Anatomy of Nucleon Self-energy from Instant to Light-Front

Bin-Bin Liua, Chueng-Ryong Jib

aSchool of Physics, Beihang University, Beijing, China
bDepartment of Physics, North Carolina State University, Raleigh, North Carolina

Light Cone 2021

December 2, 2021
Introduction

Anatomy of the Nucleon self-energy

Anatomy of the reduced nucleon self-energy

Discussions and Conclusions
Concepts and methods

- Instant form dynamics (IFD): x^0, x^3.
- Light-front dynamics (LFD): $x^\pm = (x^0 \pm x^3)/\sqrt{2}$.
- Interpolating dynamics (ID):

$$
\begin{bmatrix}
x_+ \\
x_-
\end{bmatrix} =
\begin{bmatrix}
\cos[\delta] & \sin[\delta] \\
\sin[\delta] & -\cos[\delta]
\end{bmatrix}
\begin{bmatrix}
x^0 \\
x^3
\end{bmatrix}
$$

(1)

with $0 \leq \delta \leq \pi/4$. The corresponding four momentum is

$$
q^2 = C(q_+^2 - q_-^2) + 2Sq_+q_- - q_\perp^2.
$$

(2)
Introduction and Motivation

▶ Introduction:
 ▶ Tree level intermediate fermion propagator can be decomposed into forward and backward moving parts[1].
 ▶ The backward moving part in LFD features an instantaneous contribution which involves the constraint degrees of freedom of the fermion, that is unique in the LFD.

▶ Motivation:
 ▶ To identify how much the LF instantaneous (LFI) part contributes in loop level nucleon self-energy numerically and analytically.
 ▶ To trace the LFI from the backward moving part of nucleon self-energy by using the interpolating dynamics (ID).
 ▶ To distinguish the LF zero mode contribution appeared at the $p^z \to -\infty$ point in LFD numerically and analytically.
 ▶ To show the difference between the LFD and IFD.
Introduction

Anatomy of the Nucleon self-energy

Anatomy of the reduced nucleon self-energy

Discussions and Conclusions
Definition: anatomy in the tree level

Figure 1: (a) Feynman diagram for $e^+e^- \rightarrow \gamma\gamma$ process (t-channel). Time-ordered diagrams (b) and (c) for $e^+e^- \rightarrow \gamma\gamma$ annihilation process. The u-channel amplitudes can be obtained by crossing the two final state particles.
Definition: anatomy in the tree level

- The intermediate virtual fermion propagator (Fig. 1a) and its anatomy into forward and backward parts (Fig. 1b and 1c) [1]

\[
\Sigma_N = \frac{q + M}{q^2 - M^2} = \Sigma_{Na} + \Sigma_{Nb} = \frac{Q_a + M}{2Q^+(q^+ - Q_{a^+})} + \frac{-Q_b + M}{2Q^+(-q^+ - Q_{b^+})}
\]

(3)

where capitalized symbols are "on-mass-shell" (OMS)

\[
Q_a = \left(\frac{-S q^- + Q^+}{C}, \; q^\perp, \; q^- \right)
\]

\[
Q_b = \left(\frac{S q^- + Q^+}{C}, \; -q^\perp, \; -q^- \right)
\]

\[
Q^+ = \sqrt{q^-^2 + C(q^\perp^2 + M^2)}.
\]

(4)
Definition: anatomy in the tree level

- The off-mass shell version (with prime notation) of forward and backward moving nucleon self-energy

\[\Sigma'_{Na} = \frac{\not{q} + M}{2Q^+(q_+^\uparrow - Q_{a+}^\uparrow)} \]
\[\Sigma'_{Nb} = \frac{\not{q} + M}{2Q^+(-q_+^\uparrow - Q_{b+}^\uparrow)} \]

- Define the remnant part to assist our calculation

\[\Sigma_{NRP} = \Sigma_{Nb} - \Sigma'_{Nb} = \frac{\gamma^\uparrow}{2Q^\uparrow} \]
Definition: anatomy in the loop level

Figure 2: The nucleon-pion loop

- The nucleon self-energy is \(p_N = p - k \)

\[
\hat{\Sigma} = i \left(\frac{g_A}{2f_\pi} \right)^2 \int \frac{d^4k}{(2\pi)^4} \left(k \gamma^5 \tau \right) \frac{i(p_N + M)}{p_N^2 - M^2 + i\epsilon} \left(\gamma^5 k \tau \right) \frac{i}{k^2 - m^2_\pi + i\epsilon}.
\]

(8)

- Spin sum calculation: \(\Sigma = \frac{1}{2} \sum_s \bar{u}(p, s) \hat{\Sigma} u(p, s) \).

- With \(D_N = p_N^2 - M^2 + i\epsilon, D_\pi = k^2 - m^2_\pi + i\epsilon \), the nucleon self-energy can be simplified as

\[
\Sigma = -i3 \left(\frac{g_A}{2f_\pi} \right)^2 \int \frac{d^4k}{(2\pi)^4} - \frac{[2(p \cdot k)(k \cdot p_N) - (p \cdot p_N)k^2]}{D_N D_\pi M} + M^2 k^2.
\]

(9)
Definition: anatomy in the loop level

Figure 3: Time-ordered diagrams (a) and (b) for the forward moving nucleon self-energy (positive energy diagram) and the backward moving nucleon self-energy ("Z" graph).
Definition: anatomy in the loop level

- The Σ_a

$$\Sigma_a = -i3 \left(\frac{g_A}{2f_\pi} \right)^2 \int \frac{d^4k}{(2\pi)^4} \left[-2(p \cdot k)(k \cdot P_{Na}) + (p \cdot P_{Na})k^2 \right] + M^2k^2 \frac{2P_N^+(p_{N^+} - P_{Na^+})D_{\pi}M}{2P_N^+(p_{N^+} - P_{Na^+})D_{\pi}M}$$ (10)

- The Σ_b

$$\Sigma_b = -i3 \left(\frac{g_A}{2f_\pi} \right)^2 \int \frac{d^4k}{(2\pi)^4} \left[2(p \cdot k)(k \cdot P_{Nb}) - (p \cdot P_{Nb})k^2 \right] + M^2k^2 \frac{2P_N^+(p_{N^+} - P_{Nb^+})D_{\pi}M}{2P_N^+(p_{N^+} - P_{Nb^+})D_{\pi}M}$$ (11)

- The Σ_{RP}

$$\Sigma_{RP} = -i3 \left(\frac{g_A}{2f_\pi} \right)^2 \int \frac{d^2k_{\perp} dk^- dk^+}{(2\pi)^4} \left[-2(p \cdot k)k^+ - p^+k^2 \right] \frac{2P_N^+D_{\pi}M}{2P_N^+D_{\pi}M}$$ (12)
The backward and forward moving part in LFD

- The backward moving Σ_b in the LF limit, becomes LFI contribution

$$\Sigma_{LFD}^b = \Sigma_{LFI} = -i3 \left(\frac{g_A}{2f_\pi} \right)^2 \int \frac{d^4k}{(2\pi)^4} \frac{-2(p \cdot k)k^+ + k^2p^+}{2p_N^+D_\pi M},$$ (13)

which is the same with Σ_{RP}^{LFD}.

- The forward moving part of the nucleon self-energy becomes, in LF limit,

$$\Sigma_{LFD}^a = -i3 \left(\frac{g_A}{2f_\pi} \right)^2 \int \frac{d^4k}{(2\pi)^4} \frac{\left[2(p \cdot k)(k \cdot P_{Na}^{LFD}) - (p \cdot P_{Na}^{LFD})k^2 \right] + M^2k^2}{D_ND_\pi M},$$ (14)

with $P_{Na}^{LFD} = \left(\frac{(p_\perp - k_\perp)^2 + M^2}{2(p^+ - k^+)} \right), p_\perp - k_\perp, p^+ - k^+).$
Calculation for the LFI contribution

- The LFI in Eq.(13), with some transformations, becomes

\[\Sigma_{LFI} = -i3 \left(\frac{g_A}{2f_\pi} \right)^2 \int \frac{d^2k_\perp dk^- dk^+}{(2\pi)^4} \left\{ \frac{p \cdot k}{D_\pi M} + \frac{p^+[k^2 - 2(p \cdot k)]}{2(p^+ - k^+)MD_\pi} \right\}, \]

where the first term is zero, because of oddity in \(k \).

- The Pauli-Villars (PV) regularization

\[\frac{1}{D_\pi} \rightarrow \frac{-\Lambda^2}{D_\pi D_\Lambda} = \frac{-\Lambda^2}{D_\Lambda - D_\pi} \left(\frac{1}{D_\pi} - \frac{1}{D_\Lambda} \right) = \frac{-\Lambda^2}{m_\pi^2 - \Lambda^2} \left(\frac{1}{D_\pi} - \frac{1}{D_\Lambda} \right). \]

where the \(D_\Lambda = k^2 - \Lambda^2 + i\epsilon \).

- Then the LFI becomes (\(x = k^+/p^+ \) is momentum fraction)

\[\Sigma_{LFI:1F} = \frac{-\Lambda^2}{D_\Lambda} \Sigma_{LFI} = -i3 \left(\frac{g_A}{2f_\pi} \right)^2 \int \frac{d^2k_\perp dk^- dx p^+}{(2\pi)^4} \left[\frac{1}{(1 - x)D_\Lambda} + \frac{m_\pi^2}{(1 - x)D_\pi D_\Lambda} - \frac{2p^+ k^- + 2p^- p^+ x}{(1 - x)D_\pi D_\Lambda} \right]. \]
Calculation for the LFI contribution

► The point like theory:

\[\int \frac{dk^-}{D_\pi} \frac{1}{\Gamma} = \pi i \log \left[\frac{k_{\perp}^2 + m_{\pi}^2}{\mu^2} \right] \frac{\delta[x]}{p^+} \]

where the \(\mu \) is the regularization mass parameter.

► The first term in Eq.(17) as an example becomes

\[\int dx p^+ \int \frac{dk^-}{(1-x)D_\Lambda} = \int dx \log \left[\frac{k_{\perp}^2 + \Lambda^2}{\mu^2} \right] \frac{\pi i \delta[x]}{1-x} = \pi i \log \left[\frac{k_{\perp}^2 + \Lambda^2}{\mu^2} \right] \]

where all the \(p^+ \)'s are canceled and only the \(x = 0 \) contribute.

► The LF zero mode contribution where \(p^+ = 0 \) is included during the \(x \) integration with \(0 < x < 1 \).
Calculation for the LFI contribution

- The derivative technique

\[
\Sigma_{x:nF} = \frac{(-\Lambda^2)^n(m - 1)!}{(n - 1)!} \frac{\partial^{n-1}}{\partial(\Lambda^2)^{n-1}} \frac{\Sigma_{x:mF}}{(-\Lambda^2)^m}
\] \hspace{1cm} (20)

with \(n > m\), where the \(nF\) and \(mF\) in the subscript represent the number of PV Form factor (F) multiplied to the subject \(\Sigma_x\).

- With \(m=1\) and \(n=4\) being chosen for the integrations, the final result for LFI reads

\[
\Sigma_{LFI:4F} = -\frac{g_A^2 \Lambda^8}{256 M f_{\pi}^2 \pi^2} \left(-\frac{\Lambda^4 + \frac{2m_\pi^6}{\Lambda^2} - 6\Lambda^2 m_\pi^2 + 6 m_\pi^4 \log \left[\frac{\Lambda^2}{m_\pi^2} \right]}{2 (\Lambda^2 - m_\pi^2)^4} \right).
\] \hspace{1cm} (21)
Calculation for the LFI contribution

- The leading non-analytic behavior for LFI is

\[
\Sigma_{LFI}^{LNA} = - \frac{3g_A^2}{32\pi f^2} \left(\frac{m^4_\pi \log[m^2_\pi]}{8M_\pi} + O(m^5_\pi) \right). \tag{22}
\]

Figure 4: Time-ordered diagram for the LF instantaneous contribution \(\Sigma_{LFI} \).
Calculation for the forward moving part in LFD

- The forward moving part of the nucleon self-energy in LFD, after some simplifications yields

\[
\Sigma_{a}^{LFD} = -i3 \left(\frac{g_A}{2f_\pi} \right)^2 \int \frac{d^4 k}{(2\pi)^4} \frac{(P_{LFD}^{\pi} \cdot k)}{D_\pi M} + \frac{(M^2 + p_N \cdot P_{LFD}^{\pi})k^2}{D_N D_\pi M}
\]

(23)

which can be decomposed as \(\Sigma_{a}^{LFD} = \Sigma - \Sigma_{LFI}\).

- The LNA behavior for OMS is

\[
\Sigma_{a}^{LFD: LNA} = -\frac{3g_A^2}{32\pi f_\pi^2} \left(m_\pi^3 + \frac{3m_\pi^4 \log[m_\pi^2]}{8M_\pi} + \mathcal{O}(m_\pi^5) \right).
\]

(24)
The ID: to relate LFD with IFD

- The off-mass-shell forward and backward part

\[
\Sigma_a' = \Sigma_a + \Sigma_{RP} \\
\Sigma_b' = \Sigma_b - \Sigma_{RP}
\] (25)

\[
\Sigma_a' = -i3 \left(\frac{g_A}{2f_\pi} \right)^2 \int \frac{d^4k}{(2\pi)^4} \frac{-2(p \cdot k)^2 + k^2(p \cdot k) + 2k^2M^2}{2P_N^+ M(p_{N^+} - P_{Na^+})D_\pi}
\]

\[
\Sigma_b' = -i3 \left(\frac{g_A}{2f_\pi} \right)^2 \int \frac{d^4k}{(2\pi)^4} \frac{-2(p \cdot k)^2 + k^2(p \cdot k) + 2k^2M^2}{2P_N^+ M(-p_{N^+} - P_{Nb^+})D_\pi}
\] (26)

which can be further decomposed into four terms \(\Sigma_{a\pm}, \Sigma_{b\pm} \) by decomposing the pion poles in \(D_\pi \).
Rescale the variables

► Rescale: \(k_\perp = k'_\perp \sqrt{C} \), and \(k_\parallel = k'_\parallel / \sqrt{C} \) (to not alter the area spanned by the 4-momentum).

► Inference: \(k'^\parallel = k'_\parallel + \Sigma k'_\perp \), and \(dk'^\parallel = dk'_\parallel \).

► The rescaled \(\Sigma'_a^\parallel \) becomes "independent" of interpolation angles

\[
\Sigma'_a^\parallel = -i 3 \left(\frac{g_A}{2 f_\pi} \right)^2 \int \frac{d^2 k_\perp dk'_\perp dk'^\parallel}{(2\pi)^4} \frac{-2(p \cdot k)^2 + k^2(p \cdot k) + 2k^2M^2}{-2P_N^\parallel M_2 \omega_k^\parallel (k'^\parallel - \kappa'^{0+})(k'^\parallel - \kappa'^{1-})}
\]

with rescaled poles

\[
\kappa'^{0\pm} = \pm \sqrt{k'^2_\perp + k^2_\perp + m^2_\pi - i\epsilon} = \pm \omega'_k
\]

\[
\kappa'^{1\pm} = \sqrt{p'^2_\perp + p^2_\perp + M^2} \pm \sqrt{p'^2_\perp + p^2_\perp + M^2 - i\epsilon} = p'^\parallel \pm P_N'^\parallel.
\]
Definition: the reference frames

- Frame X

\[\vec{p}' = (p'_\perp, p_{\perp}) = 0, \]

(30)

with

\[p'_\perp = p_{\perp} / \sqrt{C} = \frac{\sqrt{M^2 + p^z_\perp \sin \delta + p^z \cos \delta}}{\sqrt{\cos 2\delta}}. \]

(31)

In IFD (\(\delta = 0 \)): \(p_{\perp} / \sqrt{C} = p^z = 0 \) is the rest frame.

- Frame Y

\[k'_\perp = \pm (1 - y) p'_\perp, \quad dk'_\perp = \mp p'_\perp dy, \]

(32)

with \(p'_\perp \to \infty \) and \(p_{\perp} = 0 \). The \(\pm \) corresponds to the forward and backward moving parts.

In IFD (\(\delta = 0 \)): \(p_{\perp} / \sqrt{C} = p^z \to \infty \) is the infinite momentum frame (IMF).
In ID: the LNA for the forward and backward parts

<table>
<thead>
<tr>
<th>LNA (in the unit of $-\frac{3g^4}{32\pi f^2}$)</th>
<th>Σ'_a</th>
<th>Σ'_b</th>
<th>Σ_a</th>
<th>Σ_b</th>
<th>Σ</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID(Frame X)</td>
<td>$m_\pi^3 + \frac{11}{16\pi} \frac{m_\pi^4 \log[m_\pi^2]}{M}$</td>
<td>$-\frac{3}{16\pi} \frac{m_\pi^4 \log[m_\pi^2]}{M}$</td>
<td>$m_\pi^3 + \frac{11}{16\pi} \frac{m_\pi^4 \log[m_\pi^2]}{M}$</td>
<td>$-\frac{3}{16\pi} \frac{m_\pi^4 \log[m_\pi^2]}{M}$</td>
<td>$m_\pi^3 + \frac{1}{2\pi} \frac{m_\pi^4 \log[m_\pi^2]}{M}$</td>
</tr>
<tr>
<td>=IFD(rest)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>=LFD($p^z \rightarrow -\infty$)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ID(Frame Y)</td>
<td>$m_\pi^3 + \frac{1}{2\pi} \frac{m_\pi^4 \log[m_\pi^2]}{M}$</td>
<td>0</td>
<td>$m_\pi^3 + \frac{3}{8\pi} \frac{m_\pi^4 \log[m_\pi^2]}{M}$</td>
<td>$\frac{1}{8\pi} \frac{m_\pi^4 \log[m_\pi^2]}{M}$</td>
<td>$m_\pi^3 + \frac{1}{2\pi} \frac{m_\pi^4 \log[m_\pi^2]}{M}$</td>
</tr>
<tr>
<td>=IFD($p^z \rightarrow \infty$)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>=LFD(p^z independent)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1: Summary of the LNA terms of the forward/backward moving on/off mass shell nucleon self energy and the remnant part in different forms and frames.

- The LNA for the LF zero mode contributions $p^+ = 0$ lost in frame X: $\pm \frac{5}{16\pi} \frac{m_\pi^4 \log[m_\pi^2]}{M}$ (in unit of $-\frac{3g^4}{32\pi f^2}$) to the Σ_a and Σ_b; and $\pm \frac{3}{16\pi} \frac{m_\pi^4 \log[m_\pi^2]}{M}$ (in unit of $-\frac{3g^4}{32\pi f^2}$) to the Σ'_a and Σ'_b.
In ID: the numerical results

▷ \(\Sigma_a:4F, \Sigma_b:4F \) and \(\Sigma_{4F} \) with \(\delta, p^2 \)

Figure 5: Numerical calculations for interpolating (a) forward moving part of nucleon self-energy: \(\Sigma_a:4F \); (b) backward moving part of nucleon self-energy: \(\Sigma_b:4F \); (c) the entire nucleon self-energy: \(\Sigma_a:4F + \Sigma_b:4F \). Frame X: black lines; frame Y: blue lines.
In ID: the numerical results

- $\Sigma_{a:4F}$ and $\Sigma_{b:4F}$ with δ, p_\perp: squeezed "I" form with δ function at the LFD end

Figure 6: Numerical calculations (δ versus p_\perp) for interpolating (a) forward moving part of nucleon self-energy: $\Sigma_{a:4F}$; (b) backward moving part of nucleon self-energy: $\Sigma_{b:4F}$; Frame X: black lines; frame Y: blue lines.
In ID: the numerical results

- $\Sigma_{a:4F}$ and $\Sigma_{b:4F}$ with δ, p'_\perp: "I" form showing dynamical form invariance

Figure 7: Numerical calculations (δ versus p'_\perp) for interpolating (a) forward moving part of nucleon self-energy: $\Sigma_{a:4F}$; (b) backward moving part of nucleon self-energy: $\Sigma_{b:4F}$; Frame X: black lines; and frame Y is in the infinite p'_\perp which is out of the range.
In ID: the numerical results

<table>
<thead>
<tr>
<th>Numerical results (GeV)</th>
<th>$\Sigma'_a:4F$</th>
<th>$\Sigma'_b:4F$</th>
<th>$\Sigma_a:4F$</th>
<th>$\Sigma_b:4F$</th>
<th>Σ_4F</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID(Frame X)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>=IFD(rest)</td>
<td>-0.202</td>
<td>-0.030</td>
<td>-0.228</td>
<td>-0.004</td>
<td>-0.232</td>
</tr>
<tr>
<td>=LFD($p^z \to -\infty$)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ID(Frame Y)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>=IFD($p^z \to \infty$)</td>
<td>-0.232</td>
<td>0</td>
<td>-0.275</td>
<td>0.043</td>
<td>-0.232</td>
</tr>
<tr>
<td>=LFD(p^z independent)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2: Summary of numerical results of $\Sigma'_a:4F$, $\Sigma'_b:4F$, $\Sigma_a:4F$, $\Sigma_b:4F$, and Σ_4F in frame X and Y.

- The LF zero mode contributions at $p^z = -\infty$ to the Σ'_a and Σ'_b are ∓ 0.03 GeV, and are ∓ 0.047 GeV to the Σ_a and Σ_b.
<table>
<thead>
<tr>
<th>Introduction</th>
<th>Anatomy of the Nucleon self-energy</th>
<th>Anatomy of the reduced nucleon self-energy</th>
<th>Discussions and Conclusions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Introduction

Anatomy of the Nucleon self-energy

Anatomy of the reduced nucleon self-energy

Discussions and Conclusions
Reducing the nucleon self-energy

- The nucleon self-energy in Eq.(9), after applying PV regularization, reads

\[
\Sigma_{2F} = -i3\Lambda^4 \left(\frac{g_A}{2f_\pi} \right)^2 \int \frac{d^4k}{(2\pi)^4} \frac{-\left[2(p \cdot k)(k \cdot p_N) - (p \cdot p_N)k^2\right] + M^2k^2}{D_ND_\pi D_\Lambda^2}.
\]

(33)

- Substitution

\[
k^2 = D_\pi + m_\pi^2, \quad p \cdot k = \frac{1}{2}(D_\pi - D_N + m_\pi^2)
\]

(34)

- Reduced nucleon self-energy

\[
\Sigma_{2F} = -\frac{3ig_A^2M}{32f_\pi^2\Lambda^4}(I_{2F} + m_\pi^2l_{2F}).
\]

(35)

with nucleon-pion and nucleon propagating parts

\[
l_{2F} = \int d^4k \frac{\Lambda^4}{D_ND_\pi D_\Lambda^2}, \quad l_{2F}' = \int d^4k \frac{\Lambda^4}{D_ND_\pi D_\Lambda^2}
\]

(36)
Distinguish forward and backward parts

- Take I'_1F as an example, which can be split into four poles (rescaled)

$$I'_1F = \int d^4k \frac{-\Lambda^2}{D_\Lambda D_N} = \int d^2k_\perp \int dk'_- \int \frac{-\Lambda^2 dk'_+}{(k'_+ - \kappa'_1+)(k'_+ - \kappa'_1-)(k'_+ - \kappa'_2+)(k'_+ - \kappa'_2-)},$$

with the form factor poles

$$\kappa'_2\pm = \pm \sqrt{k'_2 - k^2_\perp + \Lambda^2 - i\epsilon} = \pm \omega'_k \frac{1}{k\Lambda}. \quad (38)$$

The poles with $+/-$ are in the lower/upper half plane (L/UHP).

- Transform the integrand

$$I'_1F = -\Lambda^2 \int d^2k_\perp \int dk'_- \int dk'_+ \left(\frac{1}{k'_+ - \kappa'_1+} - \frac{1}{k'_+ - \kappa'_1-} \right) \frac{1}{\kappa'_1+ - \kappa'_1-} \times \left(\frac{1}{k'_+ - \kappa'_2+} - \frac{1}{k'_+ - \kappa'_2-} \right) \frac{1}{\kappa'_2+ - \kappa'_2-}. \quad (40)$$
Distinguish the forward and backward parts

Only the combination of the different sides poles contribute:

\[- \frac{3i g_A^2 M}{32 f_\pi^2 \pi^4} l_{1F}' = - \frac{3i g_A^2 M(-\Lambda^2)}{32 f_\pi^2 \pi^4} \int d^2 k_\perp \int dk'_- \int dk'_+ \frac{-1}{\kappa'^1+ - \kappa'^1-} \frac{1}{\kappa'^2+ - \kappa'^2+} \]

\times \left[\frac{1}{(k'^+ - \kappa'^1-)(k'^+ - \kappa'^2+)} + \frac{1}{(k'^+ - \kappa'^1+)(k'^+ - \kappa'^2-)} \right]

= \Sigma^{NF:-+}_{1F} + \Sigma^{NF:+-}_{1F} \tag{41} \]

The superscript "NF : −+" means that the nucleon pole (N) and the form factor pole (F) are chosen as \(\kappa'^1- (-) \) and \(\kappa'^2+ (+) \).

The \(l_{1F}' \) can be similarly decomposed into

\[- \frac{3i g_A^2 M}{32 f_\pi^2 \pi^4} m_\pi^2 l_{1F} = \frac{m_\pi^2}{D_\Lambda - D_\pi} \left(\Sigma^{NP:-+}_{1F} + \Sigma^{NP:+-}_{1F} - \Sigma^{NF:-+}_{1F} - \Sigma^{NF:+-}_{1F} \right) \]

\[= \Sigma^{N(P-F):-+}_{1F} + \Sigma^{N(P-F):+-}_{1F} \tag{42} \]

−+: the normal diagram (Fig. 3a); +−: the "Z" graph (Fig. 3b).
In ID: LNA results

- Using Eq.(20), we can update Σ_{1F} with

$$\Sigma_{2F} = \Sigma_{2F}^{NF:+} + \Sigma_{2F}^{NF:-} + \Sigma_{2F}^{NPF:+} + \Sigma_{2F}^{NPF:-}. \quad (43)$$

- LNA results

<table>
<thead>
<tr>
<th>LNA (in the unit of $-\frac{3g_A^2}{32\pi f_x^2}$)</th>
<th>$\Sigma_{2F}^{NF:+}$</th>
<th>$\Sigma_{2F}^{NF:-}$</th>
<th>$\Sigma_{2F}^{N(P-F):-}$</th>
<th>$\Sigma_{2F}^{N(P-F):+}$</th>
<th>Σ_{2F}</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID(Frame X)</td>
<td>0</td>
<td>0</td>
<td>$m^3_\pi + \frac{3}{4\pi} m^4_\pi \log[m^2_\pi] - \frac{1}{4\pi} m^4_\pi \log[m^2_\pi] \frac{1}{M}$</td>
<td>$m^3_\pi + \frac{1}{2\pi} m^4_\pi \log[m^2_\pi] \frac{1}{M}$</td>
<td></td>
</tr>
<tr>
<td>=IFD(rest)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>=LFD($p^z \rightarrow -\infty$)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ID(Frame Y)</td>
<td>0</td>
<td>0</td>
<td>$m^3_\pi + \frac{1}{2\pi} m^4_\pi \log[m^2_\pi] \frac{1}{M}$</td>
<td>0</td>
<td>$m^3_\pi + \frac{1}{2\pi} m^4_\pi \log[m^2_\pi] \frac{1}{M}$</td>
</tr>
<tr>
<td>=IFD($p^z \rightarrow \infty$)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>=LFD(p^z independent)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 3: Summary of the LNA terms of the $\Sigma_{2F}^{NF:+\mp}$, $\Sigma_{2F}^{N(P-F):+\mp}$ and their summation in frame X and Y.

- The zero mode contributes $\mp \frac{1}{4\pi} m^4_\pi \log[m^2_\pi] \frac{1}{M}$ (in unit of $\frac{3g_A^2}{32\pi f_x^2}$) to the $\Sigma_{2F}^{N(P-F):+\mp}$ in the frame X with $p^z \rightarrow -\infty$.
In ID: numerical results

<table>
<thead>
<tr>
<th>Numerical results (GeV)</th>
<th>$\Sigma_{2F}^{NF:--}$</th>
<th>$\Sigma_{2F}^{NF:--}$</th>
<th>$\Sigma_{2F}^{N(P-F):++}$</th>
<th>$\Sigma_{2F}^{N(P-F):--}$</th>
<th>Σ_{2F}</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID (Frame X)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>=IFD (rest)</td>
<td>-0.763</td>
<td>-0.342</td>
<td>0.026</td>
<td>0.005</td>
<td>-1.074</td>
</tr>
<tr>
<td>=LFD ($p^z \to -\infty$)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ID (Frame Y)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>=IFD ($p^z \to \infty$)</td>
<td>-1.105</td>
<td>0</td>
<td>0.031</td>
<td>0</td>
<td>-1.074</td>
</tr>
<tr>
<td>=LFD (p^z independent)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 4: Summary of numerical results of $\Sigma_{2F}^{NF:\mp\pm}$, $\Sigma_{2F}^{N(P-F):\mp\pm}$ and their summation in frame X and Y.

- The LF zero mode contributions at $p^z = -\infty$ to the $\Sigma_{2F}^{NF:\mp\pm}$ and $\Sigma_{2F}^{N(P-F):\mp\pm}$ are ∓ 0.342 GeV and ± 0.005 GeV respectively.
Introduction

Anatomy of the Nucleon self-energy

Anatomy of the reduced nucleon self-energy

Discussions and Conclusions
Discussions: Contrast between the LFD and IFD

- LFD has frame invariance \((p^\prime_- = p_-/C = p^+/0)\)
 - In frame X: i.e., \(p^\prime_- = 0 \Rightarrow\) light-front zero mode \(p^+ = 0 \Rightarrow\)
 \(p^0 = -p^z \Rightarrow \sqrt{(p^z)^2 + M^2} = -p^z \Rightarrow p^z = -\infty\).
 - In frame Y: i.e., \(p^\prime_- \to \infty \Rightarrow p^+ > 0 \Rightarrow \sqrt{(p^z)^2 + M^2 + p^z} > 0 \Rightarrow\)
 \(p^z \neq -\infty\) or \(p^z > -\infty\).
 - LFD frame invariance in \(-\infty \leq p^z \leq +\infty \Rightarrow \Sigma_{Frame \ Y} = \Sigma_{Frame \ X}\).

- IFD has no frame invariance: \(\Sigma_{Frame \ Y} \neq \Sigma_{Frame \ X}\) for each anatomy part.

- The IMF in IFD is literally taking a particular frame, i.e. \(p^z \to +\infty\), and is not equivalent with LFD.
Conclusions

- Figure out how much the LFI contribute and how it is related with backward moving part of nucleon self-energy in IFD, numerically and analytically, as well as the corresponding results for forward moving part.

- Identify the LF zero mode contribution missed at $p^2 \to -\infty$ in the LFD for each anatomic part of the (reduced) nucleon self-energy numerically and analytically.
Thanks for your attention.