Anatomy of Nucleon Self-energy from Instant to Light-Front

Bin-Bin Liu^a, Chueng-Ryong Ji^b

^aSchool of Physics, Beihang University, Beijing, China ^bDepartment of Physics, North Carolina State University, Raleigh, North Carolina

Light Cone 2021

December 2, 2021

Introduction		
00		

Introduction

Anatomy of the Nucleon self-energy

Anatomy of the reduced nucleon self-energy

Discussions and Conclusions

Concepts and methods

- Instant form dynamics (IFD): x^0 , x^3 .
- Light-front dynamics (LFD): $x^{\pm} = (x^0 \pm x^3)/\sqrt{2}$.
- Interpolating dynamics (ID):

$$\begin{bmatrix} x_{\widehat{+}} \\ x_{\widehat{-}} \end{bmatrix} = \begin{bmatrix} \cos[\delta] & \sin[\delta] \\ \sin[\delta] & -\cos[\delta] \end{bmatrix} \begin{bmatrix} x^0 \\ x^3 \end{bmatrix}$$
(1)

with $0 \le \delta \le \pi/4$. The corresponding four momentum is

$$q^{2} = \mathbb{C}(q_{\hat{+}}^{2} - q_{\hat{-}}^{2}) + 2\mathbb{S}q_{\hat{+}}q_{\hat{-}} - q_{\perp}^{2}.$$
 (2)

Introduction and Motivation

Introduction:

- Tree level intermediate fermion propagator can be decomposed into forward and backward moving parts[1].
- The backward moving part in LFD features an instantaneous contribution which involves the constraint degrees of freedom of the fermion, that is unique in the LFD.

Motivation:

- To identify how much the LF instantaneous (LFI) part contributes in loop level nucleon self-energy numerically and analytically.
- To trace the LFI from the backward moving part of nucleon self-energy by using the interpolating dynamics (ID).
- To distinguish the LF zero mode contribution appeared at the $p^z \to -\infty$ point in LFD numerically and analytically.
- To show the difference between the LFD and IFD.

Introduction	Anatomy of the Nucleon self-energy	
00		

Discussions and Conclusions

Introduction

Anatomy of the Nucleon self-energy

Anatomy of the reduced nucleon self-energy

Discussions and Conclusions

Definition: anatomy in the tree level

Figure 1: (a) Feynman diagram for $e^+e^- \rightarrow \gamma\gamma$ process (t-channel). Timeordered diagrams (b) and (c) for $e^+e^- \rightarrow \gamma\gamma$ annihilation process. The uchannel amplitudes can be obtained by crossing the two final state particles.

Definition: anatomy in the tree level

 The intermediate virtual fermion propagator (Fig. 1a) and its anatomy into forward and backward parts (Fig. 1b and 1c) [1]

$$\Sigma_{N} = \frac{\not q + M}{q^{2} - M^{2}} = \Sigma_{Na} + \Sigma_{Nb} = \frac{\not Q_{a} + M}{2Q^{\widehat{+}}(q_{\widehat{+}} - Q_{a\widehat{+}})} + \frac{-\not Q_{b} + M}{2Q^{\widehat{+}}(-q_{\widehat{+}} - Q_{b\widehat{+}})}$$
(3)

where capitalized symbols are "on-mass-shell" (OMS)

$$egin{aligned} \mathcal{Q}_{s} &= \left(rac{-\mathbb{S}q_{\widehat{-}}+Q^{\widehat{+}}}{\mathbb{C}},\ q_{\perp},\ q_{\widehat{-}}
ight) \ \mathcal{Q}_{b} &= \left(rac{\mathbb{S}q_{\widehat{-}}+Q^{\widehat{+}}}{\mathbb{C}},\ -q_{\perp},\ -q_{\widehat{-}}
ight) \ \mathcal{Q}^{\widehat{+}} &= \sqrt{q_{\widehat{-}}^{2}+\mathbb{C}(q_{\perp}^{2}+M^{2})}. \end{aligned}$$

(4)

Introduction	Anatomy of the Nucleon self-energy
00	000000000000000000000000000000000000000

Definition: anatomy in the tree level

 The off-mass shell version (with prime notation) of forward and backward moving nucleon self-energy

$$\Sigma'_{Na} = \frac{\not q + M}{2Q^{\widehat{+}}(q_{\widehat{+}} - Q_{a\widehat{+}})}$$
(5)

$$\Sigma'_{Nb} = \frac{\not q + M}{2Q^{+}(-q_{+} - Q_{b^{+}})}$$
(6)

Define the remnant part to assist our calculation

$$\Sigma_{NRP} = \Sigma_{Nb} - \Sigma'_{Nb} = \frac{\gamma^{\widehat{+}}}{2Q^{\widehat{+}}}.$$
 (7)

Anatomy of the reduced nucleon self-energy 00000 Discussions and Conclusions

Definition: anatomy in the loop level

Figure 2: The nucleon-pion loop

- Spin sum calculation: $\Sigma = \frac{1}{2} \sum_{s} \bar{u}(p, s) \hat{\Sigma} u(p, s)$.
- ▶ With $D_N = p_N^2 M^2 + i\epsilon$, $D_\pi = k^2 m_\pi^2 + i\epsilon$, the nucleon self-energy can be simplified as

$$\Sigma = -i3 \left(\frac{g_A}{2f_{\pi}}\right)^2 \int \frac{d^4k}{(2\pi)^4} \frac{-\left[2(p \cdot k)(k \cdot p_N) - (p \cdot p_N)k^2\right] + M^2k^2}{D_N D_{\pi} M}.$$
 (9)

Definition: anatomy in the loop level

Figure 3: Time-ordered diagrams (a) and (b) for the forward moving nucleon self-energy (positive energy diagram) and the backward moving nucleon self-energy ("Z" graph).

Anato
000

natomy of the Nucleon self-energy

Anatomy of the reduced nucleon self-energy 00000 Discussions and Conclusions

Definition: anatomy in the loop level

• The Σ_a

$$\Sigma_{a} = -i3\left(\frac{g_{A}}{2f_{\pi}}\right)^{2} \int \frac{d^{4}k}{(2\pi)^{4}} \frac{\left[-2(p \cdot k)(k \cdot P_{Na}) + (p \cdot P_{Na})k^{2}\right] + M^{2}k^{2}}{2P_{N}^{\widehat{+}}(p_{N\widehat{+}} - P_{Na\widehat{+}})D_{\pi}M}$$
(10)

• The Σ_b

$$\Sigma_{b} = -i3 \left(\frac{g_{A}}{2f_{\pi}}\right)^{2} \int \frac{d^{4}k}{(2\pi)^{4}} \frac{\left[2(p \cdot k)(k \cdot P_{Nb}) - (p \cdot P_{Nb})k^{2}\right] + M^{2}k^{2}}{2P_{N}^{+}(-p_{N+}^{-} - P_{Nb+})D_{\pi}M}$$
(11)

• The Σ_{RP}

$$\Sigma_{RP} = -i3 \left(\frac{g_A}{2f_{\pi}}\right)^2 \int \frac{d^2 k_{\perp} dk_{\widehat{-}} dk_{\widehat{+}}}{(2\pi)^4} \frac{-[2(p \cdot k)k^{\widehat{+}} - p^{\widehat{+}}k^2]}{2P_N^{\widehat{+}} D_{\pi}M} \quad (12)$$

Anatomy of the Nucleon self-energy	
000000000000000000000000000000000000000	

The backward and forward moving part in LFD

• The backward moving Σ_b in the LF limit, becomes LFI contribution

$$\Sigma_{b}^{LFD} = \Sigma_{LFI} = -i3 \left(\frac{g_{A}}{2f_{\pi}}\right)^{2} \int \frac{d^{4}k}{(2\pi)^{4}} \frac{-2(p \cdot k)k^{+} + k^{2}p^{+}}{2p_{N}^{+}D_{\pi}M}, \quad (13)$$

which is the same with Σ_{RP}^{LFD} .

 The forward moving part of the nucleon self-energy becomes, in LF limit,

$$\Sigma_{a}^{LFD} = -i3\left(\frac{g_{A}}{2f_{\pi}}\right)^{2} \int \frac{d^{4}k}{(2\pi)^{4}} \frac{-\left[2(p \cdot k)(k \cdot P_{Na}^{LFD}) - (p \cdot P_{Na}^{LFD})k^{2}\right] + M^{2}k^{2}}{D_{N}D_{\pi}M},$$
(14)

with
$$P_{Na}^{LFD} = \left(\frac{(p_{\perp} - k_{\perp})^2 + M^2}{2(p^+ - k^+)}, p_{\perp} - k_{\perp}, p^+ - k^+\right).$$

▶ The LFI in Eq.(13), with some transformations, becomes

$$\Sigma_{LFI} = -i3 \left(\frac{g_A}{2f_{\pi}}\right)^2 \int \frac{d^2 k_{\perp} dk^- dk^+}{(2\pi)^4} \left\{\frac{p \cdot k}{D_{\pi}M} + \frac{p^+ [k^2 - 2(p \cdot k)]}{2(p^+ - k^+)MD_{\pi}}\right\},\tag{15}$$

where the first term is zero, because of oddity in ${\sf k}.$

▶ The Pauli-Villars (PV) regularization

$$\frac{1}{D_{\pi}} \rightarrow \frac{-\Lambda^2}{D_{\pi}D_{\Lambda}} = \frac{-\Lambda^2}{D_{\Lambda} - D_{\pi}} \left(\frac{1}{D_{\pi}} - \frac{1}{D_{\Lambda}}\right) = \frac{-\Lambda^2}{m_{\pi}^2 - \Lambda^2} \left(\frac{1}{D_{\pi}} - \frac{1}{D_{\Lambda}}\right).$$
(16) where the $D_{\Lambda} = k^2 - \Lambda^2 + i\epsilon$.

• Then the LFI becomes $(x = k^+/p^+ \text{ is momentum fraction})$

$$\Sigma_{LFI:1F} = \frac{-\Lambda^2}{D_{\Lambda}} \Sigma_{LFI} = -i3 \left(\frac{g_A}{2f_{\pi}}\right)^2 \int \frac{d^2 k_{\perp} dk^- dx p^+}{(2\pi)^4} \frac{-\Lambda^2}{2M} \left[\frac{1}{(1-x)D_{\Lambda}} + \frac{m_{\pi}^2}{(1-x)D_{\pi}D_{\Lambda}} - \frac{2p^+ k^- + 2p^- p^+ x}{(1-x)D_{\pi}D_{\Lambda}}\right]$$
(17)

The point like theory:

÷

$$\int dk^{-} \frac{1}{D_{\pi}} = \pi i \log \left[\frac{k_{\perp}^{2} + m_{\pi}^{2}}{\mu^{2}} \right] \frac{\delta[x]}{p^{+}}$$
(18)

where the $\boldsymbol{\mu}$ is the regularization mass parameter.

▶ The first term in Eq.(17) as an example becomes

$$\int dx p^{+} \int dk^{-} \frac{1}{(1-x)D_{\Lambda}} = \int dx \log\left[\frac{k_{\perp}^{2} + \Lambda^{2}}{\mu^{2}}\right] \frac{\pi i \delta[x]}{(1-x)} = \pi i \log\left[\frac{k_{\perp}^{2} + \Lambda^{2}}{\mu^{2}}\right]$$
(19)

where all the p^+ s are canceled and only the x = 0 contribute.

► The LF zero mode contribution where p⁺ = 0 is included during the x integration with 0 < x < 1.</p>

The derivative technique

$$\Sigma_{x:nF} = \frac{(-\Lambda^2)^n (m-1)!}{(n-1)!} \frac{\partial^{n-1}}{\partial (\Lambda^2)^{n-1}} \frac{\Sigma_{x:mF}}{(-\Lambda^2)^m}$$
(20)

with n > m, where the nF and mF in the subscript represent the number of PV Form factor (F) multiplied to the subject Σ_x .

With m=1 and n=4 being chosen for the integrations, the final result for LFI reads

$$\Sigma_{LFI:4F} = -\frac{g_A^2 \Lambda^8}{256 M f_\pi^2 \pi^2} \left(-\frac{\Lambda^4 + \frac{2m_\pi^6}{\Lambda^2} - 6\Lambda^2 m_\pi^2 + 6m_\pi^4 \log\left[\frac{\Lambda^2}{m_\pi^2}\right] + 3m_\pi^4}{2 \left(\Lambda^2 - m_\pi^2\right)^4} \right)$$
(21)

The leading non-analytic behavior for LFI is

$$\Sigma_{LFI}^{LNA} = -\frac{3g_A^2}{32\pi f_\pi^2} \left(\frac{m_\pi^4 \log[m_\pi^2]}{8M\pi} + \mathcal{O}(m_\pi^5)\right).$$
(22)

Figure 4: Time-ordered diagram for the LF instantaneous contribution Σ_{LFI} .

Calculation for the forward moving part in LFD

 The forward moving part of the nucleon self-energy in LFD, after some simplifications yields

$$\Sigma_{a}^{LFD} = -i3\left(\frac{g_{A}}{2f_{\pi}}\right)^{2} \int \frac{d^{4}k}{(2\pi)^{4}} \frac{(P_{Na}^{LFD} \cdot k)}{D_{\pi}M} + \frac{(M^{2} + p_{N} \cdot P_{Na}^{LFD})k^{2}}{D_{N}D_{\pi}M}$$
(23)

which can be decomposed as $\Sigma_{a}^{LFD} = \Sigma - \Sigma_{LFI}.$

The LNA behavior for OMS is

$$\Sigma_{a}^{LFD:LNA} = -\frac{3g_{A}^{2}}{32\pi f_{\pi}^{2}} \left(m_{\pi}^{3} + \frac{3m_{\pi}^{4} \log[m_{\pi}^{2}]}{8M\pi} + \mathcal{O}(m_{\pi}^{5}) \right).$$
(24)

The ID: to relate LFD with IFD

The off-mass-shell forward and backward part

$$\Sigma'_{a} = \Sigma_{a} + \Sigma_{RP}$$

$$\Sigma'_{b} = \Sigma_{b} - \Sigma_{RP}$$
(25)

$$\Sigma_{a}^{'} = -i3 \left(\frac{g_{A}}{2f_{\pi}}\right)^{2} \int \frac{d^{4}k}{(2\pi)^{4}} \frac{-2(p \cdot k)^{2} + k^{2}(p \cdot k) + 2k^{2}M^{2}}{2P_{N}^{+}M(p_{N+} - P_{Na+})D_{\pi}}$$

$$\Sigma_{b}^{'} = -i3 \left(\frac{g_{A}}{2f_{\pi}}\right)^{2} \int \frac{d^{4}k}{(2\pi)^{4}} \frac{-2(p \cdot k)^{2} + k^{2}(p \cdot k) + 2k^{2}M^{2}}{2P_{N}^{+}M(-p_{N+} - P_{Nb+})D_{\pi}}$$
(26)

which can be further decomposed into four terms $\Sigma'_{a\pm}$, $\Sigma'_{b\pm}$ by decomposing the pion poles in D_{π} .

Anatomy of the Nucleon self-energy	Discussions and Conclusions
0000000000000000000	000

Rescale the variables

- ► Rescale: k₂ = k'₂√C, and k₁ = k'₁/√C (to not alter the area spanned by the 4-momentum).
- ▶ Inference: $k^{\hat{+}} = k_{\hat{+}}' + \mathbb{S}k_{\hat{-}}'$, and $dk^{\hat{+}} = dk_{\hat{+}}'$.
- \blacktriangleright The rescaled Σ_{a+}' becomes "independent" of interpolation angles

$$\Sigma_{a+}' = -i3\left(\frac{g_A}{2f_{\pi}}\right)^2 \int \frac{d^2k_{\perp}dk'_{-}\hat{dk'^{+}}}{(2\pi)^4} \frac{-2(p\cdot k)^2 + k^2(p\cdot k) + 2k^2M^2}{-2p'_{N}\hat{dk'}(k'\hat{k} - \kappa'^{0+})(k'\hat{k} - \kappa'^{1-})}$$
(27)

with rescaled poles

$$\kappa^{'0\pm} = \pm \sqrt{k_{\widehat{-}}^{'2} + k_{\perp}^2 + m_{\pi}^2 - i\epsilon} = \pm \omega_{\widehat{k}}^{'}$$

$$\kappa^{'1\pm} = \sqrt{p_{\widehat{-}}^{'2} + p_{\perp}^2 + M^2} \pm \sqrt{p_{\widehat{N}\widehat{-}}^{'2} + p_{\widehat{N}\perp}^2 + M^2 - i\epsilon} = p^{'\widehat{+}} \pm P_{\widehat{N}}^{'\widehat{+}}.$$
(28)
(29)

Definition: the reference frames

Frame X

$$\vec{p'} = \left(p'_{\widehat{-}}, p_{\perp}\right) = 0, \tag{30}$$

with

$$p_{\widehat{-}}' = p_{\widehat{-}}/\sqrt{\mathbb{C}} = \frac{\sqrt{M^2 + p^{z^2} \sin \delta} + p^z \cos \delta}{\sqrt{\cos 2\delta}}.$$
 (31)

In IFD ($\delta = 0$): $p_{-}^{2}/\sqrt{C} = p^{z} = 0$ is the rest frame. Frame Y

$$k'_{\widehat{-}} = \pm (1 - y)p'_{\widehat{-}}, \ dk'_{\widehat{-}} = \mp p'_{\widehat{-}}dy,$$
 (32)

with $p'_{\widehat{-}}\to\infty$ and $p_{\bot}=0.$ The \pm corresponds to the forward and backward moving parts.

In IFD ($\delta = 0$): $p_{\hat{-}}/\sqrt{C} = p^z \to \infty$ is the infinite momentum frame (IMF).

In ID: the LNA for the forward and backward parts

LNA (in the unit of $-\frac{3g_A^2}{32\pi f_{\pi}^2}$)	Σ'_a	Σ_b'	Σ.,	Σ _b	Σ
ID(Frame X)					
=IFD(rest)	$m_{\pi}^3 + \frac{11}{16\pi} \frac{m_{\pi}^4 \log[m_{\pi}^2]}{M}$	$-\frac{3}{16\pi}\frac{m_{\pi}^4 \log[m_{\pi}^2]}{M}$	$m_{\pi}^3 + \frac{11}{16\pi} \frac{m_{\pi}^4 \log[m_{\pi}^2]}{M}$	$-\frac{3}{16\pi}\frac{m_{\pi}^4 \log[m_{\pi}^2]}{M}$	$m_{\pi}^3 + \frac{1}{2\pi} \frac{m_{\pi}^4 \log[m_{\pi}^2]}{M}$
$=$ LFD $(p^{x} \rightarrow -\infty)$					
ID(Frame Y)					
$=$ IFD $(p^{z} \rightarrow \infty)$	$m_{\pi}^3 + \frac{1}{2\pi} \frac{m_{\pi}^4 \log[m_{\pi}^2]}{M}$	0	$m_{\pi}^3 + \frac{3}{8\pi} \frac{m_{\pi}^4 \log[m_{\pi}^2]}{M}$	$\frac{1}{8\pi} \frac{m_{\pi}^4 \log[m_{\pi}^2]}{M}$	$m_{\pi}^3 + \frac{1}{2\pi} \frac{m_{\pi}^4 \log[m_{\pi}^2]}{M}$
$=$ LFD(p^{z} independent)					

Table 1: Summary of the LNA terms of the forward/backward moving on/off mass shell nucleon self energy and the remnant part in different forms and frames.

• The LNA for the LF zero mode contributions $p^+ = 0$ lost in frame X: $\mp \frac{5}{16\pi} \frac{m_{\pi}^4 \log[m_{\pi}^2]}{M}$ (in unit of $-\frac{3g_A^2}{32\pi f_{\pi}^2}$) to the Σ_a and Σ_b ; and $\mp \frac{3}{16\pi} \frac{m_{\pi}^4 \log[m_{\pi}^2]}{M}$ (in unit of $-\frac{3g_A^2}{32\pi f_{\pi}^2}$) to the Σ'_a and Σ'_b .

• $\Sigma_{a:4F}$, $\Sigma_{b:4F}$ and Σ_{4F} with δ , p^z

Figure 5: Numerical calculations for interpolating (a) forward moving part of nucleon self-energy: $\Sigma_{a:4F}$; (b) backward moving part of nucleon self-energy: $\Sigma_{b:4F}$; (c) the entire nucleon self-energy: $\Sigma_{a:4F} + \Sigma_{b:4F}$. Frame X: black lines; frame Y: blue lines.

► $\Sigma_{a:4F}$ and $\Sigma_{b:4F}$ with δ , p_{-} : squeezed "I" form with δ function at the LFD end

Figure 6: Numerical calculations (δ versus $p_{\widehat{-}}$) for interpolating (a) forward moving part of nucleon self-energy: $\Sigma_{a:4F}$; (b) backward moving part of nucleon self-energy: $\Sigma_{b:4F}$; Frame X: black lines; frame Y: blue lines.

► $\Sigma_{a:4F}$ and $\Sigma_{b:4F}$ with δ , p'_{-} : "I" form showing dynamical form invariance

(a) (b)

Figure 7: Numerical calculations (δ versus $p'_{\widehat{-}}$) for interpolating (a) forward moving part of nucleon self-energy: $\Sigma_{a:4F}$; (b) backward moving part of nucleon self-energy: $\Sigma_{b:4F}$; Frame X: black lines; and frame Y is in the infinite $p'_{\widehat{-}}$ which is out of the range.

Numerical results (GeV)	$\Sigma'_{a:4F}$	$\Sigma'_{b:4F}$	$\Sigma_{a:4F}$	$\Sigma_{b:4F}$	Σ_{4F}
ID(Frame X)					
=IFD(rest)	-0.202	-0.030	-0.228	-0.004	-0.232
$=$ LFD $(p^z \rightarrow -\infty)$					
ID(Frame Y)					
$=$ IFD $(p^z \rightarrow \infty)$	-0.232	0	-0.275	0.043	-0.232
$=$ LFD(p^{z} independent)					

Table 2: Summary of numerical results of $\Sigma'_{a:4F}$, $\Sigma'_{b:4F}$, $\Sigma_{a:4F}$, $\Sigma_{b:4F}$, and Σ_{4F} in frame X and Y.

► The LF zero mode contributions at $p^z = -\infty$ to the Σ'_a and Σ'_b are ∓ 0.03 GeV, and are ∓ 0.047 GeV to the Σ_a and Σ_b .

Introduction	Anatomy of the reduced nucleon self-energy	
00		

Introduction

Anatomy of the Nucleon self-energy

Anatomy of the reduced nucleon self-energy

Discussions and Conclusions

Reducing the nucleon self-energy

 The nucleon self-energy in Eq.(9), after applying PV regularization, reads

$$\Sigma_{2F} = -i3\Lambda^4 \left(\frac{g_A}{2f_{\pi}}\right)^2 \int \frac{d^4k}{(2\pi)^4} \frac{-\left[2(p\cdot k)(k\cdot p_N) - (p\cdot p_N)k^2\right] + M^2k^2}{D_N D_{\pi} D_{\Lambda}^2}$$
(33)

Substitution

$$k^2 = D_{\pi} + m_{\pi}^2, \ p \cdot k = \frac{1}{2} (D_{\pi} - D_N + m_{\pi}^2)$$
 (34)

Reduced nucleon self-energy

$$\Sigma_{2F} = -\frac{3ig_A^2 M}{32f_\pi^2 \pi^4} (l'_{2F} + m_\pi^2 l_{2F}).$$
(35)

with nucleon-pion and nucleon propagating parts

$$I_{2F} = \int d^4 k \frac{\Lambda^4}{D_N D_\pi D_\Lambda^2}, \ I'_{2F} = \int d^4 k \frac{\Lambda^4}{D_N D_\Lambda^2}$$
(36)

Distinguish forward and backward parts

• Take l'_{1F} as an example, which can be split into four poles (rescaled)

$$I_{1F}' = \int d^{4}k \frac{-\Lambda^{2}}{D_{\Lambda}D_{N}} = \int d^{2}k_{\perp} \int dk_{\frown}' \int \frac{-\Lambda^{2}dk_{\frown}'}{(k^{'+} - \kappa^{'1+})(k^{'+} - \kappa^{'1-})(k^{'+} - \kappa^{'2+})(k^{'+} - \kappa^{'2-})},$$
(38)

with the form factor poles

$$\kappa^{'2\pm} = \pm \sqrt{k_{\hat{-}}^{'2} + k_{\perp}^2 + \Lambda^2 - i\epsilon} = \pm \omega_{\hat{k}\Lambda}^{\prime}.$$
 (39)

The poles with +/- are in the lower/upper half plane (L/UHP).

Transform the integrand

$$I'_{1F} = -\Lambda^{2} \int d^{2}k_{\perp} \int dk'_{-} \int dk'^{+} \left(\frac{1}{k'^{+} - \kappa'^{1+}} - \frac{1}{k'^{+} - \kappa'^{1-}}\right) \frac{1}{\kappa'^{1+} - \kappa'^{1-}} \times \left(\frac{1}{k'^{+} - \kappa'^{2+}} - \frac{1}{k'^{+} - \kappa'^{2-}}\right) \frac{1}{\kappa'^{2+} - \kappa'^{2-}}.$$
(40)

Distinguish the forward and backward parts

Only the combination of the different sides poles contribute:

$$\begin{aligned} -\frac{3ig_{A}^{2}M}{32f_{\pi}^{2}\pi^{4}}l_{1F}^{\prime} &= -\frac{3ig_{A}^{2}M(-\Lambda^{2})}{32f_{\pi}^{2}\pi^{4}}\int d^{2}k_{\perp}\int dk_{-}^{\prime}\int dk_{-}^{\prime}\int dk_{-}^{\prime+}\frac{-1}{\kappa^{\prime+-}-\kappa^{\prime+-}}\frac{1}{\kappa^{\prime+-}-\kappa^{\prime+-}}\\ &\times\left[\frac{1}{(\kappa^{\prime+}-\kappa^{\prime+-})(\kappa^{\prime+}-\kappa^{\prime++})}+\frac{1}{(\kappa^{\prime+}-\kappa^{\prime++})(\kappa^{\prime+}-\kappa^{\prime+-})}\right]\\ &=\Sigma_{1F}^{NF:-+}+\Sigma_{1F}^{NF:+-} \end{aligned}$$
(41)

The superscript "*NF* : -+" means that the nucleon pole (N) and the form factor pole (F) are chosen as $\kappa^{'1-}$ (-) and $\kappa^{'2+}$ (+). The h_{F} can be similarly decomposed into

$$-\frac{3ig_A^2 M}{32f_\pi^2 \pi^4} m_\pi^2 l_{1F} = \frac{m_\pi^2}{D_\Lambda - D_\pi} \left(\Sigma_{1F}^{NP:-+} + \Sigma_{1F}^{NP:+-} - \Sigma_{1F}^{NF:-+} - \Sigma_{1F}^{NF:+-} \right)$$
$$= \Sigma_{1F}^{N(P-F):-+} + \Sigma_{1F}^{N(P-F):+-}$$
(42)

▶ -+: the normal diagram (Fig. 3a); +-: the "Z" graph (Fig. 3b).

In ID: LNA results

• Using Eq.(20), we can update Σ_{1F} with

$$\Sigma_{2F} = \Sigma_{2F}^{NF:-+} + \Sigma_{2F}^{NF:+-} + \Sigma_{2F}^{NPF:-+} + \Sigma_{2F}^{NPF:+-}.$$
 (43)

LNA results

LNA (in the unit of $-\frac{3g_A^2}{32\pi f_\pi^2}$)	$\Sigma_{2F}^{NF:-+}$	$\Sigma_{2F}^{NF:+-}$	$\Sigma_{2F}^{N(P-F):-+}$	$\Sigma_{2F}^{N(P-F):+-}$	Σ_{2F}
ID(Frame X)					
=IFD(rest)	0	0	$m_{\pi}^3 + \frac{3}{4\pi} \frac{m_{\pi}^4 \log[m_{\pi}^2]}{M}$	$-\frac{1}{4\pi} \frac{m_{\pi}^4 \log[m_{\pi}^2]}{M}$	$m_{\pi}^3 + \frac{1}{2\pi} \frac{m_{\pi}^4 \log[m_{\pi}^2]}{M}$
$=$ LFD $(p^z \rightarrow -\infty)$					
ID(Frame Y)					
$= IFD(p^z \to \infty)$	0	0	$m_{\pi}^3 + \frac{1}{2\pi} \frac{m_{\pi}^4 \log[m_{\pi}^2]}{M}$	0	$m_{\pi}^3 + \frac{1}{2\pi} \frac{m_{\pi}^4 \log[m_{\pi}^2]}{M}$
$=$ LFD(p^{z} independent)					

Table 3: Summary of the LNA terms of the $\sum_{2F}^{NF:\mp\pm}$, $\sum_{2F}^{N(P-F):\mp\pm}$ and their summation in frame X and Y.

• The zero mode contributes $\mp \frac{1}{4\pi} \frac{m_{\pi}^4 \log[m_{\pi}^2]}{M}$ (in unit of $\frac{3g_A^2}{32\pi f_{\pi}^2}$) to the $\sum_{2F}^{N(P-F):\mp\pm}$ in the frame X with $p^z \to -\infty$.

Numerical results (GeV)	$\Sigma_{2F}^{NF:-+}$	$\Sigma_{2F}^{NF:+-}$	$\Sigma_{2F}^{N(P-F):-+}$	$\Sigma_{2F}^{N(P-F):+-}$	Σ_{2F}
ID(Frame X)					
=IFD(rest)	-0.763	-0.342	0.026	0.005	-1.074
$=$ LFD $(p^{x} \rightarrow -\infty)$					
ID(Frame Y)					
$=$ IFD $(p^{x} \rightarrow \infty)$	-1.105	0	0.031	0	-1.074
$=$ LFD(p^{z} independent)					

Table 4: Summary of numerical results of $\Sigma_{2F}^{NF:\mp\pm}$, $\Sigma_{2F}^{N(P-F):\mp\pm}$ and their summation in frame X and Y.

► The LF zero mode contributions at $p^z = -\infty$ to the $\sum_{2F}^{NF:\mp\pm}$ and $\sum_{2F}^{N(P-F):\mp\pm}$ are ∓ 0.342 GeV and ± 0.005 GeV respectively.

Introduction		Discussions and Conclusions
00		

Introduction

Anatomy of the Nucleon self-energy

Anatomy of the reduced nucleon self-energy

Discussions and Conclusions

Discussions: Contrast between the LFD and IFD

- LFD has frame invariance $(p'_{\widehat{-}} = p_{\widehat{-}}/\mathcal{C} = p^+/0)$
 - ▶ In frame X: i.e., $p'_{-} = 0 \Rightarrow$ light-front zero mode $p^+ = 0 \Rightarrow$ $p^0 = -p^z \Rightarrow \sqrt{(p^z)^2 + M^2} = -p^z \Rightarrow p^z = -\infty$.
 - ▶ In frame Y: i.e., $p'_{\widehat{-}} \to \infty \Rightarrow p^+ > 0 \Rightarrow \sqrt{(p^z)^2 + M^2} + p^z > 0 \Rightarrow p^z \neq -\infty$ or $p^z > -\infty$.
 - ► LFD frame invariance in $-\infty \le p^z \le +\infty \Rightarrow \Sigma_{Frame Y} = \Sigma_{Frame X}$.
- ► IFD has no frame invariance: $\Sigma_{Frame Y} \neq \Sigma_{Frame X}$ for each anatomy part.
- ▶ The IMF in IFD is literally taking a particular frame, i.e. $p^z \rightarrow +\infty$, and is not equivalent with LFD.

Conclusions

- Figure out how much the LFI contribute and how it is related with backward moving part of nucleon self-energy in IFD, numerically and analytically, as well as the corresponding results for forward moving part.
- Identify the LF zero mode contribution missed at p^z → -∞ in the LFD for each anatomic part of the (reduced) nucleon self-energy numerically and analytically.

Introduction 00		Discussions and Co

Thanks for your attention.

onclusions

- Ji, Chueng-Ryong, et al. "Interpolating quantum electrodynamics between instant and front forms." Physical Review D 98.3 (2018): 036017.
- Ji, Chueng-Ryong, W. Melnitchouk, and A. W. Thomas.
 "Equivalence of pion loops in equal-time and light-front dynamics." Physical Review D 80.5 (2009): 054018.