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Quantum Simulation

Quantum computer: a quantum system, which can be
manipulated (“controlled”) and measured with high precision.

Quantum simulation: studying physical systems (i.e.,
calculating observables) using quantum computers.
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Motivation .

The currently dominant approach to digital quantum simulation
of QFT is based on the equal-time lattice formulation.

A lot of progress, a lot of open questions:
> Gauge symmetry protection — highly non-trivial.
» Difficult to extract information about observables.
» Qubit number  lattice size:
Qocp ~ (internal DOFs) x LP~! > 400,000 qubits. (1)
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Can we overcome these difficulties by using some
alternative approach?



Quantum Simulation in the Front Form

Good news:

» Fact #1: Numerous techniques for the Digital Quantum
Simulation of Quantum Chemistry have been developed in
the last decades.

» Fact #2: QFT in the light-front (LF) formalism looks
much like non-relativistic many-body physics!*

1 In what follows, we assume that the gauge-fixed second-quantized LF Hamiltonian

acquires the form of
H = poly(a,a',b,b7), (2)

which is the case in DLCQ and, more generally, in BLFQ.



Quantum Simulation in the Front Form

LF QFT features Advantages for QC
No ghost fields .
Resources Lin;gar EoM Low qubit count
LF momentum > 0 Efficient encoding
Evolution Sparse Hamiltonians Using sparsity-based
methods
LF wavefunction —
— static quantities; Simple form of
Measurement | Simple form of operators | measurement
in the second-quantized | operators
formalism
Trivial vacuum, fewer cut-offs, no fermion doubling,
Other form invariance of H, equal treatment of matter
and gauge fields in the AT = 0 gauge




Encoding Fock states

Consider the Fock states in the ¢7,, theory:

{|F)}at K =5: [1%), |1%,3), [1,2%), [1,4), |2,3). (3)

The number of {|F)} scales as p(K) = O(exp(VK)).

This implies that the lower bound on the number of g

Q~O0WK)|

required to encode a Fock state, scales as

|F1) = |...000), |F2) —|...

ubits,

001), ...

(4)

While such a mapping is impractical, we can use it to evaluate
other ways of encoding Fock states in the quantum computer.



Encoding Fock states B

Two ways of encoding a Fock state |F) = [n]", ny?,...).

I. Direct encoding — qubits store w; (qubit register per mode):

W) = | 01011001 ...), (5)
N N~
w1 w2

II. Compact encoding — qubits store n; and w;, only for w; > 0:

at most O(v/K) modes

@) = 01110101 11001001 ). (7)
N~
ny  wp n2 wg
QCompaCt = O( \ Klog K) . (8)

In the presence of transverse dimensions:

QDirect = fOV(KAjijl) VS. QCompact = 5(K) . (9)



Quantum Simulation Algorithms [ j

Should we always use compact mapping? No, because the
choice of encoding restricts the choice of simulation algorithms.

Near-term, Resource requirements Far-future,
phenomenology Low High ab initio
\l Q E_ QAJ\ O\QQ}(‘\C, :

S Vu)«'( ] SWY‘%
Resources Paradigm Circuits Convergence
Near-term Variational Short | Not provable (heuristic)
Far-future Time/ adl.a batic Long Provable

evolution




Quantum Simulation Algorithms [

Most existing algorithms are based either on product formulas

(“trotterization”) or on sparsity-based “oracle” routines.?
Trotter Sparsity
(product formulas) | (more advanced)
Direct v v
Compact | X v

Using compact mapping results in longer circuits.

Near-term — Variational — Direct+Trotter
Far-future — Hamiltonian evolution — Tight on gates?

Yes — Direct+Sparse
No — Compact+Sparse

2 One can also use heuristic algorithms, see the talk by Wenyang Qian.



Measurement

Using QCs for simulating
spectroscopy is particularly
natural, as most of the LF
observables have the form of

O = poly(a,al,b,b"),  (10)

which can be easily measured in
the quantum computer, once
the final state is prepared.

TMD(z, k)

TMSD(k,)

—— A=0
-»- [dx
Charge e [ 2k

(Pasquini, Lorce, 2012)



Takeaways Zn

» Numerous advantages of the second-quantized LF
Hamiltonian formulation come in handy at the stage of
quantum simulation.

» Various LF models (phenomenology, ab initio) and quantum
simulation algorithms (heuristic, Hamiltonian evolution)
can be employed, depending on available resources.

> Results:

* 2002.04016 — adiabatic preparation of interacting
eigenstates. Qubit counts and observables for Yukawayi
and QCDgy ;.

* 2105.10941 — details of sparsity-based simulation in the
compact encoding.

* 2011.13443, 2009.07885 — variational algorithms, unitary
coupled cluster, BLFQ-NJL model of light mesons.

> Several approaches to the simulation of scattering are
currently under development.



THANK YOU!!!
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