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Motivation

In principle, the axial-vector meson resonance can be
generated dynamically by pseudoscalar and vector meson
interaction.

The πρ channel alone is not enough to generate the
a1(1260)pole1.

The other channel is needed to give the singularity to the πρ
channel. Here, only KK̄ ∗ channel is possible to be coupled to
πρ channel to produce the a1(1260) resonance.

The full off-shell T matrix of this interaction can then be
applied to other important processes.

1G. Janssen, K. Holinde and J. Speth, Phys. Rev. C 49, 2763 (1994).
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Coupled Channel Formalism

The Bethe-Salpeter equation for two-body interaction expressed as

The two-body propagator is not unique. We use the
propagator in Blankenbecler-Sugar scheme23.

Preserves unitarity
Reduces the dimensionality of the integral

The three-dimensional integral equation can be reduced to
one-dimensional problem by performing partial wave
decomposition.

After solving the integral equation, we transform the T -matrix
to particle (LSJ) basis.

2R. Blankenbecler and R. Sugar, Phys. Rev. 142, 1051 (1966)
3R. Aaron, R. D. Amado and J. E. Young, Phys. Rev. 174, 2022 (1968).
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Feynman Diagrams

!! The a1 pole diagram is not included explicitly.
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Feynman Diagrams

We define the G = ±1 parity state for KK̄ ∗ state as

|KK̄∗(−)〉 =
1√
2

(
|KK̄∗〉 − |K̄K∗〉

)
, |KK̄∗(+)〉 =

1√
2

(
|KK̄∗〉+ |K̄K∗〉

)
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Lagrangian

We use the SU(3) symmetric Lagrangian given by

LPPV = g Tr ([P, ∂µP]− V µ)

LVVV = −1

2
g Tr [(∂µVν − ∂νVµ)V µV ν ]

LPVV =
g

mV
εµναβTr (∂µVν∂αVβP)

with

P =


1√
2
π0 + 1√

6
η π+ K+

π− − 1√
2
π0 + 1√

6
η K 0

K− K̄ 0 − 2√
6
η


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LPPV = g Tr ([P, ∂µP]− V µ)

LVVV = −1

2
g Tr [(∂µVν − ∂νVµ)V µV ν ]

LPVV =
g

mV
εµναβTr (∂µVν∂αVβP)

with

Vµ =


1√
2
ρ0
µ + 1√

2
ωµ ρ+

µ K∗+µ
ρ−µ − 1√

2
ρ0
µ + 1√

2
ωµ K∗0µ

K∗−µ K̄∗0µ φµ


Note that the trace operation is only for SU(3) matrices. By using this
Lagrangian, we can calculate the potentials and SU(3) symmetric and
isospin factors for each diagrams.
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Form factor

Since hadron has a finite size, we need to introduce form factor in
each vertex in the diagrams.

F (n, k , k ′) =

(
nΛ2 −m2

nΛ2 + k2 + k ′2

)n

The cut-off mass Λ is determined by adding 500− 700 MeV to the
exchange mass. However, for the reaction involving strangeness we
apply higher cut-off mass value4 especially for φ exchange the
cut-off mass is 1700 MeV higher than its mass.

4D. Lohse, J. W. Durso, K. Holinde and J. Speth, Nucl. Phys. A 516 (1990)
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Results and Discussion
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General parameter

* Here we use the general coupling5

g 2/4π = 0.71
* For the φ-exchange, it differ by
16%.

5G. Janssen, K. Holinde and J. Speth, Phys. Rev. C 49, 2763 (1994).
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a1 resonance

The singularity arises as a result of integral equation in the region
below KK̄ ∗ threshold.
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a1 resonance

The singularity arises as a result of integral equation in the region
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We can interpret a1 (1260) resonance as molecular state of KK̄ ∗.
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a1 resonance

After both channel is coupled, we can obtain the resonance
structure in the πρ channel.
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We obtained the pole position of a1 resonance is Wp = 1159− i73
MeV.
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a1 resonance

We compare the model to experimental data from charge exchange

reaction (πp → 3πn)6. Here we assume that the t dependence is small

thus it will not affect the shape of the mass spectrum.
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where we define7

σ ≡ σπρ
(
t = m2

ρ,Mπρ

)
= −2 Im [Tπρ(Mπρ)]

6J. A. Dankowych, et al. Phys. Rev. Lett. 46, 580 (1981).
7G. Janssen, K. Holinde and J. Speth, Phys. Rev. C 49, 2763 (1994).
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We found the similar phenomena as in the pseudoscalar meson
interaction7.

6J. A. Dankowych, et al. Phys. Rev. Lett. 46, 580 (1981).
7D. Lohse, et al. Nucl. Phys. A 516 (1990).
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Summary and Conclusion

We investigated the axial-vector meson a1 (1260) resonance
from πρ scattering based on the fully off-mass-shell coupled
channel formalism.

The a1(1260) resonance can be theoretically interpreted as
the KK̄ ∗ molecular state.

We also present the comparison of the model calculation to
the experimental data from charge exchange reaction and it
reproduce the data very well. From that, we extracted the
pole position of a1(1260), Wp = 1159− i73.

The present result may be applied to the description of other
process.

For our next project, we will extend this work to study all the
low-lying axial-vector meson resonances.
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h1(1170) resonance
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Experimental data from charge exchange reaction (πp → 3πn)8.

The other theoretical model includes h1(1170) resonance explicitly9.

8J. A. Dankowych, et al. Phys. Rev. Lett. 46, 580 (1981).
9G. Janssen, K. Holinde and J. Speth, Phys. Rev. C 54, 2218 (1996).
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Thank You
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Blanckenbecler-Sugar scheme

The Bethe-Salpeter equation for two-body interaction express as

T (p, p′; s) = V (p, p′; s) +
1

(2π)4

∫
d4qV (p, q; s)G (q; s)T (q, p′; s)

The two-meson propagator is given by10,11.

G (q; s) = δ

(
q0 −

1

2
E1 +

1

2
E2

)
π

E1E2

E1 + E2

s − (E1 + E2)2

with Ei = (q2 + mi )
1/2 and we define E = E1 + E2. The BS

equation is then

T (p, p′; s) = V (p, p′; s) +
1

(2π)3

∫
d3q

2E1(q)E2(q)
V (p, q; s)

E(q)

s − E 2(q)
T (q, p′; s)

10R. Blankenbecler and R. Sugar, Phys. Rev. 142, 1051 (1966)
11R. Aaron, R. D. Amado and J. E. Young, Phys. Rev. 174, 2022 (1968).



Partial wave decomposition

Through the partial wave decomposition of potential V and T
matrix, the BS equation becomes

T fi
λ′λ(p, p′) =V fi

λ′λ(p, p′) +
1

(2π)3

∑
g

∑
λg

∫
q2dq

2E1(q)E2(q)

× V fg
λ′λg

(p, q)
E (q)

s − E 2(q)
T gi
λgλ

(q, p′),

where

Vfi
λ′λ(p′, p) = 2π

∫
d(cos θ)dJ

λ′λ(θ)Vfi
λ′λ(p′, p, θ),

λ′, λ and λg denote the helicity of final (f ), initial (i) and
intermediate (g) state, respectively. Note that the total energy
argument and the total angular momentum J are not written
explicitly in the potential V and T matrix.



Matrix inversion method

The one-dimensional integral equation can be expressed as

Tαβ(qαi , q
β
l ) = Vαβ(qαi , q

β
l ) +

∑
γ

n+1∑
j

Vαγ(qαi , q
γ
j ) G̃γj Tγβ(qγj , q

β
l ).

where α, β and γ denote the final, initial and transition states (represent
two meson state and helicity state). The weight G̃γj is given by

G̃γ
j =

1

(2π)3

E (qγj )

2E1(qγj )E2(qγj )

(qγj )2

s − E 2(qγj )
ωj , for j = 1, 2, · · · , n

G̃γn+1 =− 1

(2π)3

n∑
r=1

qγr E (qγr )

2E1(qγr )E2(qγr )

qγn+1

s − E 2(qγr )
ωr

+
1

(2π)3

qγn+1

4
√
s

{
ln

∣∣∣∣√s −mγ
1 −mγ

2√
s + mγ

1 + mγ
2

∣∣∣∣− iπ

}
,

where E 2(qγn+1) = s and mγ denotes the mass of particle in the two

meson channel.



Matrix inversion method

We build matrix V with dimension enough to contain two meson
channel, helicity and momentum points. Therefore, the T matrix can be
calculated by

T =
(

1− V G̃
)−1

V .

The T matrix for this study in two meson channel basis can be expressed
as

TI =0 =


Tπρ,πρ Tπρ,KK̄∗ Tπρ,ηω Tπρ,ηφ

TKK̄∗,πρ TKK̄∗,KK̄∗ TKK̄∗,ηω TKK̄∗,ηφ

T ηω,πρ T ηω,KK̄∗ T ηω,ηω T ηω,ηφ

T ηφ,πρ T ηφ,KK̄∗ T ηφ,ηω V ηφ,ηφ

 ,

TI =1 =

(
Tπρ,πρ Tπρ,KK̄∗

TKK̄∗,πρ TKK̄∗,KK̄∗

)
.



LSJ basis

The T matrix can be expressed in LSJ basis as

T J
L′,L = 〈JML′S |T |JMLS〉 =

∑
λ′1,λ

′
2,λ1,λ2

〈JML′S |JMλ′1λ
′
2〉T J

λ′,λ〈JMλ1λ2|JMLS〉.

In the pseudoscalar and vector meson interaction, it becomes

T J
J,J = T J

1 − T J
2

T J
J−1,J−1 =

1
√

2J + 1

[
JT J

0 + (J + 1)(T J
1 + T J

2 ) +
√

2J(J + 1)(T J
3 + T J

4 )
]

T J
J+1,J−1 =

1
√

2J + 1

[
−
√

J(J + 1)T J
0 +

√
J(J + 1)(T J

1 + T J
2 ) +

√
2JT J

3 −
√

2(J + 1)T J
4 )

]
T J

J−1,J+1 =
1

√
2J + 1

[
−
√

J(J + 1)T J
0 +

√
J(J + 1)(T J

1 + T J
2 )−

√
2(J + 1)T J

3 +
√

2JT J
4 )

]
T J

J+1,J+1 =
1

√
2J + 1

[
(J + 1)T J

0 + J(T J
1 + T J

2 )−
√

2J(J + 1)(T J
3 + T J

4 )
]
.

where we define T0 = T0,0; T1 = T1,1; T2 = T1,−1 = T−1,1;

T3 = T1,0 = T−1,0; T4 = T0,1 = T0,−1
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