Axial-vector meson $a_{1}(1260)$ as a quasi-bound state of the $K \bar{K}^{*}$

S. Clymton and $\mathrm{H}-\mathrm{Ch}$. Kim

Hadron Theory Group
Department of Physics
Inha University

Physics of Hadrons on the Light-Front

November 29-December 4, 2021

Outlines

(1) Motivation
(2) General Formalism
(3) Results and Discussion

4 Summary and Conclusion

Motivation

- In principle, the axial-vector meson resonance can be generated dynamically by pseudoscalar and vector meson interaction.

[^0]
Motivation

- In principle, the axial-vector meson resonance can be generated dynamically by pseudoscalar and vector meson interaction.
- The $\pi \rho$ channel alone is not enough to generate the $a_{1}(1260)$ pole 1.

[^1]
Motivation

- In principle, the axial-vector meson resonance can be generated dynamically by pseudoscalar and vector meson interaction.
- The $\pi \rho$ channel alone is not enough to generate the $a_{1}(1260)$ pole 1.
- The other channel is needed to give the singularity to the $\pi \rho$ channel. Here, only $K \bar{K}^{*}$ channel is possible to be coupled to $\pi \rho$ channel to produce the $a_{1}(1260)$ resonance.

[^2]
Motivation

- In principle, the axial-vector meson resonance can be generated dynamically by pseudoscalar and vector meson interaction.
- The $\pi \rho$ channel alone is not enough to generate the $a_{1}(1260)$ pole 1.
- The other channel is needed to give the singularity to the $\pi \rho$ channel. Here, only $K \bar{K}^{*}$ channel is possible to be coupled to $\pi \rho$ channel to produce the $a_{1}(1260)$ resonance.
- The full off-shell T matrix of this interaction can then be applied to other important processes.

[^3]
Formalism

Coupled Channel Formalism

The Bethe-Salpeter equation for two-body interaction expressed as

$+$

- The two-body propagator is not unique. We use the propagator in Blankenbecler-Sugar scheme ${ }^{23}$.
- Preserves unitarity
- Reduces the dimensionality of the integral

[^4]
Coupled Channel Formalism

The Bethe-Salpeter equation for two-body interaction expressed as

- The two-body propagator is not unique. We use the propagator in Blankenbecler-Sugar scheme ${ }^{23}$.
- The three-dimensional integral equation can be reduced to one-dimensional problem by performing partial wave decomposition.

[^5]
Coupled Channel Formalism

The Bethe-Salpeter equation for two-body interaction expressed as

- The two-body propagator is not unique. We use the propagator in Blankenbecler-Sugar scheme ${ }^{23}$.
- The three-dimensional integral equation can be reduced to one-dimensional problem by performing partial wave decomposition.
- After solving the integral equation, we transform the T-matrix to particle (LSJ) basis.

[^6]
Feynman Diagrams

$$
\pi \rho \rightarrow \pi \rho:
$$

Feynman Diagrams

$$
\pi \rho \rightarrow \pi \rho:
$$

!! The a_{1} pole diagram is not included explicitly.

Feynman Diagrams

$$
K \bar{K}^{*} \rightarrow K \bar{K}^{*}\left(\bar{K} K^{*}\right):
$$

We define the $G= \pm 1$ parity state for $K \bar{K}^{*}$ state as
$\left|K \bar{K}^{*}(-)\right\rangle=\frac{1}{\sqrt{2}}\left(\left|K \bar{K}^{*}\right\rangle-\left|\bar{K} K^{*}\right\rangle\right), \quad\left|K \bar{K}^{*}(+)\right\rangle=\frac{1}{\sqrt{2}}\left(\left|K \bar{K}^{*}\right\rangle+\left|\bar{K} K^{*}\right\rangle\right)$

Feynman Diagrams

$$
\pi \rho \rightarrow K \bar{K}^{*}
$$

We define the $G= \pm 1$ parity state for $K \bar{K}^{*}$ state as

$$
\left|K \bar{K}^{*}(-)\right\rangle=\frac{1}{\sqrt{2}}\left(\left|K \bar{K}^{*}\right\rangle-\left|\bar{K} K^{*}\right\rangle\right), \quad\left|K \bar{K}^{*}(+)\right\rangle=\frac{1}{\sqrt{2}}\left(\left|K \bar{K}^{*}\right\rangle+\left|\bar{K} K^{*}\right\rangle\right)
$$

Lagrangian

We use the $\operatorname{SU}(3)$ symmetric Lagrangian given by

$$
\begin{aligned}
& \mathcal{L}_{P P V}=g \operatorname{Tr}\left(\left[P, \partial_{\mu} P\right]_{-} V^{\mu}\right) \\
& \mathcal{L}_{V V V}=-\frac{1}{2} g \operatorname{Tr}\left[\left(\partial_{\mu} V_{\nu}-\partial_{\nu} V_{\mu}\right) V^{\mu} V^{\nu}\right] \\
& \mathcal{L}_{P V V}=\frac{g}{m_{V}} \varepsilon^{\mu \nu \alpha \beta} \operatorname{Tr}\left(\partial_{\mu} V_{\nu} \partial_{\alpha} V_{\beta} P\right)
\end{aligned}
$$

with

$$
P=\left(\begin{array}{ccc}
\frac{1}{\sqrt{2}} \pi^{0}+\frac{1}{\sqrt{6}} \eta & \pi^{+} & K^{+} \\
\pi^{-} & -\frac{1}{\sqrt{2}} \pi^{0}+\frac{1}{\sqrt{6}} \eta & K^{0} \\
K^{-} & \bar{K}^{0} & -\frac{2}{\sqrt{6}} \eta
\end{array}\right)
$$

Lagrangian

We use the $\operatorname{SU}(3)$ symmetric Lagrangian given by

$$
\begin{aligned}
& \mathcal{L}_{P P V}=g \operatorname{Tr}\left(\left[P, \partial_{\mu} P\right]_{-} V^{\mu}\right) \\
& \mathcal{L}_{V V V}=-\frac{1}{2} g \operatorname{Tr}\left[\left(\partial_{\mu} V_{\nu}-\partial_{\nu} V_{\mu}\right) V^{\mu} V^{\nu}\right] \\
& \mathcal{L}_{P V V}=\frac{g}{m_{V}} \varepsilon^{\mu \nu \alpha \beta} \operatorname{Tr}\left(\partial_{\mu} V_{\nu} \partial_{\alpha} V_{\beta} P\right)
\end{aligned}
$$

with

$$
V_{\mu}=\left(\begin{array}{ccc}
\frac{1}{\sqrt{2}} \rho_{\mu}^{0}+\frac{1}{\sqrt{2}} \omega_{\mu} & \rho_{\mu}^{+} & K_{\mu}^{*+} \\
\rho_{\mu}^{-} & -\frac{1}{\sqrt{2}} \rho_{\mu}^{0}+\frac{1}{\sqrt{2}} \omega_{\mu} & K_{\mu}^{* 0} \\
K_{\mu}^{*-} & \bar{K}_{\mu}^{* 0} & \phi_{\mu}
\end{array}\right)
$$

Note that the trace operation is only for $\operatorname{SU}(3)$ matrices. By using this Lagrangian, we can calculate the potentials and $\operatorname{SU}(3)$ symmetric and isospin factors for each diagrams.

Form factor

Since hadron has a finite size, we need to introduce form factor in each vertex in the diagrams.

$$
F\left(n, k, k^{\prime}\right)=\left(\frac{n \Lambda^{2}-m^{2}}{n \Lambda^{2}+k^{2}+k^{\prime 2}}\right)^{n}
$$

The cut-off mass Λ is determined by adding $500-700 \mathrm{MeV}$ to the exchange mass. However, for the reaction involving strangeness we apply higher cut-off mass value ${ }^{4}$ especially for ϕ exchange the cut-off mass is 1700 MeV higher than its mass.

[^7]
Results and Discussion

General parameter

Graph		I	SIF	$\Lambda[\mathrm{MeV}]$
$\bar{K}^{*}(\bar{K})$	$K\left(K^{*}\right)$	0	-3(-3)	1800
$\left.\right\|_{\bar{K}^{z}}$	$\rho \quad{ }_{K}$	1	$1(-1)$	
$\bar{K}^{*}(\bar{K})$	$K\left(K^{*}\right)$	0	$-1(-1)$	1800
$\left.\right\|_{\bar{K}^{*}}$	$\omega{ }_{K}$	1	-1(1)	
$\bar{K}^{*}(\bar{K})$	$K\left(K^{*}\right)$	0	-2(-2)	2700
$\underset{K^{*}}{\mid}$			-2(2)	
		0	3	1600
		1	-3	

* Here we use the general coupling ${ }^{5}$

$$
g^{2} / 4 \pi=0.71
$$

* For the ϕ-exchange, it differ by 16%.

[^8]
a_{1} resonance

The singularity arises as a result of integral equation in the region below $K \bar{K}^{*}$ threshold.

a_{1} resonance

The singularity arises as a result of integral equation in the region below $K \bar{K}^{*}$ threshold.

We can interpret $a_{1}(1260)$ resonance as molecular state of $K \bar{K}^{*}$.

a_{1} resonance

After both channel is coupled, we can obtain the resonance structure in the $\pi \rho$ channel.

a_{1} resonance

After both channel is coupled, we can obtain the resonance structure in the $\pi \rho$ channel.

We obtained the pole position of a_{1} resonance is $W_{p}=1159-i 73$ MeV .

a_{1} resonance

We compare the model to experimental data from charge exchange reaction $(\pi p \rightarrow 3 \pi n)^{6}$. Here we assume that the t dependence is small thus it will not affect the shape of the mass spectrum.

where we define ${ }^{7}$

$$
\sigma \equiv \sigma_{\pi \rho}\left(t=m_{\rho}^{2}, M_{\pi \rho}\right)=-2 \operatorname{Im}\left[T_{\pi \rho}\left(M_{\pi \rho}\right)\right]
$$

${ }^{6}$ J. A. Dankowych, et al. Phys. Rev. Lett. 46, 580 (1981).
${ }^{7}$ G. Janssen, K. Holinde and J. Speth, Phys. Rev. C.49; 2763 (1994).

a_{1} resonance

We compare the model to experimental data from charge exchange reaction $(\pi p \rightarrow 3 \pi n)^{6}$. Here we assume that the t dependence is small thus it will not affect the shape of the mass spectrum.

We found the similar phenomena as in the pseudoscalar meson interaction ${ }^{7}$.
${ }^{6}$ J. A. Dankowych, et al. Phys. Rev. Lett. 46, 580 (1981).
${ }^{7}$ D. Lohse, et al. Nucl. Phys. A 516 (1990).

Summary and Conclusion

- We investigated the axial-vector meson a_{1} (1260) resonance from $\pi \rho$ scattering based on the fully off-mass-shell coupled channel formalism.
- The $a_{1}(1260)$ resonance can be theoretically interpreted as the $K \bar{K}^{*}$ molecular state.
- We also present the comparison of the model calculation to the experimental data from charge exchange reaction and it reproduce the data very well. From that, we extracted the pole position of $a_{1}(1260), W_{p}=1159-i 73$.
- The present result may be applied to the description of other process.
- For our next project, we will extend this work to study all the low-lying axial-vector meson resonances.

$h_{1}(1170)$ resonance

Experimental data from charge exchange reaction $(\pi p \rightarrow 3 \pi n)^{8}$.
The other theoretical model includes $h_{1}(1170)$ resonance explicitly ${ }^{9}$.
${ }^{8}$ J. A. Dankowych, et al. Phys. Rev. Lett. 46, 580 (1981).
${ }^{9}$ G. Janssen, K. Holinde and J. Speth, Phys. Rev. C.54, 2218 (1996).

Thank You

Backup Slide

Blanckenbecler-Sugar scheme

The Bethe-Salpeter equation for two-body interaction express as

$$
T\left(p, p^{\prime} ; s\right)=V\left(p, p^{\prime} ; s\right)+\frac{1}{(2 \pi)^{4}} \int d^{4} q V(p, q ; s) G(q ; s) T\left(q, p^{\prime} ; s\right)
$$

The two-meson propagator is given by ${ }^{10,11}$.

$$
G(q ; s)=\delta\left(q_{0}-\frac{1}{2} E_{1}+\frac{1}{2} E_{2}\right) \frac{\pi}{E_{1} E_{2}} \frac{E_{1}+E_{2}}{s-\left(E_{1}+E_{2}\right)^{2}}
$$

with $E_{i}=\left(\mathrm{q}^{2}+m_{i}\right)^{1 / 2}$ and we define $E=E_{1}+E_{2}$. The BS equation is then

$$
T\left(p, p^{\prime} ; s\right)=V\left(p, p^{\prime} ; s\right)+\frac{1}{(2 \pi)^{3}} \int \frac{d^{3} q}{2 E_{1}(q) E_{2}(q)} V(p, q ; s) \frac{E(q)}{s-E^{2}(q)} T\left(q, p^{\prime} ; s\right)
$$

${ }^{10}$ R. Blankenbecler and R. Sugar, Phys. Rev. 142, 1051 (1966)
${ }^{11}$ R. Aaron, R. D. Amado and J. E. Young, Phys. Rev. 174, 2022 (1968)

Partial wave decomposition

Through the partial wave decomposition of potential V and T matrix, the BS equation becomes

$$
\begin{aligned}
T_{\lambda^{\prime} \lambda}^{f i}\left(p, p^{\prime}\right)= & V_{\lambda^{\prime} \lambda}^{f i}\left(p, p^{\prime}\right)+\frac{1}{(2 \pi)^{3}} \sum_{g} \sum_{\lambda_{g}} \int \frac{q^{2} d q}{2 E_{1}(q) E_{2}(q)} \\
& \times V_{\lambda^{\prime} \lambda_{g}}^{f g}(p, q) \frac{E(q)}{s-E^{2}(q)} T_{\lambda_{g} \lambda}^{g i}\left(q, p^{\prime}\right)
\end{aligned}
$$

where

$$
\mathcal{V}_{\lambda^{\prime} \lambda}^{f i}\left(p^{\prime}, p\right)=2 \pi \int \mathrm{~d}(\cos \theta) d_{\lambda^{\prime} \lambda}^{J}(\theta) \mathcal{V}_{\lambda^{\prime} \lambda}^{f i}\left(p^{\prime}, p, \theta\right)
$$

$\lambda^{\prime}, \lambda$ and λ_{g} denote the helicity of final (f), initial (i) and intermediate (g) state, respectively. Note that the total energy argument and the total angular momentum J are not written explicitly in the potential V and T matrix.

Matrix inversion method

The one-dimensional integral equation can be expressed as

$$
T_{\alpha \beta}\left(q_{i}^{\alpha}, q_{l}^{\beta}\right)=V_{\alpha \beta}\left(q_{i}^{\alpha}, q_{l}^{\beta}\right)+\sum_{\gamma} \sum_{j}^{n+1} V_{\alpha \gamma}\left(q_{i}^{\alpha}, q_{j}^{\gamma}\right) \tilde{G}_{j}^{\gamma} T_{\gamma \beta}\left(q_{j}^{\gamma}, q_{l}^{\beta}\right) .
$$

where α, β and γ denote the final, initial and transition states (represent two meson state and helicity state). The weight \tilde{G}_{j}^{γ} is given by

$$
\begin{aligned}
\tilde{G}_{j}^{\gamma}= & \frac{1}{(2 \pi)^{3}} \frac{E\left(q_{j}^{\gamma}\right)}{2 E_{1}\left(q_{j}^{\gamma}\right) E_{2}\left(q_{j}^{\gamma}\right)} \frac{\left(q_{j}^{\gamma}\right)^{2}}{s-E^{2}\left(q_{j}^{\gamma}\right)^{2}} \omega_{j}, \quad \text { for } j=1,2, \cdots, n \\
\tilde{G}_{n+1}^{\gamma}= & -\frac{1}{(2 \pi)^{3}} \sum_{r=1}^{n} \frac{q_{r}^{\gamma} E\left(q_{r}^{\gamma}\right)}{2 E_{1}\left(q_{r}^{\gamma}\right) E_{2}\left(q_{r}^{\gamma}\right)} \frac{q_{n+1}^{\gamma}}{s-E^{2}\left(q_{r}^{\gamma}\right)} \omega_{r} \\
& +\frac{1}{(2 \pi)^{3}} \frac{q_{n+1}^{\gamma}}{4 \sqrt{s}}\left\{\ln \left|\frac{\sqrt{s}-m_{1}^{\gamma}-m_{2}^{\gamma}}{\sqrt{s}+m_{1}^{\gamma}+m_{2}^{\gamma}}\right|-i \pi\right\},
\end{aligned}
$$

where $E^{2}\left(q_{n+1}^{\gamma}\right)=s$ and m^{γ} denotes the mass of particle in the two meson channel.

Matrix inversion method

We build matrix V with dimension enough to contain two meson channel, helicity and momentum points. Therefore, the T matrix can be calculated by

$$
T=(1-V \tilde{G})^{-1} V
$$

The T matrix for this study in two meson channel basis can be expressed as

$$
\begin{aligned}
& T_{l=0}=\left(\begin{array}{cccc}
T^{\pi \rho, \pi \rho} & T^{\pi \rho, K \bar{K}^{*}} & T^{\pi \rho, \eta \omega} & T^{\pi \rho \rho, \eta \phi} \\
T^{K \bar{K}^{*}, \pi \rho} & T^{K \bar{K}^{*}, K \bar{K}^{*}} & T^{K \bar{K}^{*}, \eta \omega} & T^{K \bar{K}^{*}, \eta \phi} \\
T^{\eta \omega, \pi \rho} & T^{\eta \omega, K \bar{K}^{*}} & T^{\eta \omega, \eta \omega} & T^{\eta \omega, \eta \phi} \\
T^{\eta \phi, \pi \rho} & T^{\eta \phi, K \bar{K}^{*}} & T^{\eta \phi, \eta \omega} & V^{\eta \phi, \eta \phi}
\end{array}\right), \\
& T_{l=1}=\left(\begin{array}{cc}
T^{\pi \rho, \pi \rho} & T^{\pi \rho, K \bar{k}^{*}} \\
T^{K \bar{k}^{*}, \pi \rho} & T^{K \bar{k}^{*}, K \bar{k}^{*}}
\end{array}\right) .
\end{aligned}
$$

LSJ basis

The T matrix can be expressed in LSJ basis as

$$
T_{L^{\prime}, L}^{J}=\left\langle J M L^{\prime} S\right| T|J M L S\rangle=\sum_{\lambda_{1}^{\prime}, \lambda_{2}^{\prime}, \lambda_{1}, \lambda_{2}}\left\langle J M L^{\prime} S \mid J M \lambda_{1}^{\prime} \lambda_{2}^{\prime}\right\rangle T_{\lambda^{\prime}, \lambda}^{J}\left\langle J M \lambda_{1} \lambda_{2} \mid J M L S\right\rangle .
$$

In the pseudoscalar and vector meson interaction, it becomes

$$
\begin{aligned}
T_{J, J}^{J} & =T_{1}^{J}-T_{2}^{J} \\
T_{J-1, J-1}^{J} & =\frac{1}{\sqrt{2 J+1}}\left[J T_{0}^{J}+(J+1)\left(T_{1}^{J}+T_{2}^{J}\right)+\sqrt{2 J(J+1)}\left(T_{3}^{J}+T_{4}^{J}\right)\right] \\
T_{J+1, J-1}^{J} & \left.=\frac{1}{\sqrt{2 J+1}}\left[-\sqrt{J(J+1)} T_{0}^{J}+\sqrt{J(J+1)}\left(T_{1}^{J}+T_{2}^{J}\right)+\sqrt{2} J T_{3}^{J}-\sqrt{2}(J+1) T_{4}^{J}\right)\right] \\
T_{J-1, J+1}^{J} & \left.=\frac{1}{\sqrt{2 J+1}}\left[-\sqrt{J(J+1)} T_{0}^{J}+\sqrt{J(J+1)}\left(T_{1}^{J}+T_{2}^{J}\right)-\sqrt{2}(J+1) T_{3}^{J}+\sqrt{2} J T_{4}^{J}\right)\right] \\
T_{J+1, J+1}^{J} & =\frac{1}{\sqrt{2 J+1}}\left[(J+1) T_{0}^{J}+J\left(T_{1}^{J}+T_{2}^{J}\right)-\sqrt{2 J(J+1)}\left(T_{3}^{J}+T_{4}^{J}\right)\right] .
\end{aligned}
$$

where we define $T_{0}=T_{0,0} ; T_{1}=T_{1,1} ; T_{2}=T_{1,-1}=T_{-1,1} ;$
$T_{3}=T_{1,0}=T_{-1,0} ; T_{4}=T_{0,1}=T_{0,-1}$

[^0]: ${ }^{1}$ G. Janssen, K. Holinde and J. Speth, Phys. Rev. C 49; 2763 (1994).

[^1]: ${ }^{1}$ G. Janssen, K. Holinde and J. Speth, Phys. Rev. C 49; 2763 (1994).

[^2]: ${ }^{1}$ G. Janssen, K. Holinde and J. Speth, Phys. Rev. C 49, 2763 (1994).

[^3]: ${ }^{1}$ G. Janssen, K. Holinde and J. Speth, Phys. Rev. C.49; 2763 (1994).

[^4]: ${ }^{2}$ R. Blankenbecler and R. Sugar, Phys. Rev. 142, 1051 (1966)
 ${ }^{3}$ R. Aaron, R. D. Amado and J. E. Young, Phys. Rev. 174, 2022 (1968).

[^5]: ${ }^{2}$ R. Blankenbecler and R. Sugar, Phys. Rev. 142, 1051 (1966)
 ${ }^{3}$ R. Aaron, R. D. Amado and J. E. Young, Phys. Rev. 174, 2022 (1968).

[^6]: ${ }^{2}$ R. Blankenbecler and R. Sugar, Phys. Rev. 142, 1051 (1966)
 ${ }^{3}$ R. Aaron, R. D. Amado and J. E. Young, Phys. Rev. 174, 2022 (1968).

[^7]: ${ }^{4}$ D. Lohse, J. W. Durso, K. Holinde and J. Speth, Nucl. Phys. A 516 (1990)

[^8]: ${ }^{5}$ G. Janssen, K. Holinde and J. Speth, Phys. Rev. C.49, 2763 (1994)

