A perturbative expansion for bound states Online talk at LC2021, 29 November 2021 Paul Hoyer, University of Helsinki Hadrons and atoms have unexpected similarities Can the first-principles bound state methods of QED be applied to QCD? This is a real possibility! ## Non-relativistic bound states # QCD: $b\bar{b}$, $c\bar{c}$ quarkonia $$V(r) = V'r - \frac{4}{3} \frac{\alpha_s}{r}$$ ### QED: e^+e^- atoms $$V(r) = -\frac{\alpha}{r}$$ # Light quarks: relativistic bound states Valence Fock states govern quantum numbers and decays, even for highly relativistic constituents. #### Valence quantum numbers | $n^{2s+1}\ell$ | $\ell_J \; J^{PC}$ | I = 1 | $I = \frac{1}{2}$ | I = 0 | I = 0 | $\theta_{ m quad}$ | $\theta_{ m lin}$ | |----------------|--------------------|---|--------------------------------|------------------|------------------|--------------------|-------------------| | | | $u\bar{d}, \bar{u}d,$ | $u\bar{s}, d\bar{s};$ | f' | f | [°] | [°] | | | | $\frac{1}{\sqrt{2}}(d\bar{d}-u\bar{u})$ | $\bar{d}s,\bar{u}s$ | | | | | | $1^{1}S_{0}$ | 0-+ | π | K | η | $\eta'(958)$ | -11.3 | -24.5 | | $1^{3}S_{1}$ | 1 | ho(770) | $K^*(892)$ | $\phi(1020)$ | $\omega(782)$ | 39.2 | 36.5 | | $1^{1}P_{1}$ | 1^{+-} | $b_1(1235)$ | $K_{1B}{}^{\dagger}$ | $h_1(1415)$ | $h_1(1170)$ | | | | $1^{3}P_{0}$ | 0_{++} | $a_0(1450)$ | $K_0^*(1430)$ | $f_0(1710)$ | $f_0(1370)$ | | | | $1^{3}P_{1}$ | 1^{++} | $a_1(1260)$ | K_{1A}^{\dagger} | $f_1(1420)$ | $f_1(1285)$ | | | | $1^{3}P_{2}$ | 2^{++} | $a_2(1320)$ | $K_2^*(1430)$ | $f_2'(1525)$ | $f_2(1270)$ | 29.6 | 28.0 | | $1^{1}D_{2}$ | 2^{-+} | $\pi_2(1670)$ | $\overline{K_2}(1770)^\dagger$ | $\eta_2^-(1870)$ | $\eta_2(1645)$ | | | | $1^{3}D_{1}$ | 1 | ho(1700) | $K^*(1680)^{\ddagger}$ | | $\omega(1650)$ | | | | $1^{3}D_{2}$ | $2^{}$ | | $K_2(1820)^\dagger$ | | | | | | $1^{3}D_{3}$ | 3 | $ ho_3(1690)$ | $K_3^*(1780)$ | $\phi_3(1850)$ | $\omega_3(1670)$ | 31.8 | 30.8 | | $1^{3}F_{4}$ | 4^{++} | $a_4(1970)$ | $K_4^st(2045)$ | $f_4(2300)$ | $f_4(2050)$ | | | | $1^{3}G_{5}$ | 5 | $\rho_5(2350)$ | $K_5^*(2380)$ | | | | | | $2^{1}S_{0}$ | 0_{-+} | $\pi(1300)$ | K(1460) | $\eta(1475)$ | $\eta(1295)$ | | | | $2^{3}S_{1}$ | 1 | ho(1450) | $K^*(1410)^{\ddagger}$ | $\phi(1680)$ | $\omega(1420)$ | | | | $2^{3}P_{1}$ | 1^{++} | $a_1(1640)$ | | | | | | | $2^{3}P_{2}$ | 2++ | $a_2(1700)$ | $K_2^*(1980)$ | $f_2(1950)$ | $f_2(1640)$ | | | #### Current quark Fock states Mesons have a sizeable current $q\bar{q}$ Fock component E.g., pion decay Stan Brodsky What prevents the strong color field from creating abundant $q\bar{q}$, g constituents? # Perturbative expansion: Scattering vs. bound states Scattering amplitudes are expanded around free states # e^+ e^+ $\Phi_{in}(\alpha)$ e^{-} Atoms are expanded around an initial bound state Schrödinger wave functions for atoms $\Phi_{in}(\alpha)$ are exponential in α Their power corrections $\Phi_{in}(\alpha)(1 + c_1\alpha + c_2\alpha^2...)$ depend on $\Phi_{in}(\alpha)$ The perturbative expansion of bound states is not unique, it depends on the choice of initial state. ## Instantaneous (Δt = 0) interactions A $q\bar{q}$ Fock state is bound by an instantaneous interaction. Cf. the $V(r) = -\alpha/r$ potential of the NR Schrödinger equation. Theories with a local action generally do not have instantaneous potentials. Gauge theories are an exception: Although their action is local, the gauge may be fixed non-locally The lack of $\partial_0 A^0$ and $\nabla \cdot A$ in \mathcal{L}_{QED} means that A^0 and A_L do not propagate Feynman gauge fixing: $\mathcal{L}_{GF} = (\partial_{\mu} A^{\mu})^2$ adds the missing terms \Rightarrow All gauge fields propagate, explicit Poincaré invariance Instantaneous gauge interactions for $$\nabla \cdot A(t,x) = 0$$ (Coulomb gauge) $$A^0(t,x) = 0$$ (Temporal gauge) ## Canonical quantization Conjugate field π_{α} Commutation relations $$\pi_{\alpha}(t, \boldsymbol{x}) = \frac{\partial \mathcal{L}(\varphi, \partial \varphi)}{\partial [\partial_{0} \varphi_{\alpha}(t, \boldsymbol{x})]} \qquad [\varphi_{\alpha}(t, \boldsymbol{x}), \pi_{\beta}(t, \boldsymbol{y})]_{\pm} = i\delta_{\alpha\beta}\delta^{3}(\boldsymbol{x} - \boldsymbol{y})$$ A^0 has no conjugate field, due to the absence of $\partial_0 A^0$ in \mathcal{L}_{OED} . Not a problem in temporal gauge: $A^0(t,x) = 0$. Choose temporal gauge. $A^{0}(t,x) = 0$ is preserved under time-independent gauge transformations, which are generated by $$\frac{\delta \mathcal{S}_{QED}}{\delta A^0(x)} = \partial_i E^i(x) - e\psi^{\dagger} \psi(x)$$ Physical states are required to satisfy the constraint: Willemsen (1978) $$\frac{\delta S_{QED}}{\delta A^0(x)} |phys\rangle = 0$$ This determines $\nabla \cdot \mathbf{E}_L$ in terms of the charge distribution, and ensures that the states are invariant under *t*-independent gauge transformations. # The classical, instantaneous field EL $$\frac{\delta S_{QED}}{\delta A^0(x)} |phys\rangle = 0$$ is not an operator relation, it is a constraint on $|phys\rangle$ $$\frac{\delta S_{QED}}{\delta A^0(x)} |0\rangle = 0$$ implies $E_L = 0$ in the vacuum. No particles are created. In temporal gauge the electric field E_L is classical, not an operator. E_L can bind e^+e^- Fock states strongly, without pair creation. # Fock state expansion for Positronium in $A^0=0$ gauge A perturbative expansion in α can start from the $|e^+e^-\rangle$ Fock state, bound by its classical field E_L : $|e^+e^angle \ E_L \ e^+$ Higher order corrections include states with transverse photons and e^+e^- pairs, as determined by $H_{QED} | e^+e^- \rangle$ $$egin{array}{c} |e^+e^-\gamma angle \ A_T & E_L \ e^+ \end{array}$$ Each Fock component of the bound state includes its particular instantaneous E_L field. This Fock expansion is valid in any frame, and is formally exact at $O(\alpha^{\infty})$. # Temporal gauge in QCD: $A_a^0 = 0$ The instantaneous gauge constraint determines $E_{L,a}$ for all hadron Fock states: $$\partial_i E_{L,a}^i(\boldsymbol{x}) | phys \rangle = g \left[-f_{abc} A_b^i E_c^i + \psi^{\dagger} T^a \psi(\boldsymbol{x}) \right] | phys \rangle$$ In QED we impose the boundary condition: $E_L(x) \rightarrow 0$ for $|x| \rightarrow \infty$ In QCD $E_{L,a}(x) = 0$ for (globally) color singlet Fock states. Each color component of the Fock state has $E_{L,a}(x) \neq 0$ \Longrightarrow $$E_{L,a}^{i}(\boldsymbol{x})|phys\rangle = -\partial_{i}^{x}\int d\boldsymbol{y}\Big[\kappa\,\boldsymbol{x}\cdot\boldsymbol{y} + \frac{g}{4\pi|\boldsymbol{x}-\boldsymbol{y}|}\Big]\mathcal{E}_{a}(\boldsymbol{y})|phys\rangle$$ where $$\mathcal{E}_a(\boldsymbol{y}) = -f_{abc}A_b^i E_c^i(\boldsymbol{y}) + \psi^{\dagger} T^a \psi(\boldsymbol{y})$$ The homogeneous solution $\propto \varkappa$ is the only one that is compatible with invariance under space translations and rotations # Including the $\kappa \neq 0$ homogeneous solution for $E_{L,a}^i$ $$E_{L,a}^{i}(\boldsymbol{x})|phys\rangle = -\partial_{i}^{x}\int d\boldsymbol{y}\Big[\kappa\,\boldsymbol{x}\cdot\boldsymbol{y} + \frac{g}{4\pi|\boldsymbol{x}-\boldsymbol{y}|}\Big]\mathcal{E}_{a}(\boldsymbol{y})|phys\rangle$$ where $$\mathcal{E}_a(\boldsymbol{y}) = -f_{abc}A_b^i E_c^i(\boldsymbol{y}) + \psi^{\dagger} T^a \psi(\boldsymbol{y})$$ $\kappa \neq \kappa(\boldsymbol{x}, \boldsymbol{y})$: this is a homogeneous solution of $\partial_i \boldsymbol{E}^i(\boldsymbol{x}) = 0$ The linear dependence on x makes E_L independent of x, as required by translation invariance: The field energy density is spatially constant. The field energy \propto volume of space is irrelevant only if it is universal. This relates the normalisation \varkappa of all Fock components, leaving an overall scale Λ as the single parameter. "Bag model without a bag" The potential energy $$\mathcal{H}_V \equiv rac{1}{2} \int dm{x} \sum_a m{E}_L^a \cdot m{E}_L^a$$ $$\mathcal{H}_V = \int d\mathbf{y} d\mathbf{z} \Big\{ \mathbf{y} \cdot \mathbf{z} \Big[\frac{1}{2} \kappa^2 \int d\mathbf{x} + g \kappa \Big] + \frac{1}{2} \frac{\alpha_s}{|\mathbf{y} - \mathbf{z}|} \Big\} \mathcal{E}_a(\mathbf{y}) \mathcal{E}_a(\mathbf{z})$$ Recall: $$\mathcal{E}_a(\boldsymbol{y}) = -f_{abc}A_b^i E_c^i(\boldsymbol{y}) + \psi^{\dagger} T^a \psi(\boldsymbol{y})$$ Gives translation invariant potentials for (globally) color singlet states Meson: $$|q(\boldsymbol{x}_1)\bar{q}(\boldsymbol{x}_2)\rangle \equiv \sum_{A} \bar{\psi}^A(\boldsymbol{x}_1) \, \psi^A(\boldsymbol{x}_2) \, |0\rangle$$ $\mathcal{H}_V \, |q\bar{q}\rangle = V_{q\bar{q}} \, |q\bar{q}\rangle$ $$V_{q\bar{q}}(\boldsymbol{x}_1,\boldsymbol{x}_2) = \Lambda^2 |\boldsymbol{x}_1 - \boldsymbol{x}_2| - C_F \frac{\alpha_s}{|\boldsymbol{x}_1 - \boldsymbol{x}_2|}$$ Cornell potential This potential is valid also for relativistic $q\bar{q}$ Fock states, in any frame # Baryon Fock state potential Baryon: $$|q(\boldsymbol{x}_1)q(\boldsymbol{x}_2)q(\boldsymbol{x}_3)\rangle \equiv \sum_{A,B,C} \epsilon_{ABC} \psi_A^{\dagger}(\boldsymbol{x}_1) \psi_B^{\dagger}(\boldsymbol{x}_2) \psi_C^{\dagger}(\boldsymbol{x}_3) |0\rangle$$ $$V_{qqq}(\boldsymbol{x}_1, \boldsymbol{x}_2, \boldsymbol{x}_3) = \Lambda^2 d_{qqq}(\boldsymbol{x}_1, \boldsymbol{x}_2, \boldsymbol{x}_3) - \frac{2}{3} \alpha_s \left(\frac{1}{|\boldsymbol{x}_1 - \boldsymbol{x}_2|} + \frac{1}{|\boldsymbol{x}_2 - \boldsymbol{x}_3|} + \frac{1}{|\boldsymbol{x}_3 - \boldsymbol{x}_1|} \right)$$ $$d_{qqq}(\boldsymbol{x}_1, \boldsymbol{x}_2, \boldsymbol{x}_3) \equiv \frac{1}{\sqrt{2}} \sqrt{(\boldsymbol{x}_1 - \boldsymbol{x}_2)^2 + (\boldsymbol{x}_2 - \boldsymbol{x}_3)^2 + (\boldsymbol{x}_3 - \boldsymbol{x}_1)^2}$$ When two of the quarks coincide the potential reduces to the $q\bar{q}$ potential: $$V_{qqq}(\boldsymbol{x}_1, \boldsymbol{x}_2, \boldsymbol{x}_2) = \Lambda^2 |\boldsymbol{x}_1 - \boldsymbol{x}_2| - \frac{4}{3} \frac{\alpha_s}{|\boldsymbol{x}_1 - \boldsymbol{x}_2|} = V_{q\bar{q}}(\boldsymbol{x}_1, \boldsymbol{x}_2)$$ Analogous potentials are obtained for any quark and gluon Fock state, such as $q\bar{q}g$ and gg. # Summary The similarities of hadrons and atoms are unlikely to be "accidental" Need to consider the principles of QED bound states Temporal gauge $(A^0 = 0)$ is advantageous for equal-time bound states The gauge constraint determines the classical, instantaneous E_L field for each Fock component Perturbative expansion, starting from non-perturbative valence Fock states A homogeneous solution of the gauge constraint gives confinement in QCD Many features of hadrons thus obtained look promising & intriguing PH 2109.06257 Special thanks to Matti Järvinen, for valuable advice PH 2101.06721v2 Back-up slides ## There is a difference between QED and QCD Global gauge invariance allows a classical gauge field for neutral atoms, but not a color octet gluon field for color singlet hadrons. Positronium (QED) $\boldsymbol{E}_L(\boldsymbol{x}) = -\frac{e}{4\pi} \, \boldsymbol{\nabla}_x \Big(\frac{1}{|\boldsymbol{x} - \boldsymbol{x}_1|} - \frac{1}{|\boldsymbol{x} - \boldsymbol{x}_2|} \Big) \Bigg| \quad \boldsymbol{E}_L^a(\boldsymbol{x}) = 0 \quad \text{for all } \boldsymbol{x}$ Proton (QCD) $$oldsymbol{E}_L^a(oldsymbol{x}) = 0$$ for all $oldsymbol{x}$ #### However: The classical gluon field is non-vanishing for each color component C of the state $$\boldsymbol{E}_L^a(\boldsymbol{x},C) \neq 0$$ The blue quark feels the color field generated by the red and green quarks. An external observer sees no field: The gluon field generated by a color singlet state vanishes. $$\sum_{C} \boldsymbol{E}_{L}^{a}(\boldsymbol{x}, C) = 0$$ # The $qg\overline{q}$ potential A $q\bar{q}$ state, after the emission of a transverse gluon: $$|q(\boldsymbol{x}_1)g(\boldsymbol{x}_g)\bar{q}(\boldsymbol{x}_2)\rangle \equiv \sum_{A,B,b} \bar{\psi}_A(\boldsymbol{x}_1) A_b^j(\boldsymbol{x}_g) T_{AB}^b \psi_B(\boldsymbol{x}_2) |0\rangle$$ $$V_{qgq}^{(0)}(\boldsymbol{x}_1, \boldsymbol{x}_g, \boldsymbol{x}_2) = \frac{\Lambda^2}{\sqrt{C_F}} d_{qgq}(\boldsymbol{x}_1, \boldsymbol{x}_g, \boldsymbol{x}_2) \qquad \text{(universal } \Lambda\text{)}$$ $$d_{qgq}(\boldsymbol{x}_1, \boldsymbol{x}_g, \boldsymbol{x}_2) \equiv \sqrt{\frac{1}{4}(N - 2/N)(\boldsymbol{x}_1 - \boldsymbol{x}_2)^2 + N(\boldsymbol{x}_g - \frac{1}{2}\boldsymbol{x}_1 - \frac{1}{2}\boldsymbol{x}_2)^2}$$ $$V_{qgq}^{(1)}(\boldsymbol{x}_1, \boldsymbol{x}_g, \boldsymbol{x}_2) = \frac{1}{2} \alpha_s \left[\frac{1}{N} \frac{1}{|\boldsymbol{x}_1 - \boldsymbol{x}_2|} - N \left(\frac{1}{|\boldsymbol{x}_1 - \boldsymbol{x}_q|} + \frac{1}{|\boldsymbol{x}_2 - \boldsymbol{x}_q|} \right) \right]$$ When q and g coincide: $$V_{qgq}^{(0)}(m{x}_1=m{x}_g,m{x}_2)=\Lambda^2|m{x}_1-m{x}_2|=V_{qar{q}}^{(0)}$$ $V_{qgq}^{(1)}(m{x}_1=m{x}_g,m{x}_2)=V_{qar{q}}^{(1)}$ # The gg potential A "glueball" component: $|g(\boldsymbol{x}_1)g(\boldsymbol{x}_2)\rangle \equiv \sum_a A_a^i(\boldsymbol{x}_1)\,A_a^j(\boldsymbol{x}_2)\,|0\rangle$ has the potential $V_{gg}=\sqrt{ rac{N}{C_F}}\,\Lambda^2\,|m{x}_1-m{x}_2|-N\, rac{lpha_s}{|m{x}_1-m{x}_2|}$ This agrees with the $qg\bar{q}$ potential where the quarks coincide: $$V_{gg}(\boldsymbol{x}, \boldsymbol{x}_g) = V_{qg\bar{q}}(\boldsymbol{x}, \boldsymbol{x}_g, \boldsymbol{x})$$ It is straightforward to work out the instantaneous potential for any Fock state. # $\mathcal{O}\left(\alpha_s^0\right)$ light $q\overline{q}$ bound states An $\mathcal{O}(\alpha_s^0)$ meson state with P = 0 and wave function Φ : $$|M\rangle = \sum_{A,B;\alpha,\beta} \int d\boldsymbol{x}_1 d\boldsymbol{x}_2 \, \bar{\psi}_{\alpha}^A(t=0,\boldsymbol{x}_1) \delta^{AB} \Phi_{\alpha\beta}(\boldsymbol{x}_1 - \boldsymbol{x}_2) \psi_{\beta}^B(t=0,\boldsymbol{x}_2) |0\rangle$$ The bound state condition $H|M\rangle = M|M\rangle$ gives, at $\mathcal{O}\left(\alpha_s^0\right)$ $$\left[i\gamma^{0}\boldsymbol{\gamma}\cdot\overrightarrow{\boldsymbol{\nabla}}+m\gamma^{0}\right]\Phi(\boldsymbol{x})+\Phi(\boldsymbol{x})\left[i\gamma^{0}\boldsymbol{\gamma}\cdot\overleftarrow{\boldsymbol{\nabla}}-m\gamma^{0}\right]=\left[M-V(|\boldsymbol{x}|)\right]\Phi(\boldsymbol{x})$$ where $x = x_1 - x_2$ and $V(|x|) = V'|x| = \Lambda^2|x|$. In the non-relativistic limit $(m \gg \Lambda)$ this reduces to the Schrödinger equation. If we add the instantaneous gluon exchange potential: → The quarkonium phenomenology with the Cornell potential.