Accessing the coupled-channels dynamics using femtoscopic correlations with ALICE at LHC

Systems as $K^{-} p$ and baryon-antibaryon $(B \bar{B})$ are both characterised by the presence, already at the production threshold, of strong inelastic channels which can affect the properties and the formation of bound states and resonances. In the $\overline{\mathrm{K}} \mathrm{N}$ system, the $\Lambda(1405)$ arises from the interplay between the $\overline{\mathrm{K}} \mathrm{N}$ and the coupled $\Sigma \pi$ channel. Experimental constraints on the different $\overline{\mathrm{K}} N$ coupledchannels are needed to provide a full description of the nature and properties of the $\Lambda(1405)$. Similarly, baryon-antibaryon systems are characterised by the dominant contribution of several mesonic channels related to the presence of annihilation processes acting below 1 fm . The possible existence of baryonantibaryon bound states is still under debate due to a limited amount of data for the $\mathrm{p}-\overline{\mathrm{p}}$ system available, and either scarce or absent experimental data for $B \bar{B}$ systems containing strangeness. The femtoscopy technique measures the correlation of particle pairs at low relative momentum. This method applied in small colliding systems, as pp and $\mathrm{p}-\mathrm{Pb}$ collisions at ALICE provided highprecision data on several baryon-baryon and meson-baryon pairs showing a great sensitivity to the underlying strong potential and to the introduction of the different coupled-channels.
In this talk, we will present femtoscopic correlations measured by ALICE in pp collisions at $\sqrt{s}=13 \mathrm{TeV}$, separately for data samples obtained with minimumbias and high-multiplicity triggers, and in peripheral and ultra-peripheral $\mathrm{p}-\mathrm{Pb}$ and $\mathrm{Pb}-\mathrm{Pb}$ collisions at $\sqrt{s}=5.02 \mathrm{TeV}$. In particular, we will show results on the $\mathrm{K}^{-} \mathrm{p}$ correlation function which for the first time provide experimental evidence of the opening of the coupled isospin breaking channel $\overline{\mathrm{K}^{0}}-\mathrm{n}$ and on the $\Sigma \pi$ channel contributions. Finally, results from baryon-antibaryon pairs ($\mathrm{p} \overline{\mathrm{p}}, \mathrm{p} \bar{\Lambda}$ and $\Lambda \bar{\Lambda}$) will be shown for the first time. The effect of annihilation channels on the correlation function and a quantitative determination of the inelastic contributions in the three different pairs will be discussed.

