The axial-vector transitions between the singly charmed baryons within a mesonic mean-field approach

Yuson Jun ${ }^{1}$

Collaborating with Jungmin Suh ${ }^{1}$, Hyun-Chul Kim¹,2
${ }^{2}$ School of Physics, Korea Institute for Advanced Study (KIAS)

Light Cone 2021

28 Nov. ~ 4 Dec. 2021

Contents

- Introduction
- Chiral quark-soliton model
- Matrix element of the axial-vector current
- Axial-vector transition form factors of the singly charmed baryons
- Summary \& Outlook

Introduction

- Transitions between the singly charmed baryons have been explored for several decades.
- The axial-vector transition form factors between different representations were not much studied.
- In this work, we investigate the axial-vector transition form factors between the charmed baryon sextet and baryon anti-triplet within the framework of the chiral quark-soliton model.

The chiral quark-soliton model

- Baryons can be considered as states of the Nc valence quarks bound by the mesonic mean-fields at large Nc
(E. Witten, NPB160, 57, 1979).

$$
S_{\mathrm{eff}}(U)=-N_{c} \operatorname{Tr} \ln \left[\partial_{\tau}+h(U)-i \gamma_{4} \delta m\right] \text { Effective chiral action }
$$

- Red part: one-particle Dirac hamiltonian with the pion mean-field.
- Blue part: The flavor SU(3) symmetry-breaking contribution.
- In this work, we consider the rotational $1 / \mathrm{Nc}$ corrections and the effects of the breaking of flavor $\operatorname{SU}(3)$ symmetry.

The chiral quark-soliton model

- Nc valence quarks change into Nc-1 valence quarks
- Heavy quark considered as a static color source.
- Heavy quark does not contribute to the transition form factors [1,2].
[1] P. Cho, H. Georgi, PLB 296, 408 (1992)
[2] H.-Y. Cheng et al, PRD 46, 5060 (1992)

Sextet, J=1/2

Sextet, J=3/2

The chiral quark-soliton model

- Nc valence quarks change into Nc-1 valence quarks
- Heavy quark considered as a static color source.
- Heavy quark does not contribute to the transition form factors [1,2].
[1] P. Cho, H. Georgi, PLB 296, 408 (1992)
[2] H.-Y. Cheng et al, PRD 46, 5060 (1992)

Matrix element of the axial-vector current

$$
\left\langle B_{J_{3}^{\prime}}^{\prime}\right| A_{\mu}^{a}(0)\left|B_{J_{3}}\right\rangle \quad A_{\mu}^{a}(x)=\bar{\psi}(x) r_{\mu} \gamma_{5} \frac{\lambda^{a}}{2} \psi(x)+\bar{\Psi}(x) \gamma_{\mu} \gamma_{5} \Psi(x)
$$

$\mathrm{J}=1 / 2$ to $\mathrm{J}=1 / 2$ case:

$$
\bar{u}\left(p^{\prime}, J_{3}^{\prime}\right)\left[g_{A}^{(a)}\left(Q^{2}\right) \gamma_{\mu}+\frac{g_{P}^{(a)}\left(Q^{2}\right)}{M^{\prime}+M} Q_{\mu}\right] \frac{\gamma_{5}}{2} u\left(p, J_{3}\right)
$$

$\mathrm{J}=\mathbf{3 / 2}$ to $\mathrm{J}=\mathbf{1 / 2}$ case[3]: [3]s. L. Adele, Ann. Phys. 50,189 (1988); PRD 12, 2644 (1975)
$\bar{u}\left(p^{\prime}, J_{3}^{\prime}\right)\left[\left\{\frac{C_{3}^{A(a)}\left(Q^{2}\right)}{M^{\prime}} \gamma^{\nu}+\frac{C_{4}^{A(a)}\left(Q^{2}\right)}{M^{2}} p^{\nu}\right\}\left(g_{\alpha \mu} g_{\rho \nu}-g_{\alpha \rho} g_{\mu \nu}\right)+C_{5}^{A(a)}\left(Q^{2}\right) g_{\alpha \mu}+\frac{C_{6}^{A(a)}\left(Q^{2}\right)}{M^{2}} Q_{\alpha} Q_{\mu}\right] u^{\alpha}\left(p, J_{3}\right)$
In the model:

$$
\int d A \int d^{3} r e^{i \vec{Q} \cdot \vec{r}}\left\langle B_{J_{3}^{\prime}}^{\prime} \mid A\right\rangle\left[\mathscr{F}_{\text {val, },(}^{a}(\vec{r}, A)+\mathscr{F}_{\text {sea, }, \mu}^{a}(\vec{r}, A)\right]\left\langle A \mid B_{J_{3}}\right\rangle
$$

Valence-quark contribution

Sea-quark contribution

Matrix element of the axial-vector current

$$
\left\langle B_{J_{3}^{\prime}}^{\prime}\right| A_{\mu}^{a}(0)\left|B_{J_{3}}\right\rangle \quad A_{\mu}^{a}(x)=\bar{\psi}(x) r_{\mu} \gamma_{5} \frac{\lambda^{a}}{2} \psi(x)+\bar{\Psi}(x) \gamma_{\mu} \gamma_{5} \Psi(x)
$$

$\mathrm{J}=1 / 2$ to $\mathrm{J}=1 / 2$ case:
$\left.\bar{u}\left(p^{\prime}, J_{3}^{\prime}\right)\left[g_{A}^{(a)}\left(Q^{2}\right)\right)_{\mu}+\frac{g_{P}^{(a)}\left(Q^{2}\right)}{M^{\prime}+M} Q_{\mu}\right] \frac{\gamma_{5}}{2} u\left(p, J_{3}\right)$
$\mathrm{J}=\mathbf{3 / 2}$ to $\mathrm{J}=\mathbf{1 / 2}$ case[3]: [3]s. L. Adele Ann. Phys. 50,189 (1988); PRD 12,2664 (1975)
$\bar{u}\left(p^{\prime}, J_{3}^{\prime}\right)\left[\left\{\frac{C_{3}^{A(a)}\left(Q^{2}\right)}{M^{\prime}} \gamma^{\nu}+\frac{C_{4}^{A(a)}\left(Q^{2}\right)}{M^{2}} p^{\nu}\right\}\left(g_{\alpha \mu} g_{\rho \nu}-g_{\alpha \rho \rho} g_{\mu \nu}\right)+C_{5}^{A(a)}\left(Q^{2}\right) \beta_{\alpha \mu}+\frac{C_{6}^{A(a)}\left(Q^{2}\right)}{M^{2}} Q_{\alpha} Q_{\mu}\right] u^{\alpha}\left(p, J_{3}\right)$
In the model:

$$
\int d A \int d^{3} r e^{i \vec{Q} \cdot \vec{r}}\left\langle B_{J_{3}^{\prime}}^{\prime} \mid A\right\rangle\left[\mathscr{F}_{\text {val, } \mu}^{a}(\vec{r}, A)+\mathscr{F}_{\text {sea, }, \mu}^{a}(\vec{r}, A)\right]\left\langle A \mid B_{J_{3}}\right\rangle
$$

Valence-quark contribution

Sea-quark contribution

Axial-vector transition form factor for the singly heavy baryons comparison with those of the light baryons

$\Delta S=0$ and $\Delta Q=0$ Transition processes

Axial-vector transition form factors of the singly charmed baryons(The $S U(3)_{f}$ - Sym. Breaking effects)

$\Delta S=0$ and $\Delta Q=0$ Transition processes

Axial-vector transition form factors of the singly charmed baryons(The $S U(3)_{f}$ - Sym. Breaking effects)

$\Delta S=0$ and $\Delta Q=1$ Transition processes

Axial-vector transition form factors of the singly

 charmed baryons(The $S U(3)_{f}$ - Sym. Breaking effects)
$\Delta S=0$ and $\Delta Q=-1$ Transition processes

Axial-vector transition form factors of the singly charmed baryons(The $S U(3)_{f}$ - Sym. Breaking effects)

$\Delta S=1$ and $\Delta Q=1$ Transition processes

Axial-vector transition form factors of the singly charmed baryons(The $S U(3)_{f}$ - Sym. Breaking effects)

$\Delta S=1$ and $\Delta Q=0$ Transition processes

Axial-vector transition form factors of the singly charmed baryons(The $S U(3)_{f}$ - Sym. Breaking effects)

$\Delta S=-1$ and $\Delta Q=0$ Transition processes

Axial-vector transition form factors of the singly

 charmed baryons(The $S U(3)_{f}$ - Sym. Breaking effects)
$\Delta S=-1$ and $\Delta Q=-1$ Transition processes

Axial-vector transition form factors of the singly charmed baryons(the valence- and sea-quark contributions)

$\Delta S=0$ and $\Delta Q=0$ Transition processes

Axial-vector transition form factors of the singly charmed baryons(the valence- and sea-quark contributions)

$\Delta S=0$ and $\Delta Q=1$ Transition processes

Axial-vector transition form factors of the singly charmed baryons(the valence- and sea-quark contributions)

$\Delta S=0$ and $\Delta Q=-1$ Transition processes

Axial-vector transition form factors of the singly charmed baryons(the valence- and sea-quark contributions)

Axial-vector transition form factors of the singly charmed baryons(the valence- and sea-quark contributions)

$\Delta S=1$ and $\Delta Q=0$ Transition processes

Axial-vector transition form factors of the singly charmed baryons(the valence- and sea-quark contributions)

$\Delta S=-1$ and $\Delta Q=0$ Transition processes

Axial-vector transition form factors of the singly charmed baryons(the valence- and sea-quark contributions)

$\Delta S=-1$ and $\Delta Q=-1$ Transition processes

Summary \& Outlook

- Summary
- We studied the axial-vector transition form factors of the singly charmed baryons within the framework of the chiral quarksoliton model.
- The effects of the flavor $\operatorname{SU}(3)$ symmetry breaking are rather small(§4\%).
- The valence-quark contributions dominate over those from the sea quarks($\gtrsim 96 \%)$.
- Outlook
- Transitions between the singly bottom baryons.
- Transitions between the doubly heavy baryons.

Thank you for listening!!!

Back up

Axial-vector transition form factor for the singly heavy baryons compare with those of the light baryons

$\Delta S=0$ and $\Delta Q=0$ Transition processes

The axial-vector transition constants

- $\Delta S=0$ and $\Delta Q=0$ Transition processes

$g_{A}^{(3)}(0)$	$\Sigma_{c}^{+} \rightarrow \Lambda_{c}^{+}$	$\Xi_{c}^{\prime+} \rightarrow \Xi_{c}^{+}$	$\Xi_{c}^{0} \rightarrow \Xi_{c}^{0}$		$C_{5}^{A(3)}(0)$	$\Sigma_{c}^{*+} \rightarrow \Lambda_{c}^{+}$
$\Xi_{c}^{*+} \rightarrow \Xi_{c}^{+}$	$\Xi_{c}^{* 0} \rightarrow \Xi_{c}^{0}$					
$m_{\mathrm{s}}=0 \mathrm{MeV}$	0.888	-0.461	0.462	$m_{\mathrm{s}}=0 \mathrm{MeV}$	0.726	-0.381
$m_{\mathrm{s}}=180 \mathrm{MeV}$	0.916	-0.468	0.469		$m_{\mathrm{s}}=180 \mathrm{MeV}$	0.749

- $\Delta S=0$ and $\Delta Q=1$ Transition processes

$g_{A}^{(1+i 2)}(0)$	$\Sigma_{c}^{0} \rightarrow \Lambda_{c}^{+}$	$\Xi_{c}^{0} \rightarrow \Xi_{c}^{+}$
$m_{\mathrm{s}}=0 \mathrm{MeV}$	1.256	0.924
$m_{\mathrm{s}}=180 \mathrm{MeV}$	1.294	0.938

$C_{5}^{A(1+i 2)}(0)$	$\Sigma_{c}^{* 0} \rightarrow \Lambda_{c}^{+}$	$\Xi_{c}^{* 0} \rightarrow \Xi_{c}^{+}$
$m_{\mathrm{s}}=0 \mathrm{MeV}$	1.028	0.765
$m_{\mathrm{s}}=180 \mathrm{MeV}$	1.061	0.777

- $\Delta S=0$ and $\Delta Q=-1$ Transition processes

$$
\begin{array}{c|c:c}
g_{A}^{(1-i 2)}(0) & \Sigma_{c}^{++} \rightarrow \Lambda_{c}^{+} & \Xi_{c}^{++} \rightarrow \Xi_{c}^{0} \\
\hline m_{\mathrm{s}}=0 \mathrm{MeV} & -1.256 & 0.922 \\
m_{\mathrm{s}}=180 \mathrm{MeV} & -1.294 & 0.936
\end{array}
$$

$C_{5}^{A(1-i 2)}(0)$	$\Sigma_{c}^{* 0} \rightarrow \Lambda_{c}^{+}$	$\Xi_{c}^{* 0} \rightarrow \Xi_{c}^{+}$
$m_{s}=0 \mathrm{MeV}$	-1.028	0.763
$m_{\mathrm{s}}=180 \mathrm{MeV}$	-1.061	0.775

The axial-vector transition constants

- $\Delta S=1$ and $\Delta Q=1$ Transition processes

$g_{A}^{(4+i 5)}(0)$	$\Xi_{c}^{\prime 0} \rightarrow \Lambda_{c}^{+}$	$\Omega_{c}^{0} \rightarrow \Xi_{c}^{+}$
$m_{\mathrm{s}}=0 \mathrm{MeV}$	1.347	0.952
$m_{\mathrm{s}}=180 \mathrm{MeV}$	1.312	0.927

$C_{5}^{A(4+i 5)}(0)$	$\Xi_{c}^{* 0} \rightarrow \Lambda_{c}^{+}$	$\Omega_{c}^{* 0} \rightarrow \Xi_{c}^{+}$
$m_{s}=0 \mathrm{MeV}$	1.159	0.820
$m_{\mathrm{s}}=180 \mathrm{MeV}$	1.129	0.799

- $\Delta S=1$ and $\Delta Q=0$ Transition processes

$g_{A}^{(6+i 7)}(0)$	$\Xi_{c}^{+} \rightarrow \Lambda_{c}^{+}$	$\Omega_{c}^{0} \rightarrow \Xi_{c}^{0}$
$m_{\mathrm{s}}=0 \mathrm{MeV}$	-0.952	-1.347
$m_{\mathrm{s}}=180 \mathrm{MeV}$	-0.927	-1.311

$C_{5}^{A(6+i 7)}(0)$	$\Xi_{c}^{*+} \rightarrow \Lambda_{c}^{+}$	$\Omega_{c}^{* 0} \rightarrow \Xi_{c}^{0}$
$m_{\mathrm{s}}=0 \mathrm{MeV}$	-0.819	-1.160
$m_{\mathrm{s}}=180 \mathrm{MeV}$	-0.798	-1.130

- $\Delta S=-1$ and $\Delta Q=-1$ Transition processes

$g_{A}^{(4-i 5)}(0)$	$\Sigma_{c}^{++} \rightarrow \Xi_{c}^{+}$	$\Sigma_{c}^{+} \rightarrow \Xi_{c}^{0}$
$m_{\mathrm{s}}=0 \mathrm{MeV}$	0.786	-1.192
$m_{\mathrm{s}}=180 \mathrm{MeV}$	0.808	-1.203

$C_{5}^{A(4-i 5)}(0)$	$\Sigma_{c}^{*++} \rightarrow \Xi_{c}^{+}$	$\Sigma_{c}^{*+} \rightarrow \Xi_{c}^{0}$
$m_{s}=0 \mathrm{MeV}$	0.627	-0.956
$m_{\mathrm{s}}=180 \mathrm{MeV}$	0.648	-0.969

- $\Delta S=-1$ and $\Delta Q=0$ Transition processes

$g_{A}^{(6-i 7)}(0)$	$\Sigma_{c}^{+} \rightarrow \Xi_{c}^{+}$	$\Sigma_{c}^{0} \rightarrow \Xi_{c}^{0}$
$m_{\mathrm{s}}=0 \mathrm{MeV}$	0.787	1.196
$m_{\mathrm{s}}=180 \mathrm{MeV}$	0.809	1.206

$C_{5}^{A(6-i 7)}(0)$	$\Sigma_{c}^{*+} \rightarrow \Xi_{c}^{+}$	$\Sigma_{c}^{* 0} \rightarrow \Xi_{c}^{0}$
$m_{s}=0 \mathrm{MeV}$	0.628	0.959
$m_{\mathrm{s}}=180 \mathrm{MeV}$	0.649	0.972

