )

The remarkable content of such a decomposition is to make explicit the interplay
between transverse momentum component and spin dofs.

In turn, this can be useful for determining possible relations between the so-called
Transverse-momentum Distributions (TMDs), in the valence sector, i.e. with a minimal
number of on-mass-shell constituents inside the interacting system.
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Transverse-momentum distributions for a J = 1/2 bound
system
We focus on the twist-two T-even TMDs. They can be obtained by proper traces of the
Correlator (N.B. in the light-cone gauge the link operator becomes the identity) (e.g.
[Barone, Drago, Ratcliffe, Phys. Rep. 359, 1 (2002))

Φτα,β(p,P, S) =

∫
dξ e ipξ̇ 〈P, S ,A|ψ̄τβ(0)ψτα(ξ)|A,S ,P

〉
⇒ Φ(p,P,S) =

1

2
/P Aτ1 +

1

2
γ5 /P

[
Aτ2 Sz +

1

M
Ãτ1 p⊥·S⊥

]
+

+
1

2
/P γ5

[
Aτ3 /S⊥ + Ãτ2

Sz

M
/p⊥ +

1

M2
Ãτ3 p⊥·S⊥ /p⊥

]
where |A, S ,P〉 is the A-particle state and ψτα(ξ) the fermionic field (e.g. a nucleon of
isospin τ in a nucleus, or in valence approximation a quark in a nucleon). The twist-2
TMD’s are combinations of both Ai and Ãi .

To match the description in terms of SF, where the particles number is fixed, the
particle contribution to the correlation function from on-mass-shell fermions has to be
singled out through a suitable projection in the Dirac space → valence approximation
[R. Alessandro et al PRC in press, arXiv:2107.10187]
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Valence TDMs for a J = 1/2 target
In a BT framework, the relations between the six T-even, twist-2 TMDs, and the six
scalar functions bi , defining the spin-dependent constituent LF momentum distribution
are (recall: k⊥(123) = p⊥(Lab) = κ⊥(1; 23))

Unpolarized TMD ⇒ f τ (x , |p⊥|2) = bτ0

N and 3He spin dof ′s & k⊥ ⇒



∆f τ (x , |p⊥|2) = bτ1,M + bτ5,M

gτ1T (x , |p⊥|2) = M
|p⊥|

bτ4,M

∆′T f τ (x , |p⊥|2) = bτ1,M + bτ2,M/2

h⊥τ1L (x , |p⊥|2) = M
|p⊥|

bτ3,M

h⊥τ1T (x , |p⊥|2) = M2

|p⊥|2
bτ2,M

L and T in the subscript refer to the target polarization.
In the case of 3He the Nuclear TMDs could be obtained through measurements of
appropriate spin asymmetries in 3 ~He(~e, e′p) experiments at high momentum transfer
(theoretical framework in progress).

To mention: for hadrons → SiDIS reactions
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From the general principles implemented in the SF, TMDs receive contributions from
both L = 0 and L = 2 orbital angular momenta. The relative weight depends upon the
TMD.

Interestingly, Jacob, Mulders, Rodrigues, [NPA 626, 937 (1997)] and B. Pasquini, S.
Cazzaniga and S. Boffi [PRD 78, 034025 (2008)] suggested approximate relations
between TMDs, viz

∆f (x , |p⊥|2) = ∆′T f (x , |p⊥|2) +
|p⊥|2

2M2
h⊥1T (x , |p⊥|2)

g1T (x , |p⊥|2) = − h⊥1L(x , |p⊥|2)

In our approach,

the first relation is recovered retaining only the L = 0 contribution. Taking into
account both contributions, L = 0, 2, the quantitative difference between the lhs
and rhs is quite small for the neutron, while not negligible for the proton;

the second relation certainly holds in modulus, since if the L = 0 component, tiny
for those TMDs, is retained the minus sign works, while the dominant L = 2
contribution leads to a plus sign.

A quadratic relation is also discussed in the above papers

(g1T )2 + 2 ∆′T f h⊥1T = 0

In our approach it does not hold, even if the L = 2 contribution is vanishing.
Noteworthy, the integration on k23, imposed by Macro-locality, spoils the relation:

⇒ its effect becomes measurable !
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Effective polarizations
Key role in the extraction of neutron polarized structure functions and neutron Collins
and Sivers single spin asymmetries, from the corresponding quantities measured for 3He.
Effective longitudinal polarization

pτ|| =

∫ 1

0

dx

∫
dp⊥ ∆f τ (x , |p⊥|2)

Effective transverse polarization

pτ⊥ =

∫ 1

0

dx

∫
dp⊥ ∆′T f

τ (x , |p⊥|2) .

Effective polarizations proton neutron

LF longitudinal polarization -0.02299 0.87261
LF transverse polarization -0.02446 0.87314

non relativistic polarization -0.02118 0.89337

Comments:

The difference between the LF polarizations and the non relativistic results are up
to 2% in the neutron case (larger for the proton ones, but it has an overall small
contribution), and should be ascribed to the intrinsic coordinates, implementing
the Macro-locality, and not to the Melosh rotations involving the spins.

N.B. Within a NR framework: pτ||(NR) = pτ⊥(NR)
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Conclusions & Perspectives
A Poincaré covariant description of nuclei, based on the light-front
Hamiltonian dynamics, has been proposed. The Bakamjian-Thomas
construction of the Poincaré generators allows one to embed the successful
phenomenology for few-nucleon systems in a Poincaré covariant framework. N.B.
Normalization and momentum sum rule are both automatically fulfilled.

F Macro-locality can be implemented, as it must be and plays a role in precision
experiments (see also TMD’s relations).

F Notably, the Spectral Function is related to the valence contribution to the
correlator introduced for a QFT description of SiDIS reactions involving the
nucleon , and applied for the first time to 3He.

FF General principles implemented in the LF Spectral function entail relations
among T-even twist-2 (and also twist-3) valence TMDs, with interesting angular
momentum dependence.

Preliminary calculation of 3He EMC encourages the application of our approach,
shedding light on the role of a reliable description of the nucleus. Also the LF
spin-depedent momentum distributions are available, for both longitudinal and
transverse polarizations of the nucleon.

Analyses of exclusive reactions, with polarized initial and final states, for accessing
nuclear TMD’s in 3He are in progress
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