Nucleon with One Dynamical Gluon in Basis Light-Front Quantization

Siqi Xu

With

Xingbo Z<mark>h</mark>ao, Chan<mark>da</mark>n Mondal,

<mark>Yang Li, James Vary</mark>

Institute of Modern Physics , Chinese Academy of Sciences Lanzhou, China

Light Cone 2021 : Physics of Hadrons on the Light Front November 28- December 4, 2021, *Jeju island*, Korea

<u>Outline</u>

- Basis Light-Front Quantization (BLFQ)
- Nucleon Structure in BLFQ
 - Nucleon Structure with leading Fock Sector
 - Nucleon Structure with One Dynamical Gluon
- Conclusion

Basis Light-Front Quantization

Solve the time-independent Schrödinger Equation:

$$P^{-}|\beta\rangle = P_{\beta}^{-}|\beta\rangle$$

- **P**[−]: Light-Front Hamiltonian;
- \circ $|\beta\rangle$: Eigenstates;
- $\circ P_{\beta}^{-}$: Eigenvalues for eigenstates.

I. Longitudinal direction

- discrete longitudinal momentum (labeled by **k**): $P^+ = \frac{2\pi}{r}k$

II. Transverse direction

- 2-dimensional harmonic oscillator (labeled by **n** , **m**) Truncation :

$$\Phi_{n,m}^{b}(p_{\perp}) = \frac{1}{b\sqrt{\pi}} \sqrt{\frac{n!}{(n+|m|)!}} e^{-\frac{p^{2}}{2b^{2}}} e^{-im\phi} \left(\frac{p}{b}\right)^{|m|} L_{n}^{|m|} \left(\frac{p^{2}}{b^{2}}\right)$$

$$\frac{4}{16}$$

Prof. Xingbo Zhao's Talk At Firday noon, QCD AB II

Light-Front Hamiltonian

$$P^{-} = H_{K.E.} + H_{trans} + H_{longi} + H_{Interact}$$

$$H_{K.E.} = \sum_{i} \frac{p_{i}^{2} + m_{q}^{2}}{p_{i}^{+}}$$

$$H_{trans} \sim \kappa_{T}^{4} r^{2} \qquad \text{--Brodsky, Teramond arXiv: 1203.4025}$$

$$H_{longi} \sim -\sum_{ij} \kappa_{L}^{4} \partial_{x_{i}} \left(x_{i} x_{j} \partial_{x_{j}} \right) \qquad \text{--Y Li, X Zhao, P Maris, J Vary, PLB 758(2016)}$$

$$P_{baryon} \rangle = |qqq\rangle + |qqqg\rangle + |qqqq\bar{q}\rangle + \dots$$

Only include first Fock sector

$$H_{Interact} = -\frac{C_F 4\pi\alpha_s}{Q^2} \sum_{i,j(i < j)} \overline{u}_{s'_i}(k'_i)\gamma^{\mu}u_{s_i}(k_i)\overline{u}_{s'_j}(k'_j)\gamma_{\mu}u_{s_j}(k_j)$$

Include the first and second Fock sector

$$H_{Interact} = H_{Vertex} + H_{inst} = g\overline{\psi} \gamma^{\mu}T^{a} \psi A^{a}_{\mu} + \frac{g^{2}C_{F}}{2} j^{+} \frac{1}{(i\partial^{+})^{2}} j^{+}$$

Angular Momentum Distributions

In the quark model $\Delta\Sigma = 1$ The spin decomposition can be measured by polarized DIS

• Ji decomposition:

$$\frac{1}{2} = \frac{1}{2} \Delta \Sigma + L_{Ji}^q + J_g$$

Angular Momentum Distributions

Light-Front QCD Hamiltonian

Electromagnetic Form Factor

• Elastic scattering of proton

[R. Hofstadter, Nobel Prize 1961] $e(p) + h(P) \rightarrow e(p') + h(P')$

• Elastic electron scattering established the extended nature of the proton (proton radius).

The Fourier transformation of these form factors provide spatial distributions (*charge and magnetization distributions*).

$$\langle N(p')|J^{\mu}(0)|N(p)\rangle = \bar{u}(p')\left[\gamma^{\mu}F_{1}(q^{2}) + \frac{i\sigma^{\mu\nu}}{2m_{N}}q_{\nu}F_{2}(q^{2})\right]u(p)$$

Dirac Form Factor

Pauli Form Factor

Form Factor with Dynamical Gluon

Form Factor with Dynamical Gluon

are almost same with effective interaction results

Form Factor with Dynamical Gluon

[In preparation, Siqi Xu, C. Mondal et.al]

At $Q^2 \gg m^2 = 0.09 \text{ GeV}^2$, we find our Form Factor ratio is proportional to $\log^2(Q^2/\Lambda)/Q^2$.

In our calculation, we use the quark mass around $0.3~\mbox{GeV}$, and fix the proton mass around $0.94~\mbox{GeV}$

Nucleon Observable

• Nucleon radii and magnetic moment

[In preparation, Siqi Xu, C. Mondal et.al]

Quantity	BLFQ (no gluon) ^c	BLFQ (gluon)	Measurement ^a	Lattice ^b
μ_p	2.443 ± 0.027	2.228	2.79	2.43(9)
r_E^P [fm]	0.802 ± 0.04	0.847	0.833 ± 0.01	0.742(13)
r_M^P [fm]	0.834 ± 0.029	0.88	0.851 ± 0.026	0.710(26)

- a. C. Alexandrou et al. Phys. Rev. D 96, no. 11, 114509
- b. M.Tanabashi et al. [Particle Data Group], Phys. Rev. D 98, no.3, 030001
- c. 2108.03909 [hep-ph], Siqi Xu, C. Mondal, et al., accepted by PRD

Parton Distribution Functions (PDF)

• Deep Inelastic Scattering (SLAC 1968)

$$e(p) + h(P) = e'(p') + X(P')$$

♦ Localized probe:

$$Q^2 = -(p - p')^2 \gg 1 \text{ fm}^{-2}$$
$$\stackrel{1}{\longrightarrow} \quad \frac{1}{Q} \ll 1 \text{ fm}$$

Discovery of spin ½ quarks and partonic structure

• **Parton distribution functions** (PDFs) are extracted from DIS processes.

$$\Phi^{[\gamma^+]}(x,Q^2) = \int \frac{dz^-}{8\pi} e^{ixP^+z^-/2} \langle P,\Lambda | \bar{\psi}(z)\gamma^+\psi(0) | P,\Lambda \rangle$$

PDFs encode the distribution of longitudinal momentum and polarization carried by the constituents

Without second Fock sector $|qqqg\rangle$, the gluon is generated dynamically from the DGLAP evolution $_{\circ}$

Including the One Dynamical Gluon Fock Sector, the gluon distribution is closer to the global fit.

```
[Work in progress, C. Mondal, Siqi Xu, et.al]
```

```
[EPJC 77 (2017) 663]
```


Including the One Dynamical Gluon Fock Sector, the gluon distribution is closer to the global fit.

```
[Work in progress, C. Mondal, Siqi Xu, et.al]
```

[[]EPJC 77 (2017) 663]

Axial Form Factor of The Proton

• Provide information on spin-isospin distributions

$$\langle N(p')|A^a_{\mu}|N(p)\rangle = \bar{u}(p') \left[\gamma_{\mu}G_A(t) + \frac{(p'-p)_{\mu}}{2m}G_P(t) \right] \gamma_5 \frac{\tau^a}{2}u(p) \qquad \qquad A^a_{\mu} = \bar{q}\gamma_{\mu}\gamma_5 T^a q$$

Including the dynamic gluon, the u quark's contribution is suppressed and closer to the experimental data results.

[Chandan Mondal, EPJC 2017] [In preparation, Siqi Xu, C. Mondal *et.al*] [COMPASS, EPJC 77 (2017) 209]

Prediction of Other Approach

[Alexandre Deur et al 2019 Rep. Prog. Phys. 82 076201]

Reference	Q^2 (GeV ²)	$\Delta\Sigma$	Remarks
[109]		0.75 ± 0.05	Relativistic quark model
[106]	_	0.60	Quark parton model
[113]	10.7	0.14 ± 0.23	EMC
[109]	10.7	0.01 ± 0.29	EMC (Jaffe-Manohar analysis)
[414]	_	0.30	Skyrme model
[415]	_	0.09	Instanton model
[271]	10	$\textbf{0.28} \pm \textbf{0.16}$	SMC
[255]	_	$\textbf{0.41} \pm \textbf{0.05}$	Global analysis
[268]	3	$\textbf{0.33} \pm \textbf{0.06}$	E143
[32]	10	$\textbf{0.31} \pm \textbf{0.07}$	BBS
[416]	_	0.37	χ quark model
[299]	1	0.5 ± 0.1	Global fit
[123]	4	0.168	GRSV 1995
[267]	2	$\textbf{0.39} \pm \textbf{0.11}$	E142
[256]	5	$\textbf{0.20} \pm \textbf{0.08}$	E154
[302]	4	0.342	LSS 1997
[417]	_	0.4	Relativistic quark model
[300]	1	$\textbf{0.45} \pm \textbf{0.10}$	ABFR 1998
[309]	5	$\textbf{0.26} \pm \textbf{0.02}$	AAC 2000
[257]	5	$\textbf{0.23} \pm \textbf{0.07}$	E155
[316]	5	0.197	StandardGRSV2000
		0.273	$SU(3)_f$ breaking
[336]	4	0.282	Stat. model
[304]	1	$\textbf{0.21} \pm \textbf{0.10}$	LSS 2001
[301]	4	0.198	ABFR 2001
[418]	5	$\textbf{0.16} \pm \textbf{0.08}$	Global analysis
[375]	4	0.298	BB 2002
[310]	5	$\textbf{0.213} \pm \textbf{0.138}$	AAC 2003
[367]	5	$\textbf{0.35} \pm \textbf{0.08}$	Neutron (³ He) data (section 6.9.
[282]	5	$\textbf{0.169} \pm \textbf{0.084}$	Proton data (section 6.9.1)
[419]	_	0.366	χ Quark soliton model
[124, 420]	∞	0.33	Chiral quark soliton model. $n_f = 6$
[311]	5	$\textbf{0.26} \pm \textbf{0.09}$	AAC 2006
[274]	5	0.330 ± 0.039	HERMES Glob. fit
[272]	10	0.35 ± 0.06	COMPASS
[312]	5	$\textbf{0.245} \pm \textbf{0.06}$	AAC 2008

Helicity Parton Distribution Functions

Preliminary results

Helicity Parton Distribution Functions

- Without second Fock sector |qqqg>, the gluon is generated dynamically from the DGLAP evolution.
- Including the One Dynamical Gluon Fock Sector, the valence quark distributions at small x region and x larger than 0.5 region are improved.

[In preparation, Siqi Xu, C. Mondal *et.al*]

Generalized Parton Distribution Functions For Gluon

Including the One Dynamical Gluon Fock Sector, we can calculate the gluon distribution at initial scale and Increase the distribution of gluon at large x region.

[In preparation, Siqi Xu, C. Mondal et.al]

Transversity Parton Distribution Functions

Conclusion

- Light-front Hamiltonian approach: mass spectrum and structure.
- Investigate the structure of the nucleon from the eigenstates of effective Hamiltonians and one dynamical gluon effective Hamiltonians.
- Wavefunctions lead to a good description of various observables such as electromagnetic form factors, PDFs, GPDs, etc.
- While including higher Fock Sectors, the effective interaction is replaced by the QCD vertex function and the gluon distribution can be explored.
- Including the one dynamical gluon Fock Sector, the Axial Form Factor of u quark is suppressed, and the d quark's Axial FF is almost same with only the leading Fock sector case.
- As we include the gluon contribution at initial scale, the gluon distributions are closer to the NNPDF results.

Thank you

Effective Hamiltonian

 $|P_{baryon}\rangle = \psi_1 |qqq\rangle$

 $H_{Interact} = -\frac{C_F 4\pi\alpha_s}{Q^2} \sum_{i,j(i < j)} \overline{u}_{s'_i}(k'_i)\gamma^{\mu}u_{s_i}(k_i)\overline{u}_{s'_j}(k'_j)\gamma_{\mu}u_{s_j}(k_j)$

Note: In our calculation, we fix the basis scale b equal to 0.6 GeV

Nucleon Radii and Axial Charges

• The magnetic moment of the proton and neutron

Quantity	BLFQ	Measurement ^a	Lattice
$\mu_{ m p}$	2.443 ± 0.027	2.79	2.43(9)
$\mu_{ m n}$	-1.405 ± 0.026	-1.91	-1.54(6)

• The radii of the proton and neutron

Quantity	BLFQ	Measurement	Lattice
$r_{ m E}^{ m p}~[{ m fm}]$	$0.802\substack{+0.042\\-0.040}$	0.833 ± 0.010	0.742(13)
$r_{ m M}^{ m p}~[{ m fm}]$	$0.834\substack{+0.029\\-0.029}$	0.851 ± 0.026	0.710(26)
$\left< r_{\mathrm{E}}^2 \right>^{\mathrm{n}} \; [\mathrm{fm}^2]$	-0.033 ± 0.198	-0.1161 ± 0.0022	-0.074(16)
$r_{\mathrm{M}}^{\mathrm{n}}$ [fm]	$0.861\substack{+0.021\\-0.019}$	$0.864\substack{+0.009\\-0.008}$	0.716(29)

• The axial charge and axial radius

Quantity	BLFQ	Extracted data	Lattice
$g^u_{ m A}$	1.16 ± 0.04	0.82 ± 0.07	0.830(26)
$g^d_{ m A}$	-0.248 ± 0.027	-0.45 ± 0.07	-0.386(16)
$g_{ m A}^{u-d}$	1.41 ± 0.06	1.2723 ± 0.0023	1.237(74)
$\sqrt{\langle r_{ m A}^2 angle} ~{ m fm}$	$0.680\substack{+0.070\\-0.073}$	0.667 ± 0.12	0.512(34)

The Quark Tensor Charge in The Proton

Quantity	BLFQ	Extracted data	Lattice
g^u_T	$0.94\substack{+0.06\\-0.15}$	$0.39\substack{+0.18 \\ -0.12}$	0.784(28)
g_T^d	$-0.20\substack{+0.02\\-0.04}$	$-0.25\substack{+0.30\\-0.10}$	-0.204(11)
$\langle x \rangle_T^{u-d}$	$0.229\substack{+0.019\\-0.048}$	—	0.203(24)

• The first moment of the transversitv PDF

$$g_T^q = \int dx \, h_1^q(x,\mu^2).$$
 $\mu^2 = 2.4 \, \text{GeV}^2$

The BLFQ predicts the tensor charges for the down quark in good agreement with the global QCD qnqlysis

• The second moment of the transversity PDF

$$\langle x \rangle_T^{u-d} = \int dx \, x \left(h_1^u(x,\mu^2) - h_1^d(x,\mu^2) \right), \qquad \mu^2 = 2.4 \text{ GeV}^2$$

The BLFQ prediction for $\langle x \rangle_T^{u-d}$ agrees reasonably well with the lattice data.

[2108.03909 [hep-ph], Siqi Xu, C. Mondal, et.al]

Encode the information about three dimensional spatial structure the spin and orbital angular momentum

With increasing momentum transfer (*t*), the peaks of distributions shift to larger *x*;

$$t = \Delta^2, x = \frac{k^+}{P^+}, \zeta = \frac{\Delta^+}{P^+} = 0 \qquad b_\perp \stackrel{FT}{\to} \Delta_\perp$$

Impact parameter distribution (b_{\perp}):

$$\langle b_{\perp}^2 \rangle^q(x) = -4 \frac{\partial}{\partial \vec{q}_{\perp}^2} \ln H^q(x, 0, -\vec{q}_{\perp}^2) \Big|_{\vec{q}_{\perp}=0}$$

 $\langle b_{\perp}^2 \rangle(x) = 2e_u \langle b_{\perp}^2 \rangle^u(x) + e_d \langle b_{\perp}^2 \rangle^d(x)$

Angular Momentum Distributions

