Quantum Simulation of QFT in the Front Form

Michael Kreshchuk¹, William M. Kirby², Hugo Beauchemin², Gary Goldstein², Shaoyang Jia³, James Vary⁴, Peter J. Love^{2,5} ¹Lawrence Berkeley National Laboratory ²Tufts University ³Argonne National Laboratory ⁴Iowa State University ⁵Brookhaven National Laboratory NSF DGE-1842474, DOE HEP DE-SC0019452, NSF STAQ PHY-1818914

 $2002.04016;\ 2105.10941;\ 2011.13443;\ 2009.07885$

Quantum Simulation

Quantum computer: a quantum system, which can be manipulated ("controlled") and measured with high precision.

Quantum simulation: studying physical systems (i.e., calculating observables) using quantum computers.

I hysical System proputer key ingredients: * Encoding 1-> Simulation algorithm $\langle f|0|f\rangle \approx \langle f$ Muy not have a physical interpretation

Motivation

The currently dominant approach to digital quantum simulation of QFT is based on the equal-time lattice formulation.

A lot of progress, a lot of open questions:

- ▶ Gauge symmetry protection highly non-trivial.
- ▶ Difficult to extract information about observables.
- Qubit number \propto lattice size:

$$\mathfrak{Q}_{QCD} \sim \underbrace{(\text{internal DOFs})}_{\geq 50} \times \underbrace{L^{D-1}}_{\geq 20^3} \geq 400,000 \text{ qubits.} \quad (1)$$

Can we overcome these difficulties by using some alternative approach?

Quantum Simulation in the Front Form

Good news:

- ▶ Fact #1: Numerous techniques for the Digital Quantum Simulation of Quantum Chemistry have been developed in the last decades.
- Fact #2: QFT in the light-front (LF) formalism looks much like non-relativistic many-body physics!¹

$$H = \text{poly}(a, a^{\dagger}, b, b^{\dagger}), \qquad (2)$$

which is the case in DLCQ and, more generally, in BLFQ. $\langle \Box \rangle \langle \overline{\Box} \rangle \langle \overline{\Box} \rangle \langle \overline{\Xi} Z \rangle \langle \overline{\Xi} \rangle \langle \overline{\Xi} Z Z Z Z \langle \overline{\Xi} Z Z Z Z Z \langle \overline{\Xi} Z Z \langle \overline{\Xi} Z Z$

 $^{^1}$ In what follows, we assume that the gauge-fixed second-quantized LF Hamiltonian acquires the form of

Quantum Simulation in the Front Form

	LF QFT features	Advantages for QC
Resources	No ghost fields Linear EoM	Low qubit count
	LF momentum > 0	Efficient encoding
Evolution	Sparse Hamiltonians	Using sparsity-based methods
Measurement	LF wavefunction \rightarrow \rightarrow static quantities; Simple form of operators in the second-quantized formalism	Simple form of measurement operators
Other	Trivial vacuum, fewer cut-offs, no fermion doubling, form invariance of H , equal treatment of matter and gauge fields in the $A^+ = 0$ gauge	

Encoding Fock states

Consider the Fock states in the ϕ_{1+1}^4 theory:

$$\{|\mathcal{F}\rangle\}$$
 at $K = 5$: $|1^5\rangle$, $|1^2, 3\rangle$, $|1, 2^2\rangle$, $|1, 4\rangle$, $|2, 3\rangle$. (3)

The number of $\{|\mathcal{F}\rangle\}$ scales as $p(K) = O(\exp(\sqrt{K}))$.

This implies that the **lower bound** on the number of qubits, required to encode a Fock state, scales as $\left[\mathfrak{Q} \sim O(\sqrt{K})\right]$.

$$|\mathcal{F}_1\rangle \mapsto |\dots 000\rangle, |\mathcal{F}_2\rangle \mapsto |\dots 001\rangle, \dots$$
 (4)

While such a mapping is impractical, we can use it to evaluate other ways of encoding Fock states in the quantum computer.

Encoding Fock states

Two ways of encoding a Fock state $|\mathcal{F}\rangle = |n_1^{w_1}, n_2^{w_2}, \ldots\rangle$.

I. Direct encoding — qubits store w_j (qubit register per mode):

$$|\Psi\rangle = |\underbrace{0101}_{w_1}\underbrace{1001}_{w_2}\ldots\rangle, \qquad (5)$$

$$\mathfrak{Q}_{\text{Direct}} = O(K \log K) \,. \tag{6}$$

II. Compact encoding — qubits store n_j and w_j , only for $w_j > 0$:

$$|\Psi\rangle = |\underbrace{\underbrace{0111}_{n_1} \underbrace{0101}_{w_1} \underbrace{1100}_{n_2} \underbrace{1001}_{w_2} \dots}_{W_2}, \qquad (7)$$
$$\mathfrak{Q}_{\text{Compact}} = \boxed{O(\sqrt{K}\log K)}. \qquad (8)$$

In the presence of transverse dimensions:

$$\mathfrak{Q}_{\text{Direct}} = \widetilde{O}(K\Lambda_{\perp}^{d-1}) \text{ vs. } \mathfrak{Q}_{\text{Compact}} = \widetilde{O}(K). \tag{9}$$

Quantum Simulation Algorithms

Should we always use compact mapping? No, because the choice of encoding restricts the choice of simulation algorithms.

Resources	Paradigm	Circuits	Convergence
Near-term	Variational	Short	Not provable (heuristic)
Far-future	Time/adiabatic evolution	Long	Provable

Quantum Simulation Algorithms

Most existing algorithms are based either on product formulas ("trotterization") or on sparsity-based "oracle" routines.²

	Trotter	Sparsity
	(product formulas)	(more advanced)
Direct	✓	✓
Compact	X	✓

Using compact mapping results in longer circuits.

 $\text{Near-term} \rightarrow \text{Variational} \rightarrow \text{Direct+Trotter}$

Far-future \rightarrow Hamiltonian evolution \rightarrow Tight on gates?

 $\rightarrow \begin{cases} \mathrm{Yes} \rightarrow \mathrm{Direct}{+}\mathrm{Sparse} \\ \mathrm{No} \rightarrow \mathrm{Compact}{+}\mathrm{Sparse} \end{cases}$

² One can also use heuristic algorithms, see the talk by Wenyang Qian. $(\Box) \rightarrow (\Box) \rightarrow (\Box$

Measurement

Using QCs for simulating spectroscopy is particularly natural, as most of the LF observables have the form of

$$\mathcal{O} = \text{poly}(a, a^{\dagger}, b, b^{\dagger}), \quad (10)$$

which can be easily measured in the quantum computer, once the final state is prepared.

(Pasquini, Lorce, 2012)

Takeaways

- Numerous advantages of the second-quantized LF Hamiltonian formulation come in handy at the stage of quantum simulation.
- Various LF models (phenomenology, ab initio) and quantum simulation algorithms (heuristic, Hamiltonian evolution) can be employed, depending on available resources.
- ► Results:
 - * 2002.04016 adiabatic preparation of interacting eigenstates. Qubit counts and observables for Yukawa₁₊₁ and QCD₃₊₁.
 - $\star~2105.10941$ details of sparsity-based simulation in the compact encoding.
 - $\star\,$ 2011.13443, 2009.07885 variational algorithms, unitary coupled cluster, BLFQ-NJL model of light mesons.
- Several approaches to the simulation of scattering are currently under development.

THANK YOU!!!

◆□ → ◆母 → ◆ = → ◆ = ・ つ へ ○ 12/12