A perturbative expansion for bound states
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Paul Hoyer, University of Helsinki

Hadrons and atoms have unexpected similarities

Can the first-principles bound state methods of QED be applied to QCD?

This is a real possibility!




Non-relativistic bound states

QCD: bb, cc quarkonia

anti-
red
Mass [MeV .
[ ] Charmonium
4100 o+ 1(4040)
3P (~ 3940)
3900 P (~ 3880) D, (~3800)
g GTI0) o parlete sy R D,

3700 E8% """ """ DP Threshold

3500

3300

3100

2900

n°(3590)

X2(3556)

hu(3525) S G510)

Xo(3415)

w3097 K ¥

__?11Mev @}4"

1(2980)

QED: ete- atoms
®—_
a2
Binding energy Positronium
[meV]
A -
0 oo lonization energy _
3s, 3%, 3D, 3D:
-1000}~ T 2P s 22—
218 23S 2 3—2 3D
o T 2_%_1 ~ 600 meV
-3000 104 eV
-5000
15,
sy g 046y
-7000f~ u

& 0.1nm (]
7



Light quarks: relativistic bound states :

Valence Fock states govern quantum numbers and decays,
even for highly relativistic constituents.
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What prevents the strong color field from creating abundant ¢g, g constituents?
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Perturbative expansion: Scattering vs. bound states +
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Atoms are expanded around

Scattering amplitudes are ar
an 1nitial bound state

expanded around free states

Schrédinger wave functions for atoms @;,(a) are exponential in

Their power corrections @;,(a)(1 + ci0 + c,02 ) depend on D;,(Q)

The perturbative expansion of bound states is not unique,
it depends on the choice of initial state.

Caswell & Lepage (1975)
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Instantaneous (Af = O) interactions

A qg Fock state 1s bound by an instantaneous interaction.

Cf. the V(r) = — a/r potential of the NR Schrodinger equation.

Theories with a local action generally do not have instantaneous potentials.

Gauge theories are an exception:
Although their action is local, the gauge may be fixed non-locally

The lack of d9AY and V-A in &Z£orp means that A and Az do not propagate

Feynman gauge fixing: £cr= (dy A*)? adds the missing terms
= All gauge fields propagate, explicit Poincaré invariance

V:A(t,x) =0 (Coulomb gauge)
Instantaneous gauge interactions for
A%t,x) =0 (Temporal gauge)



Canonical quantization

Conjugate field mq Commutation relations
( ) 8[80g0a(t,:13)] [gp ( ) 5( y)];l: B ( y)

A© has no conjugate field, due to the absence of dpA° in LoED.

Not a problem in temporal gauge: A°(7,x) = 0. |Choose temporal gauge.

A%t x)=01s pres§rved unc.ler time-independent 5865ED — O.E () — GW ()
gauge transformations, which are generated by  0A%(x)
Willemsen (1978)

0SQED
Physical states are required to satisfy the constraint: 5 A("g () iphys) =0

This determines V- Er in terms of the charge distribution, and ensures
that the states are invariant under #-independent gauge transformations.



The classical, instantaneous field EL

0SOED

5 Cg? ; iphys) = 0 is not an operator relation, it is a constraint on |[phys)
0S

; %J(EZCZ; 0) =0 implies E; = 0 in the vacuum. No particles are created.

In temporal gauge the electric field E; is classical, not an operator.

E. can bind e*e- Fock states strongly, without pair creation.
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Fock state expansion for Positronium in A%=0 gauge

A perturbative expansion in o can start

eter)

from the le+e-) Fock state, bound by E;
its classical field E :
| . ete )
Higher order corrections include states
with transverse photons and ete- pairs, E
. Ar L
as determined by Hogp le*e-)
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Each Fock component of the bound state
includes its particular instantaneous E, field.

This Fock expansion 1s valid in any frame,
and 1s formally exact at O(a®).

e



Temporal gauge in QCD: AL =0

The instantaneous gauge constraint determines E; , for all hadron Fock states:

0B} () [phys) = g[ — fabcALEL + ¢ T%(z)] |phys)

In QED we impose the boundary condition: E;(x) — O for Ix| — o

In QCD E. . (x) =0 for (globally) color singlet Fock states.

Each color component of the Fock state has E; . (x) #0 =

Bral@) lphys) = =07 [ dy[wa-y+ S E.(w) lohys

where  E,(y) = — farc Ap EL(Y) + ¥ T Y(y)

The homogeneous solution & % is the only one that is
compatible with invariance under space translations and rotations
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Including the k # O homogeneous solution for Ej

i — 97 . g
B} o(x) [phys) = —0; /dy{mr y+4ﬂw_yd5a(y) phys)

where  E4(y) = — farc AL EL(y) + ¢ T ¢(y)
Kk # Kk(@,y): this is a homogeneous solution of 0; E"(x) = 0

The linear dependence on x makes E; independent of x, as required by
translation invariance: The field energy density is spatially constant.

The field energy o volume of space is / Prose =52
irrelevant only if it is universal. \ ‘ /
This relates the normalisation % of all — o—
Fock components, leaving an

7o
overall scale A as the single parameter. \/ f } /

“empty vacuum”  QCD vacuum

“Bag model without a bag”



The potential energy #y = / deE“ E4

Hy = /dydz{y z[ /da: +g/<;} + 5 \yofz] }5 (y)&a(2)
Recall: Sa(y) — _fabcAéEg(y) _|_ wTTa¢(y)

Gives translation invariant potentials for (globally) color singlet states

Meson:
q(1)q Z%D 1) ¥ (x2) |0) Hy qd) = Vaq laq)
2 g .
chf(wla To) = A°|x1 — 2| — Cornell potential
1 — 2|

This potential is valid also for relativistic gg Fock states,
in any frame



Baryon Fock state potential

Baryon: [q(x1)q(x2)q(T3)) = Z EABC?ﬂL(wl)wL(@)WC(CBS)|O>
A,B,C

2 1 1 1
Vige(T1, T2, 23) = AQdQQQ(ml’mQ’w?’) 3 Oés(\fm — X " |xo — a3 " x5 — 331|)

1
dgqq(T1, T2, T3) = ﬁ\/(l‘l — 3)% + (22 — @3)% + (T3 — 21)?

When two of the quarks coincide the potential reduces to the gg potential:

4 Olg

quq(mlaw%mZ) — AQ‘wl - wQ‘ - VQQ(m17m2)

g\wl—azg\ N

Analogous potentials are obtained for any quark and gluon Fock state,
such as ggg and gg.



Summary

The similarities of hadrons and atoms are unlikely to be “accidental”
Need to consider the principles of QED bound states

Temporal gauge (A% = 0) 1s advantageous for equal-time bound states

The gauge constraint determines the classical, instantaneous E;, field
for each Fock component

Perturbative expansion, starting from non-perturbative valence Fock states

A homogeneous solution of the gauge constraint gives confinement in QCD

Many features of hadrons thus obtained look promising & intriguing

PH 2109.06257
Special thanks to Matti Jarvinen, for valuable advice PH 2101.06721v2
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There is a difference between QED and QCD

Global gauge invariance allows a classical gauge field for neutral atoms,
but not a color octet gluon field for color singlet hadrons.

X1 X2
Positronium (QED) Q Proton (QCD) ®@®
1 e

X3
€ 1 1
E :——vx( _ ) “(p) =0 forall
L(w) A ’.’13—2131‘ \w—wg\ EL(J;) O O X
However:
The classical ¢l field 1 - 1shi
e classical gluon field 1s non-vanishing ECLL (x’ C) # 0

for each color component C of the state

The blue quark feels the color field generated by the red and green quarks.

An external observer sees no field:
The gluon field generated by a color Z Ef(x,C)=0
singlet state vanishes. C



The qqq potential

| |
A (q state, after the emission of a transverse gluon: P
[ |

q(x1)g(xg)q(T2)) Z wA T) mg)TABwB(a;Q) 0)

A2
Vq(§3 (1, g, 22) = \/77 dggq(T1,Tg, T2) (universal A)

dng(wl’wg’ 332) = \/i(N - Q/N)(wl — $2)2 + N(wg — %5131 — %CBQ)Q

1 1 1 !
v L1, Lg, L2 :1@8[ _N( " >}
ng( g ) 2 N ‘:131 — :1:2| ‘CB1 - 2139‘ ‘5132 — wg‘

When ¢ and g coincide: Vq(gog( =T, xa) = A2|331 — | = Vq(g)

(1) _ _ @)
Viga (X1 =g, T2) = Vg
Paul Hoyer LC2021



The gg potential

A “glueball” component: ’9(331)9(332» - Z AZ(%) Ai(wz) |O>

N
has the potential Vg = o A?|zy — 9| — N
I

g

|€U1 — L2

This agrees with the qgq potential where the quarks coincide:
Vog(@, 2g) = Vygg(x, 24, )

It 1s straightforward to work out the instantaneous potential for any Fock state.
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O (o) light qQ bound states
An O (ozg) meson state with P = 0 and wave function ®:

’M> = Z /d.’I;ldCBQ &ﬁ(t — O, $1)5AB(I)QB(ZU1 — mg)wﬁB(t — O, 2132) ‘O>
A,B;a,3

The bound state condition H |M) = M |M) gives, at () ( @2)
—> +—
[z’fyofy -V + m'yo] O(x) + ¢(x) [ifyofy .V — m,yo] — [M _ V(\az\)]@(a})
wherex=xi—x;and V(lx ) =VixI=A2lx1.

In the non-relativistic limit (m > A) this reduces to the Schrédinger equation.

If we add the instantaneous gluon exchange potential:

—> The quarkonium phenomenology with the Cornell potential.
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