

Institute of Physics & Applied Physics Nuclear & Hadron Physics December 2nd, 2021

Doubly Heavy Tetraquarks One 2021 in a Non-Relativistic Quark Model

Sungsik Noh, Woosung Park, Su Houng Lee, Doubly heavy tetraquarks in a nonrelativistic quark model with a complete set of harmonic oscillator bases, Phys. Rev. D 103, 114009 (2021)

Speaker: Sungsik Noh Jeju Island, Korea

Outline

Motivation

Formalism

- Hamiltonian
- Spatial Wave Function

> Result & Analysis

- Contributions from Angular Momentum Bases
- Size and Structure of Tcc
- Comparison with Discovery of Tcc at LHCb

Motivation

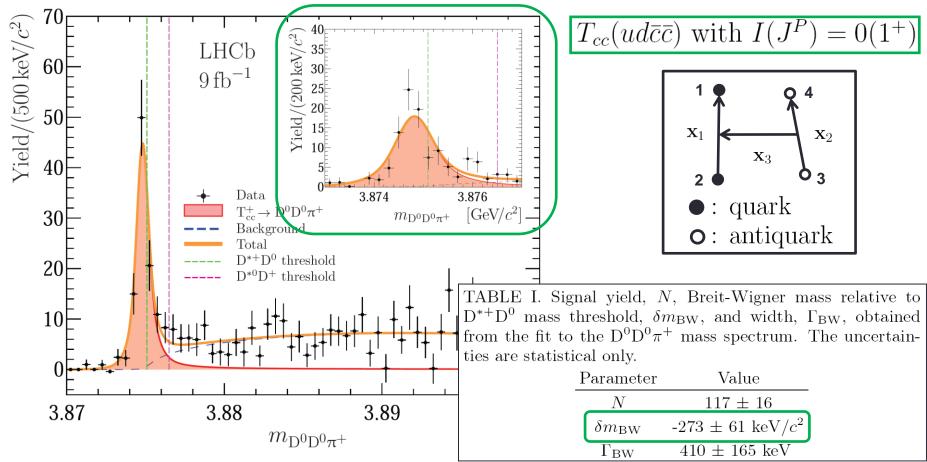


Figure 1: The $D^0D^0\pi^+$ mass distribution. The $D^0D^0\pi^+$ mass distribution where the contribution of the non- D^0 background has been statistically subtracted. The result of the fit described in the text is overlaid.

LHCb Collaboration · Roel Aaij (Nikhef, Amsterdam) et al., Observation of an exotic narrow doubly charmed tetraquark [arXiv:2109.01038[hep-ex]]

December 2nd, 2021

		. •	
NO	h	ation	1
Referenc	e		V

Reference		Year	$\delta'm \left[\text{MeV}/c^2\right]$	
J. Carlson, L. Heller and J. A. Tjon	36	1987	~ 0	•
B. Silvestre-Brac and C. Semay	37	1993	+19	•
C. Semay and B. Silvestre-Brac	38	1994	[-1, +13]	
S. Pepin, F. Stancu, M. Genovese and	39	1996	< 0	
J. M. Richard		1990	< 0	
B. A. Gelman and S. Nussinov	40	2002	[-25, +35]	
J. Vijande, F. Fernandez, A. Valcarce, A. and	41	2003	-112	
B. Silvestre-Brac				
D. Janc and M. Rosina	42	2004	[-3, -1]	
F. Navarra, M. Nielsen and S. H. Lee	43	2007	+91	•
J. Vijande, E. Weissman, A. Valcarce	44	2007	[-16, +50]	
D. Ebert, R. N. Faustov, V. O. Galkin and	45	2007	+60	
W. Lucha				•
S. H. Lee and S. Yasui	46	2009	-79	•
Y. Yang, C. Deng, J. Ping and T. Goldman	47	2009	-1.8	
GQ. Feng, XH. Guo and BS. Zou	48	2013	-215	
Y. Ikeda, B. Charron, S. Aoki, T. Doi, T. Hatsuda,				
T. Inoue, N. Ishii, K. Murano, H. Nemura and	49	2013	[-70, +124]	
K. Sasaki	H			· · ·
SQ. Luo, K. Chen, X. Liu, YR. Liu and S	50	2017	+100	
L. Zhu			10 10 10 10 10 10 10	T T
M. Karliner and J. Rosner	51	2017	$7 \pm 12 \rightarrow 1$	•
E. J. Eichten and C. Quigg Z. C. Wang	52	2017	+102 + 25 + 00)
Z. G. Wang G. K. C. Cheung, C. E. Thomas, J. J. Dudek and	53	2017	$+25 \pm 90$	-
G. K. C. Cheung, C. E. Thomas, J. J. Dudek and R. G. Edwards	54	2017	< 0	
W. Park, S. Noh and S. H. Lee	55	2018	+98	
A. Francis, R. J. Hudspith, R. Lewis and K. Malt-				
man	56	2018	~ 0	
P. Junnarkar, N. Mathur and M. Padmanath	57	2018	[-40, 0]	
C. Deng, H. Chen and J. Ping	58	2018	-150	
MZ. Liu, TW. Wu, V. Pavon Valderrama, J				
J. Xie and LS. Geng	59	2019	-3^{+4}_{-15}	• Ap <mark>p</mark> lying
G. Yang, J. Ping and J. Segovia	60	2019	-149	
Y. Tan, W. Lu and J. Ping	61	2020	-182	• HO base
QF. Lü, DY. Chen and YB. Dong	62	2020	+166	
E. Braaten, LP. He and A. Mohapatra	63	2020	+72	· · · ·
D. Gao, D. Jia, YJ. Sun, Z. Zhang, WN. Liu				
and Q. Mei	64	2020	[-250, +2]	
JB. Cheng, SY. Li, YR. Liu, ZG. Si, T. Yao	65	2020	+53	
S. Noh, W. Park and S. H. Lee	66	2021	+13	(+)
R. N. Faustov, V. O. Galkin and E. M. Savchenko	67	2021	+64	
				200 -200 -100 0 100
Polyakov on behalf of LHC	h colle	horation	, FDS HFI	P, 29 July 2021 δm M

December 2nd, 2021

Formalism - Hamiltonian

Hamiltonian

$$H = \sum_{i=1}^{4} \left(m_i + \frac{\mathbf{p}_i^2}{2m_i} \right) - \frac{3}{4} \sum_{i
$$V_{ij}^C = -\frac{\kappa}{r_{ij}} + \frac{r_{ij}}{a_0^2} - D, \quad (2)$$
$$V_{ij}^{CS} = \frac{\hbar^2 c^2 \kappa'}{m_i m_j c^4} \frac{e^{-(r_{ij})^2 / (r_{0ij})^2}}{(r_{0ij}) r_{ij}} \boldsymbol{\sigma}_i \cdot \boldsymbol{\sigma}_j. \quad (3)$$$$

Woosung Park, Sungsik Noh, Su Houng Lee (IPAP, Seoul & Yonsei U.), Masses of the doubly heavy tetraquarks in a constituent quark model, Nucl.Phys. A983 (2019) 1-19 [arXiv:1809.05257 [nucl-th]]

 $T_{cc}(ud\bar{c}\bar{c}), T_{bb}(ud\bar{b}\bar{b}), T_{cb}(ud\bar{c}\bar{b}), us\bar{b}\bar{b}$ with $I(J^P) = 0(1^+)$ in S-wave states

December 2nd, 2021 Formalism – Spatial Wave Function

Total Wave Function

$$\Psi = \underbrace{\psi(spatial)} \times \psi(flavor) \times \psi(color) \times \psi(spin)$$

For Mesons,

Radial Part of Solution for 3-D Symmetric HO

$$R_{n,l}(r) = \sqrt{\frac{2\Gamma(n+1)}{\Gamma\left(n+l+\frac{3}{2}\right)}} r^{l} \exp\left[-\frac{r^{2}}{2}\right] L_{n}^{l+\frac{1}{2}}\left(r^{2}\right). \quad (A.1)$$

Rescaling by $r \to \sqrt{20}r$

 $\psi_{[n,l,m]}^{Spatial}(\mathbf{x}) = \psi(x,\theta,\phi)_{[n,l,m]}^{Spatial} = R_{n,l}(x)Y_l^m(\theta,\phi).$ (A.2)

December 2nd, 2021 Formalism – Spatial Wave Function

For Tetraquarks,

$$\psi(\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3})_{[n_{1}, n_{2}, n_{3}, l_{1}, l_{2}, l_{3}]}^{Spatial}$$

$$= \sum_{m_{1}, m_{2}, m_{3}} C(l_{1}, m_{1}, l_{2}, m_{2}; L_{1,2} = l_{3}, m_{1,2} = -m_{3})$$

$$= \sum_{m_{1}, m_{2}, m_{3}} C(l_{1}, m_{1}, l_{2}, m_{2}; L_{1,2} = l_{3}, m_{1,2} = -m_{3})$$

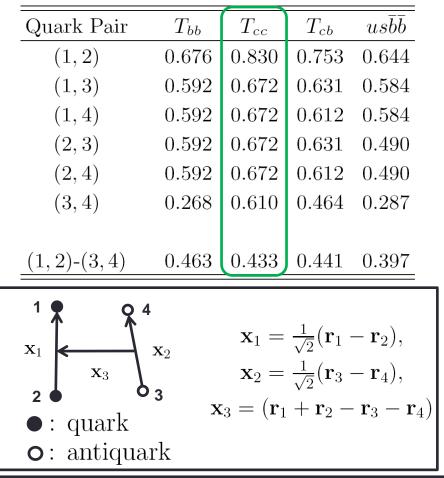
$$= \sum_{m_{1}, m_{2}, m_{3}} C(l_{1,2} = l_{3}, m_{1,2} = -m_{3}, l_{2}, m_{3}; l = 0, m = 0)$$

$$\times R_{n_{1}, l_{1}}(x_{1}) R_{n_{2}, l_{2}}(x_{2}) R_{n_{3}, l_{3}}(x_{3})$$

$$\times Y_{l_{1}}^{m_{1}}(\theta_{1}, \phi_{1}) Y_{l_{2}}^{m_{2}}(\theta_{2}, \phi_{2}) Y_{l_{3}}^{m_{3}}(\theta_{3}, \phi_{3}). \quad (11)$$

Sungsik Noh, Woosung Park, Su Houng Lee, Doubly heavy tetraquarks, $(qq'\bar{Q}\bar{Q}')$, in a nonrelativistic quark model with a complete set of harmonic oscillator bases, Phys.Rev. D 103, 114009 (2021)

 $T_{cc}(ud\bar{c}\bar{c}), T_{bb}(ud\bar{b}\bar{b}), T_{cb}(ud\bar{c}\bar{b}), us\bar{b}\bar{b}$ with $I(J^P) = 0(1^+)$ in S-wave states


December 2nd, 2021 **Result – Angular Momentum Contribution**

 $M_{T_{hh}}$ (MeV) $M_{us\bar{b}\bar{b}}$ (MeV) $M_{T_{cb}}$ (MeV) $M_{T_{cc}}$ (MeV Spatial Bases $\psi^{Spatial}_{[0,0,0,0,0,0]}$ 10577 10763 7311 3993 -41 MeV $\psi_{rc}^{Spatial}$ Spatial1056510747 7287 3952 [0.0.0.0.0.0] [0,0,0,1,1,0]-1 MeV \mathbf{X}_1 \mathbf{x}_2 $\psi_{\rm rec}^{Spatial}$ Spatial[0,0,0,0,0,0][0,0,0,1,1,0]10565 10744 7280 3951 \mathbf{X}_3 Spatial Spatial[0.0.0.1.0.1][0.0,0,0,1,1]quark ٠ : \mathbf{o} : antiquark 167 Spatial Bases 10517 10694 7212 3873 Total Change in Mass -60 -69 -99 -120

TABLE I. The changes in masses of the tetraquarks when the indicated spatial bases $\psi_{[n_1,n_2,n_3,l_1,l_2,l_3]}^{Spatial}$ are included in the calculations.

December 2nd, 2021 **Result – Size and Structure of Tetraquarks**

TABLE III. The relative distances between the quarks in the tetraquarks in fm unit. The distances are obtained with the ground state of the tetraquarks.

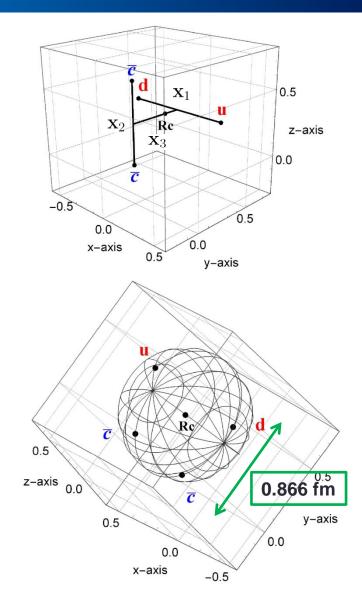
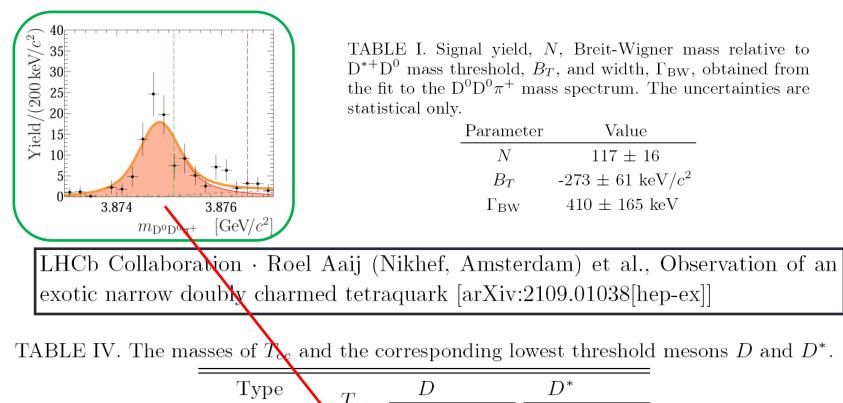



FIG. 1. The relative positions of the quarks in T_{cc} in fm unit. In the bottom figure, the diameter of the sphere is 0.866 fm.

December 2nd, 2021 **Result – Discovery of Tcc at LHCb**

	1 cc	Theory	Exp.	Theory	Exp.
Mass (MeV)	3873	1854	1865	2006	2007

Binding Energy $B_T \equiv M_{Tetraquark} - M_{Meson1} - M_{Meson2}$

December 2nd, 2021

J. Carlson, L. Heller and J. A. Tjon	36	1987	~ 0	
B. Silvestre-Brac and C. Semay	37	1993	+19	
C. Semay and B. Silvestre-Brac	38	1994	[-1, +13]	
S. Pepin, F. Stancu, M. Genovese and J. M. Richard	39	1996	< 0	
B. A. Gelman and S. Nussinov	40	2002	[-25, +35]	
J. Vijande, F. Fernandez, A. Valcarce, A. and B. Silvestre-Brac	41	2003	-112	
D. Janc and M. Rosina	42	2004	[-3, -1]	
F. Navarra, M. Nielsen and S. H. Lee	43	2007	+91	
J. Vijande, E. Weissman, A. Valcarce	44	2007	[-16, +50]	
D. Ebert, R. N. Faustov, V. O. Galkin and W. Lucha	45	2007	+60	
S. H. Lee and S. Yasui	46	2009	-79	
Y. Yang, C. Deng, J. Ping and T. Goldman	47	2009	-1.8	
GQ. Feng, XH. Guo and BS. Zou Y. Ikeda, B. Charron, S. Aoki, T. Doi, T. Hatsuda,	48	2013	-215	
T. Inoue, N. Ishii, K. Murano, H. Nemura and K. Sasaki	49	2013	[-70, +124]	
SQ. Luo, K. Chen, X. Liu, YR. Liu and S L. Zhu	50	2017	+100	
M. Karliner and J. Rosner	51	2017	$7 \pm 12 \rightarrow 1$	
E. J. Eichten and C. Quigg	52	2017	+102	
Z. G. Wang	53	2017	$+25 \pm 90$	
G. K. C. Cheung, C. E. Thomas, J. J. Dudek and R. G. Edwards	54	2017	$\lesssim 0$	
W. Park, S. Noh and S. H. Lee	55	2018	+98	
A. Francis, R. J. Hudspith, R. Lewis and K. Malt- man	56	2018	~ 0	
P. Junnarkar, N. Mathur and M. Padmanath	57	2018	[-40, 0]	•
C. Deng, H. Chen and J. Ping	58	2018	-150	
MZ. Liu, TW. Wu, V. Pavon Valderrama, J J. Xie and LS. Geng	59	2019	-3^{+4}_{-15}	
G. Yang, J. Ping and J. Segovia	60	2019	-149	•
Y. Tan, W. Lu and J. Ping	61	2020	-182	
QF. Lü, DY. Chen and YB. Dong	62	2020	+166	
E. Braaten, LP. He and A. Mohapatra D. Coo., D. E. Y. J. Sun, Z. Zhang, W. N. Liu	63	2020	+72	
D. Gao, D. Jia, YJ. Sun, Z. Zhang, WN. Liu and O. Mei	64	2020	[-250, +2]	· · · · · · · · · · · · · · · · · · ·
and Q. Mei JB. Cheng, SY. Li, YR. Liu, ZG. Si, T. Yao	65	2020	+53	
S. Noh, W. Park and S. H. Lee	66	2020	+13	
K. N. Faustov, V. O. Gaikin and E. M. Savchenko	00	2021 2021	+13 +04	

100 200[MeV/ c^2]

0

Summary

- > Harmonic Oscillator Bases as Spatial Functions
 - We constructed the spatial wave functions by introducing a complete set of re-scaled 3-D harmonic oscillator bases.
- Large Contributions from Internal Excited Orbital States
 - Internal orbital states are necessary to obtain the exact ground state masses for the tetraquarks.
- > Model Calculations with a Compete Set of HO Bases
 - Our model provides result with highly precise accuracy.
 - Our prediction for Tcc mass is very close to the measurements at LHCb.
 - We need to improve our quark model by better fit for the threshold mesons.