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Quantum Simulation
Quantum computer: a quantum system, which can be
manipulated (“controlled”) and measured with high precision.

Quantum simulation: studying physical systems (i.e.,
calculating observables) using quantum computers.
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Motivation

The currently dominant approach to digital quantum simulation
of QFT is based on the equal-time lattice formulation.

A lot of progress, a lot of open questions:

▶ Gauge symmetry protection — highly non-trivial.

▶ Difficult to extract information about observables.

▶ Qubit number ∝ lattice size:

QQCD ∼ (internal DOFs)︸ ︷︷ ︸
≥50

×LD−1

︸ ︷︷ ︸
≥203

≥ 400, 000 qubits. (1)

Can we overcome these difficulties by using some
alternative approach?
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Quantum Simulation in the Front Form

Good news:

▶ Fact #1: Numerous techniques for the Digital Quantum
Simulation of Quantum Chemistry have been developed in
the last decades.

▶ Fact #2: QFT in the light-front (LF) formalism looks
much like non-relativistic many-body physics!1

1 In what follows, we assume that the gauge-fixed second-quantized LF Hamiltonian
acquires the form of

H = poly(a, a†, b, b†) , (2)

which is the case in DLCQ and, more generally, in BLFQ.
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Quantum Simulation in the Front Form

LF QFT features Advantages for QC

Resources
No ghost fields
Linear EoM

Low qubit count

LF momentum > 0 Efficient encoding

Evolution Sparse Hamiltonians
Using sparsity-based
methods

Measurement

LF wavefunction →
→ static quantities;
Simple form of operators
in the second-quantized
formalism

Simple form of
measurement
operators

Other
Trivial vacuum, fewer cut-offs, no fermion doubling,
form invariance of H, equal treatment of matter

and gauge fields in the A+ = 0 gauge
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Encoding Fock states

Consider the Fock states in the ϕ4
1+1 theory:

{|F⟩} at K = 5: |15⟩, |12, 3⟩, |1, 22⟩, |1, 4⟩, |2, 3⟩ . (3)

The number of {|F⟩} scales as p(K) = O(exp(
√
K)).

This implies that the lower bound on the number of qubits,

required to encode a Fock state, scales as Q ∼ O(
√
K) .

|F1⟩ 7→ | . . . 000⟩, |F2⟩ 7→ | . . . 001⟩, . . . (4)

While such a mapping is impractical, we can use it to evaluate
other ways of encoding Fock states in the quantum computer.
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Encoding Fock states
Two ways of encoding a Fock state |F⟩ = |nw1

1 , nw2
2 , . . .⟩.

I. Direct encoding — qubits store wj (qubit register per mode):

|Ψ⟩ = | 0101︸︷︷︸
w1

1001︸︷︷︸
w2

. . .⟩ , (5)

QDirect = O(K logK) . (6)

II. Compact encoding — qubits store nj and wj , only for wj > 0:

|Ψ⟩ = |
at most O(

√
K) modes︷ ︸︸ ︷

0111︸︷︷︸
n1

0101︸︷︷︸
w1

1100︸︷︷︸
n2

1001︸︷︷︸
w2

. . .⟩ , (7)

QCompact = O(
√
K logK) . (8)

In the presence of transverse dimensions:

QDirect = Õ(KΛd−1
⊥ ) vs. QCompact = Õ(K) . (9)



•  

8/12

Quantum Simulation Algorithms

Should we always use compact mapping? No, because the
choice of encoding restricts the choice of simulation algorithms.

Resource requirements Far-future,
ab initio

Near-term,
phenomenology Low High

Resources Paradigm Circuits Convergence

Near-term Variational Short Not provable (heuristic)

Far-future
Time/adiabatic

evolution
Long Provable
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Quantum Simulation Algorithms

Most existing algorithms are based either on product formulas
(“trotterization”) or on sparsity-based “oracle” routines.2

Trotter
(product formulas)

Sparsity
(more advanced)

Direct ✓ ✓

Compact ✗ ✓

Using compact mapping results in longer circuits.

Near-term → Variational → Direct+Trotter

Far-future → Hamiltonian evolution → Tight on gates?

→
{
Yes → Direct+Sparse

No → Compact+Sparse

2 One can also use heuristic algorithms, see the talk by Wenyang Qian.
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Measurement

Using QCs for simulating
spectroscopy is particularly
natural, as most of the LF
observables have the form of

O = poly(a, a†, b, b†) , (10)

which can be easily measured in
the quantum computer, once
the final state is prepared.

MODELS FOR TMDS AND NUMERICAL METHODS 3
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Fig. 1. – Representation of the projections of the GTMDs into parton distributions and form
factors. The arrows correspond to different reductions in the hadron and quark momentum
space: the solid (red) arrows give the forward limit in the hadron momentum, the dotted
(black) arrows correspond to integrating over the quark transverse momentum and the dashed
(blue) arrows project out the longitudinal momentum of quarks.

demonstrated the existence of effects [56], paved the way towards an understanding of
universality in the fragmentation process [57], established new TMDs [58, 59], see [60]
for a review.

The manuscript is organized as follows. In sect. 2 we review the definitions of the
leading-twist TMDs and introduce a convenient representation of the quark-quark cor-
relator in terms of the net-polarization states of the quark and the hadron. In sect. 3
we discuss model relations among TMDs which hold in a large class of quark models. In
particular, we review the derivation given in Ref. [61] to explain the physical origin of
such relations. There are two linear relations and a quadratic relation which are flavour
independent and involve polarized TMDs, while a further linear relation is flavour depen-
dent and involves both polarized and unpolarized TMDs. The relations among polarized
TMDs connect the distributions of quarks inside the nucleon for different configurations
of the polarization states of the hadron and the parton. As a consequence, it is natural
to expect that they can originate from rotational invariance of the polarization states of
the system. Rotations are more easily discussed in the basis of canonical spin. Therefore,
instead of working in the standard basis of light-cone helicity, we introduce in sects. 4

.
1

and 4
.
2 the tensor correlator defining the TMDs in the canonical-spin basis. Such a

representation is used in sect. 4
.
3 to discuss the consequences of rotational symmetries of

the system. In such a way we will be able to identify the key ingredients for the existence
of relations among polarized TMDs in quark models.

In order to complete the discussion, including the flavour-dependent relation among
polarized and unpolarized TMDs, we need to introduce specific assumptions about the
spin-isospin structure of the nucleon state. Therefore, in sect. 5 we discuss the conse-
quences of rotational invariance using the explicit representation of the TMDs in terms

(Pasquini, Lorce, 2012)
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Takeaways

▶ Numerous advantages of the second-quantized LF
Hamiltonian formulation come in handy at the stage of
quantum simulation.

▶ Various LF models (phenomenology, ab initio) and quantum
simulation algorithms (heuristic, Hamiltonian evolution)
can be employed, depending on available resources.

▶ Results:

⋆ 2002.04016 — adiabatic preparation of interacting
eigenstates. Qubit counts and observables for Yukawa1+1

and QCD3+1.
⋆ 2105.10941 — details of sparsity-based simulation in the

compact encoding.
⋆ 2011.13443, 2009.07885 — variational algorithms, unitary

coupled cluster, BLFQ-NJL model of light mesons.

▶ Several approaches to the simulation of scattering are
currently under development.
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THANK YOU!!!
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