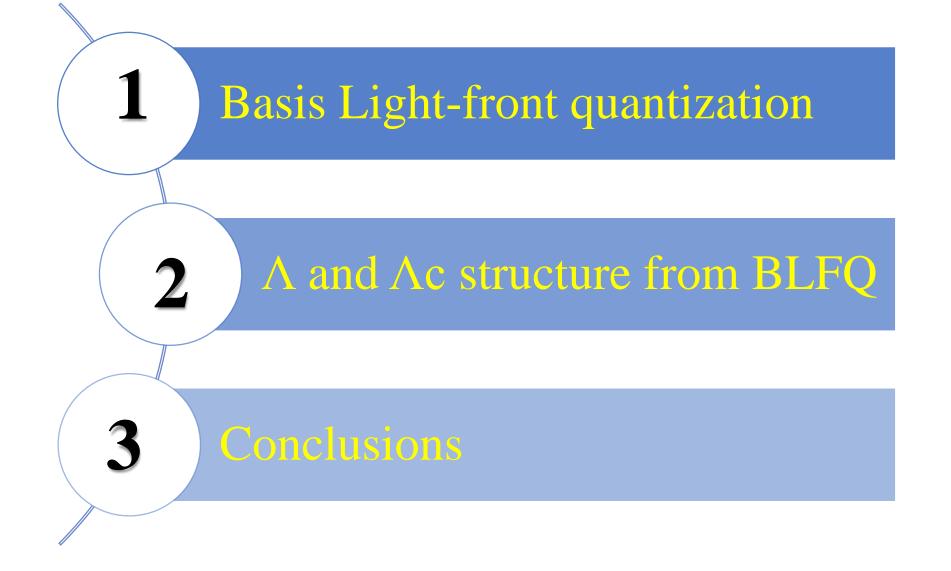


Basis light-front quantization approach to $\Lambda(\Sigma^0, \Sigma^+, \Sigma^-)$ and $\Lambda_c(\Sigma_c^+, \Sigma_c^{++}, \Sigma_c^0)$

Speaker: Tian-cai Peng

Collaborators: Zhimin Zhu, Siqi Xu, Chandan Mondal, Jiangshan Lan, Xingbo Zhao and James P. Vary

December 1, 2021



Basis Light-front quantization (BLFQ)

Basia Light-front quantization

Equal time quantization	Light-front quantization
$t \equiv x^0$	$t \equiv x^+ = x^0 + x^3$
	y Contraction of the second se
x^1, x^2, x^3	$x^{-} = x^{0} - x^{3}$, $x^{\perp} = x^{1,2}$
₽ ⁰ , <i>P</i>	$p^{-} = p^{0} - p^{3},$ $p^{+} = p^{0} + p^{3},$ $p^{\perp} = p^{1,2}$
$ \frac{\partial}{\partial t} \varphi(t)\rangle = H \varphi(t)\rangle$	$\left \frac{\partial}{\partial x^{+}}\right \varphi(x^{+})\rangle = \frac{1}{2}P^{-}\left \varphi(x^{+})\right\rangle$
$P^0 = \sqrt{m^2 + \vec{P}^2}$	$P^{-} = \frac{m^2 + p_{\perp}^2}{P^+}$

[Dirac, 1949]

4/24

1.Frame-independent wave function

2.No square root in Hamiltonian P⁻

Basia Light-front quantization

We solve the time-independent (at fixed light-front time) Schrodinger equation:

$$H_{eff}|\Phi\rangle = M^2 |\Phi\rangle$$

We adopt an effective light-front Hamiltonian :

$$H_{eff} = H_{k.E} + H_{trans} + H_{longi} + H_{int}$$

The light-front wave function is obtained by solving light-front schrodinger equation and then expanding it to the basis vector of the multi-particle Fock sector. For example,

$$\begin{split} |\Lambda\rangle_{phys} = a |\mathrm{ud}s\rangle + b |\mathrm{ud}sg\rangle + c |\mathrm{ud}sq\bar{q}\rangle + \cdots \\ |\Lambda c\rangle_{phys} = a |\mathrm{ud}c\rangle + b |\mathrm{ud}cg\rangle + c |\mathrm{ud}cq\bar{q}\rangle + \cdots \end{split}$$

For the Fock space, we can not involve all the Fock sector directerly, so we adopt a truncation.

The current studying on Λ and Λ c only considers LO, but it will be taken into account more Fock sector in the future .

Basia Light-front quantization

We represent the state of a parton by four quantum numbers (n,m,k,λ) .

The longitudinal basis vector are plane wave solutions:

$$\Psi_k(x^-) = \frac{1}{2L} e^{-\frac{i}{2}kx^-}$$

The transverse basis vector are two dimensional harmonic oscillator solutions:

$$\phi_{nm} = \frac{\sqrt{2}}{b(2\pi)^{\frac{3}{2}}} \sqrt{\frac{n!}{(|m|+n)!}} \left(\frac{P_{\perp}}{b}\right)^{|m|} e^{\frac{-P_{\perp}^{2}}{2b^{2}}} L_{n}^{|m|} \left(\frac{P_{\perp}^{2}}{b^{2}}\right) e^{im\varphi}$$

The many-body basis states have well defined values of the total angular momentum projection $M_J = \sum_i (m_i + \lambda_i)$.

In order to calculate, except the Fock space truncation, for each Fock sector, we also need other truncation to reduce the basis to a finite dimension. On the longitudinal direction, We truncate the infinite basis by a truncation parameter K. As well as, in the transverse direction, we require the total transverse quantum number.

$$\sum_{i} (2n_i + |n_i| + 1) = N_{\alpha} \le N_{Max}$$

A(uds) and Ac(udc) structure from BLFQ

PDFs(Parton distribution functions)

$$\begin{split} \Phi^{\Gamma(q)}(x) = & \frac{1}{2} \int \frac{dz^-}{4\pi} e^{ip^+ z^-/2} \\ & \times \left\langle P, \Lambda | \bar{\psi}_q(0) \Gamma \psi_q(z^-) | P, \Lambda \right\rangle \bigg|_{z^+ = \vec{z}_\perp = 0} \end{split}$$

With different Dirac structure
$$\Gamma = \gamma^+$$
, $\gamma^+\gamma^5$, $i\sigma^{j+}\gamma^5$,

$$f^{q}(x) = \sum_{\{\lambda_{i}\}} \int \left[\mathrm{d}\mathcal{X} \, \mathrm{d}\mathcal{P}_{\perp} \right]$$
$$\times \Psi^{\uparrow *}_{\{x_{i}, \vec{p}_{i\perp}, \lambda_{i}\}} \Psi^{\uparrow}_{\{x_{i}, \vec{p}_{i\perp}, \lambda_{i}\}} \delta\left(x - x_{q}\right)$$

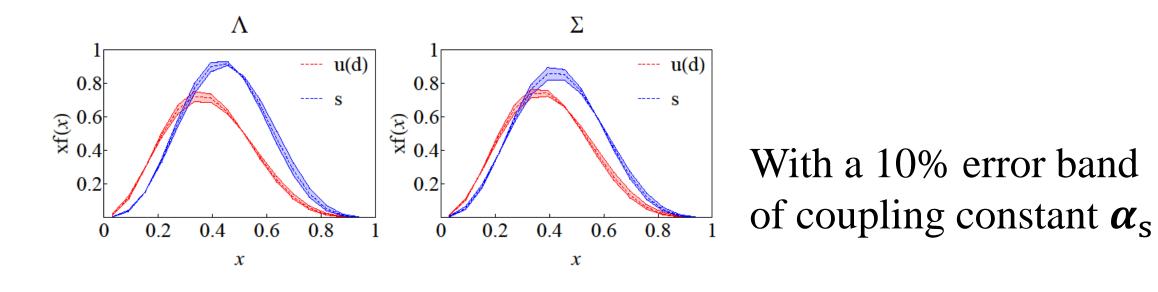
$$g_1^q(x) = \sum_{\{\lambda_i\}} \int [d\mathcal{X} d\mathcal{P}_{\perp}] \\ \times \lambda_1 \Psi_{\{x_i, \vec{p}_{i\perp}, \lambda_i\}}^{\uparrow *} \Psi_{\{x_i, \vec{p}_{i\perp}, \lambda_i\}}^{\uparrow} \delta(x - x_1)$$

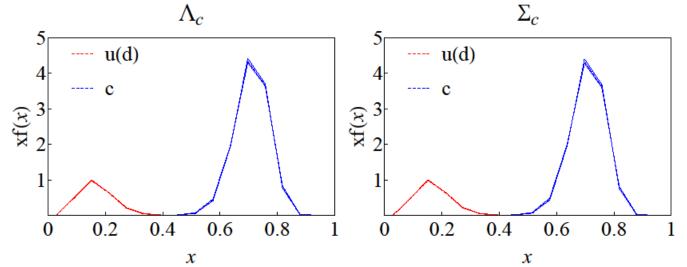
we can get Unpolarized (f_1) , Helicity (g_1) and Transversity (h_1) PDFs. $h_1^q(x) = \sum_{\{\lambda_i\}} \int [d\mathcal{X} d\mathcal{P}_{\perp}]$ $\times \left(\Psi_{\{x_i, \vec{p}_{i\perp}, \lambda'_i\}}^{\uparrow *} \Psi_{\{x_i, \vec{p}_{i\perp}, \lambda_i\}}^{\downarrow} + (\uparrow \leftrightarrow \downarrow)\right) \delta(x - x_1)$

Parameter set:

	α_{s}	l_k/l_{oge} [GeV]	s_k/s_{oge} [GeV]	$K_L = K_T$ [GeV]	Mass[GeV]
Λ	1.06	0.300/0.200	0.390/0.290	0.377	1.115
	$\alpha_{\rm s}$	l_k/l_{oge} [GeV]	c_k/c_{oge} [GeV]	$K_L = K_T \text{ [GeV]}$	Mass[GeV]
Λ_c	0.57	0.300/0.200	1.580/1.480	0.377	2.286

Initial unpolarized PFDs f1 at leading Fock sector



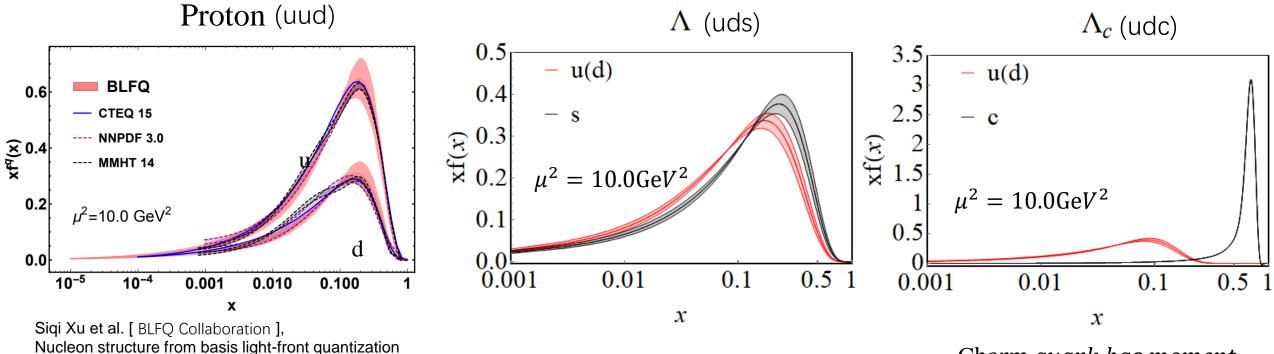


How to connect QCD quarks and gluons to the observed hadrons and leptons?

Here needs fundamentals of QCD factorization and evolution.

PDF f_1 compare with the Nucleon

With QCD evolution equation, we can get the parton distribution functions at a higher scale.



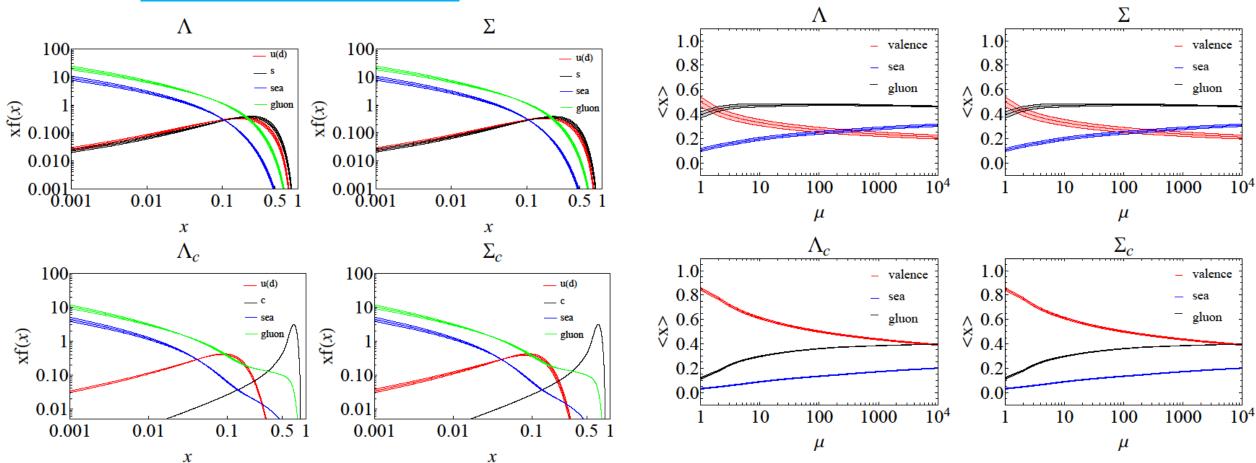
Charm quark has moment at x bigger than 0.5.

unpolarized PFDs after QCD evolution

 $\mathbf{xf}(x)$

Tiancai Peng et al. In preparing

The first moment



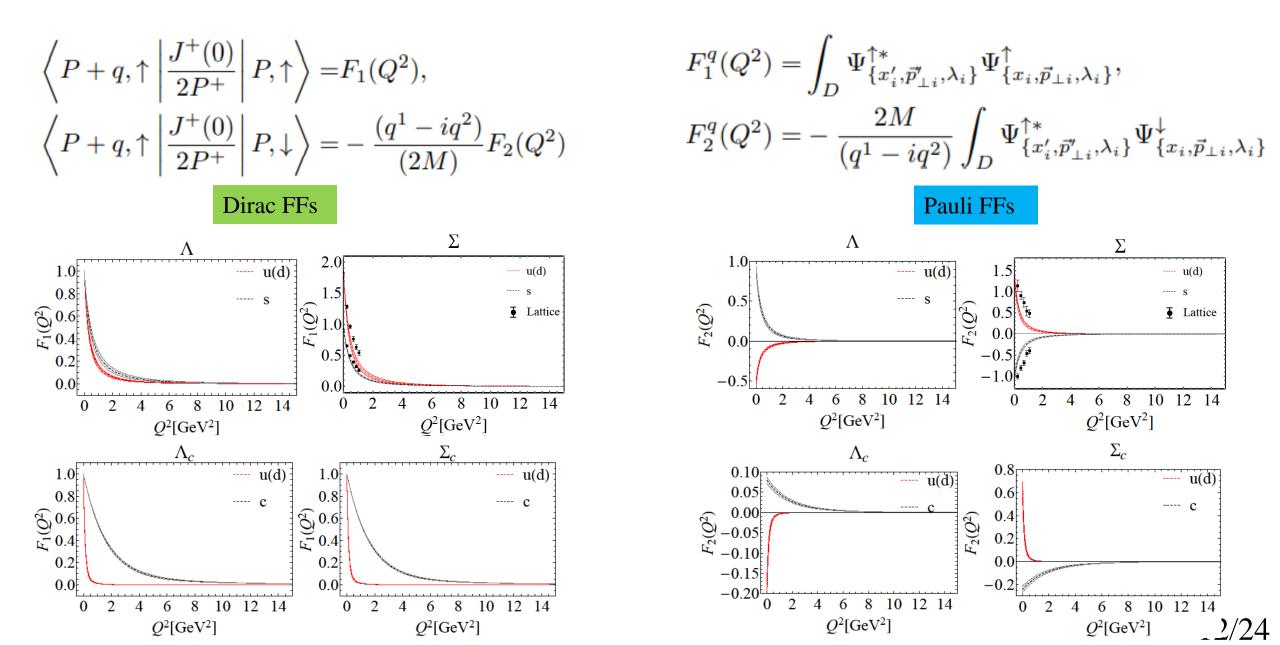
Strange quark is not much heavier than light quark

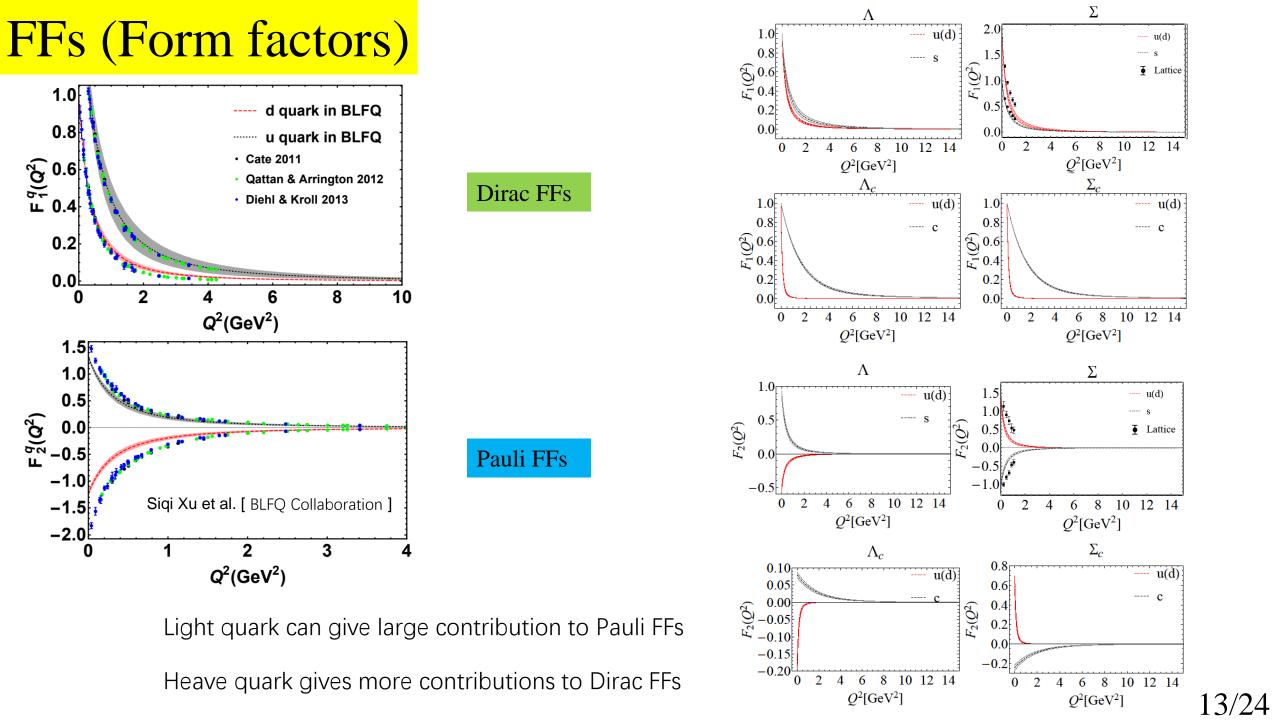
Charm quark is much heavier than light quark

11/24

FFs(Form factors)

Tiancai Peng et al. In preparing



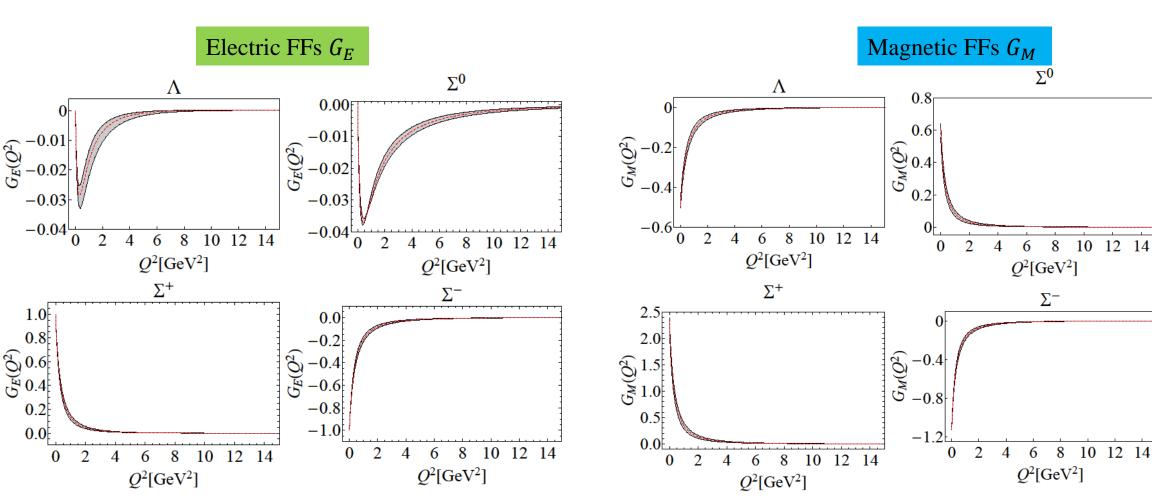


Baryons Electromagnetic FFs

With the quarks charge, $e_u(e_c) = +\frac{2}{3}$, $e_d(e_s) = -\frac{1}{3}$

we can get the baryons FFs through the flavor FFs

$$\begin{split} F_{i}^{\Lambda} &= e_{u}F_{i}^{u} + e_{d}F_{i}^{d} + e_{s}F_{i}^{s} \\ F_{i}^{\Lambda_{c}} &= e_{u}F_{i}^{u} + e_{d}F_{i}^{d} + e_{c}F_{i}^{c} \\ G_{E}^{\Lambda(\Lambda_{c})}(Q^{2}) &= F_{1}^{\Lambda(\Lambda_{c})}(Q^{2}) - \frac{Q^{2}}{4M^{2}}F_{2}^{\Lambda(\Lambda_{c})}(Q^{2}) \\ G_{M}^{\Lambda(\Lambda_{c})}(Q^{2}) &= F_{1}^{\Lambda(\Lambda_{c})}(Q^{2}) + F_{2}^{\Lambda(\Lambda_{c})}(Q^{2}), \end{split}$$



14/24

Baryon Electromagnetic FFs

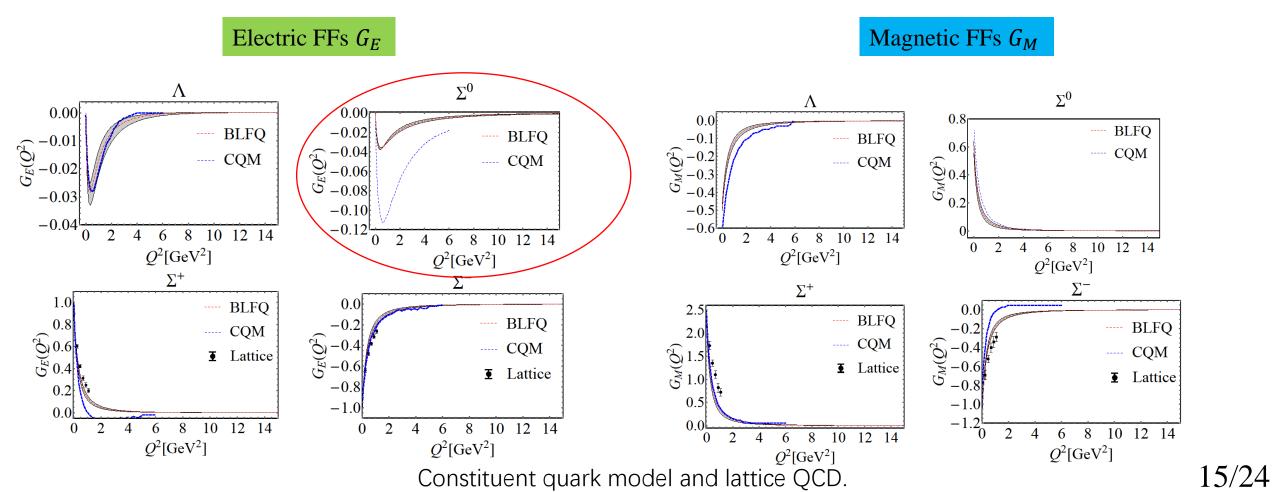
With the quark charge,
$$e_u(e_c) = +\frac{2}{3}$$
, $e_d(e_s) = -\frac{1}{3}$

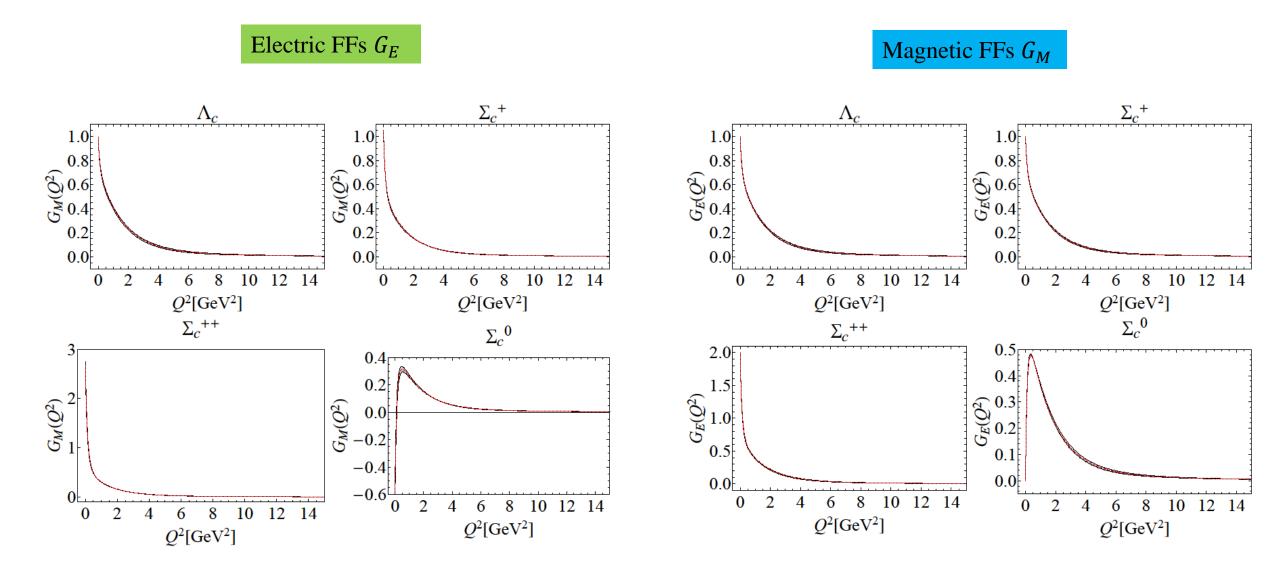
we can get the baryon FFs through the flavor FFs

$$F_i^{\Lambda} = e_u F_i^u + e_d F_i^d + e_s F_i^s$$

$$F_i^{\Lambda_c} = e_u F_i^u + e_d F_i^d + e_c F_i^c$$

$$\begin{split} G_E^{\Lambda(\Lambda_c)}(Q^2) &= F_1^{\Lambda(\Lambda_c)}(Q^2) - \frac{Q^2}{4M^2} F_2^{\Lambda(\Lambda_c)}(Q^2) \\ G_M^{\Lambda(\Lambda_c)}(Q^2) &= F_1^{\Lambda(\Lambda_c)}(Q^2) + F_2^{\Lambda(\Lambda_c)}(Q^2), \end{split}$$





16/24

Magnetic moment and Electromagnetic radius

From the zero point value of the G_M , we can get the magnetic moment $\mu = G_M(0)$

From the ratio of the G_E and G_M at zero point, we can get the electromagnetic radius like this: $\langle r_M^2 \rangle = -\frac{6}{G_M(0)} \frac{dG_M(Q^2)}{dQ^2} \Big|_{Q^2=0}$

	$\mu_{ m BLFQ}/\mu_N$	μ_{exp}/μ_N	$< r_E^2 >_{BLFQ} / [fm^2]$	$< r_E^2 >_{exp} / [fm^2]$	$< r_M^2 >_{BLFQ} / [fm^2]$	$< r_M^2 >_{exp} / [fm^2]$
Λ	$-0.494\substack{+0.028\\-0.010}$	-0.613 ± 0.004	$0.07\substack{+0.01 \\ -001}$	-	$0.52\substack{+0.01 \\ -0.01}$	-
Σ^0	$0.610\substack{+0.032\\-0.051}$	-	$0.07\substack{+0.00\\-0.01}$	-	$0.82\substack{+0.00\\-0.01}$	-
Σ^+	$2.323^{+0.067}_{-0.111}$	2.458 ± 0.010	$0.79\substack{+0.05\\-0.05}$	-	$0.79\substack{+0.00\\-0.00}$	-
Σ^{-}	$-1.124\substack{+0.011\\-0.007}$	-1.160 ± 0.025	$0.65\substack{+0.02\\-0.02}$	$0.60 \pm 0.08 \pm 0.08$	$0.70\substack{+0.02 \\ -0.02}$	-

	$\mu_{ m BLFQ}/\mu_N$	$< r_E^2 >_{BLFQ} / [fm^2]$	$< r_M^2 >_{BLFQ} / [fm^2]$
Λ_c	$0.99^{+0.00}_{-0.00}$	$0.73\substack{+0.02\\-0.02}$	$0.64^{+0.02}_{-0.02}$
Σ_c^+	$1.05\substack{+0.0.01 \\ -0.001}$	$0,74\substack{+0.02\\-0.02}$	$0.78\substack{+0.01 \\ -0.01}$
Σ_c^{++}	$2.67^{+0.49}_{-0.08}$	$1.33^{+0.03}_{-0.03}$	$1.54\substack{+0.01\\-0.01}$
Σ_c^0	$-0.58^{+0.07}_{-0.07}$	$-1.19\substack{+0.04\\-0.03}$	$3.37^{+0.33}_{-0.27}$

Tiancai Peng et al. In preparing $\langle r_E^2 \rangle = -\frac{6}{G_E(0)} \frac{dG_E(Q^2)}{dQ^2} \Big|_Q$

Magnetic moment

	μ_{BLFQ}	$\mu_{exp}[20]$
Λ	$-0.494^{+0.028}_{-0.010}$	-0.613 ± 0.004
Σ^0	$0.610\substack{+0.032\\-0.051}$	-
Σ^+	$\begin{array}{r} -0.494^{+0.028}_{-0.010} \\ 0.610^{+0.032}_{-0.051} \\ 2.323^{+0.067}_{-0.112} \end{array}$	$2.458 {\pm} 0.010$
Σ^{-}	$-1.124^{+0.011}_{-0.007}$	$-1.160 {\pm} 0.025$

Agree with available experimental data

	μ_{BLFQ}											
Λ_c	$0.99\substack{+0.00\\-0.00}$	0.41	0.42	0.392	0.341	0.411	-	0.37	0.385	-	0.24	0.24
Σ_c^+	$1.05^{+0.01}_{-0.01}$	0.65	0.36	0.30	0.525	0.318	-	0.63	0.501	0.46(3)	0.26	0.30
Σ_c^{++}	$2.67^{+0.49}_{-0.08}$	3.07	1.76	2.20	2.44	1.679	2.1(3)	2.18	2.279	2.15(10)	1.50	1.50
Σ_c^0	$-0.58^{+0.06}_{-0.07}$	-1.78	-1.04	-1.60	-1.391	-1.043	-1.6(2)	-1.17	-1.015	-1.24(5)	-0.97	-0.91

Electric radius r_E^2

		BLFQ	HB	[30]		IR[31]	$HB\chi$	PT[32]	RQM	I [36]	exp.[33]
			$O(q^3)$	$O(q^4)$	$O(q^3)$	$O(q^4)$	$O(1/\Lambda^2_{\ chi})$	$O(1/\Lambda_\chi^2 M_N)$	Ι	II	
Neutral	Λ	$0.07 {\pm} 0.01$	0.14	0.00	0.05	0.11 ± 0.02	-0.150	-0.050	-0.01	0.02	-
particle	Σ^0	$0.07\substack{+0.00\\-0.01}$	-0.14	-0.08	-0.05	-0.03 ± 0.01	-	-	0.02	0.02	-
	Σ^+	$0.79 {\pm} 0.05$	0.59	0.72	0.63	0.60 ± 0.02	1.522	1.366	0.47	0.66	-
	Σζ	0.65 ± 0.02	0.87	0.88	0.72	0.67 ± 0.03	0.977	0.798	0.41	0.64	$0.60 \pm 0.08 \pm 0.08$

	BLFQ		[36]	
		Instant	Point	Front
Λ_c	$0.73^{+0.02}_{-0.02}$	0.5	0.2	0.4
Σ_c^+	$0.74_{-0.02}^{+0.02}$	0.5	0.2	0.4
Σ_c^{++}	$1.33\substack{+0.03\\-0.03}$	1.7	0.4	1.4
Σ_c^0	$-1.19\substack{+0.039 \\ -0.03}$	0.7	-0.0	-0.6

Magnetic radius r_M^2

Chiral perturbative theory

		*	<u> </u>
		$O(q^4)HB[30]$	
Λ	$0.52{\pm}0.01$	$\begin{array}{c} 0.30 \pm 0.11 \\ 0.20 \pm 0.10 \\ 0.74 \pm 0.06 \end{array}$	0.48 ± 0.09
Σ^0	$0.82^{+0.00}_{-0.01}$	0.20 ± 0.10	0.45 ± 0.08
Σ^+	0.79 ± 0.00	0.74 ± 0.06	0.80 ± 0.05
Σ^{-}	$0.70 {\pm} 0.02$	1.33 ± 0.16	1.20 ± 0.13

	$ < r_M^2 >$
Λ_c	$0.64^{+0.03}_{-0.03}$
Σ_c^+	$0.78\substack{+0.01 \\ -0.01}$
Σ_c^{++}	$1.54_{-0.01}^{+0.01}$
Σ_c^0	$3.37^{+0.33}_{-0.27}$

Conclusions

1. <mark>A, Ac and their isospin triplet</mark> baryons structure from BLFQ.

2. Compare $\Lambda(uds)$ and $\Lambda_c(udc)$ with p(uud).

For PDFs, we find with addition of a strange quark or charm quark, they will be different .

For FFs, the light part will give a big contribution to Pauli FFs and heave quark will give more

contribution to Dirac FFs in heave-light system

3. The electromagnetic radii and the magnetic moment are found to be consistent with

the available experimental data. We also show a comparison with other theoretical

calculation on the electromagnetic properties of these baryons.

Thank you for your attention!