Nucleon with One Dynamical Gluon in Basis Light-Front Quantization

Siqi Xu With

Xingbo Zhao, Chandan Mondal, Yang Li, James Vary

Institute of Modern Physics, Chinese Academy of Sciences

Lanzhou, China

Light Cone 2021 : Physics of Hadrons on the Light Front November 28- December 4, 2021, Jeju island, Korea

Outline

- Basis Light-Front Quantization (BLFQ)
- Nucleon Structure in BLFQ
- Nucleon Structure with leading Fock Sector
- Nucleon Structure with One Dynamical Gluon
- Conclusion

Basis Light-Front Quantization

$>$ Solve the time-independent Schrödinger Equation:

$$
P^{-}|\beta\rangle=P_{\beta}^{-}|\beta\rangle
$$

- \boldsymbol{P}^{-}: Light-Front Hamiltonian;
- $|\boldsymbol{\beta}\rangle$: Eigenstates;
- $\boldsymbol{P}_{\boldsymbol{\beta}}^{-}$: Eigenvalues for eigenstates.
> Quantum numbers of basis states in BLFQ:
I. Longitudinal direction
- discrete longitudinal momentum (labeled by k): $P^{+}=\frac{2 \pi}{L} k$
II. Transverse direction
- 2-dimensional harmonic oscillator (labeled by n, m) Truncation: $\left\{\begin{array}{l}\mathrm{Nmax} \\ \mathrm{Kmax}\end{array}\right.$

$$
\Phi_{n, m}^{b}\left(p_{\perp}\right)=\frac{1}{b \sqrt{\pi}} \sqrt{\frac{n!}{(n+|m|)!}} e^{-\frac{p^{2}}{2 b^{2}} e^{-i m \phi}\left(\frac{p}{b}\right)^{|m|} L_{n}^{|m|}\left(\frac{p^{2}}{b^{2}}\right) \quad \begin{array}{l}
\text { Prof. Xingbo Zhao's Talk } \\
4 / 16
\end{array} \quad \text { At Firday noon, QCD AB II }}
$$

Light-Front Hamiltonian

$P^{-}=H_{\text {K.E. }}+H_{\text {trans }}+H_{\text {longi }}+H_{\text {Interact }}$

$H_{\text {K.E. }}=\sum_{i} \frac{\boldsymbol{p}_{i}^{2}+\boldsymbol{m}_{q}^{2}}{p_{i}^{+}}$
$\boldsymbol{H}_{\text {trans }} \sim \boldsymbol{\kappa}_{\boldsymbol{T}}^{4} \boldsymbol{r}^{\mathbf{2}} \quad$-- Brodsky, Teramond arXiv: 1203.4025
$\boldsymbol{H}_{\text {longi }} \sim-\sum_{i j} \boldsymbol{\kappa}_{L}^{4} \boldsymbol{\partial}_{\boldsymbol{x}_{\boldsymbol{i}}}\left(\boldsymbol{x}_{\boldsymbol{i}} \boldsymbol{x}_{\boldsymbol{j}} \boldsymbol{\partial}_{\boldsymbol{x}_{j}}\right) \quad---\mathrm{Y} \mathrm{Li}, \mathrm{X}$ Zhao, P Maris, J Vary, PLB 758(2016)
$\left|P_{\text {baryon }}\right\rangle=|q q q\rangle+|q q q g\rangle+|q q q q \bar{q}\rangle+\cdots \cdots \cdot$
$>$ Only include first Fock sector

$$
H_{\text {Interact }}=-\frac{C_{F} 4 \pi \alpha_{s}}{Q^{2}} \sum_{i, j(i<j)} \bar{u}_{s_{i}^{\prime}}\left(k_{i}^{\prime}\right) \gamma^{\mu} u_{s_{i}}\left(k_{i}\right) \bar{u}_{s_{j}^{\prime}}\left(k_{j}^{\prime}\right) \gamma_{\mu} u_{s_{j}}\left(k_{j}\right)
$$

> Include the first and second Fock sector

$$
H_{\text {Interact }}=H_{V e r t e x}+H_{\text {inst }}=g \bar{\psi} \gamma^{\mu} T^{a} \psi A_{\mu}^{a}+\frac{g^{2} C_{F}}{2} j^{+} \frac{1}{\left(i \partial^{+}\right)^{2}} j^{+}
$$

Angular Momentum Distributions

- Spin decomposition

In the quark model $\Delta \Sigma=1$
The spin decomposition can be measured by polarized DIS

- Ji decomposition:

$$
\frac{1}{2}=\frac{1}{2} \Delta \Sigma+L_{J i}^{q}+J_{g}
$$

Angular Momentum Distributions

- Total angular momentum density:
[In preparation, Ping Yi, Siqi Xu, C. Mondal et.al]

$$
\begin{gathered}
\left\langle J^{Z}\right\rangle\left(b_{\perp}\right)=\left\langle L^{Z}\right\rangle\left(b_{\perp}\right)+\left\langle S^{Z}\right\rangle\left(b_{\perp}\right) \\
\left\langle L^{z}\right\rangle\left(b_{\perp}\right)=-i \epsilon^{3 j k} \int \frac{d^{2} \vec{\Delta}_{\perp}}{(2 \pi)^{2}} e^{-i \vec{\Delta}_{\perp} \vec{b}_{\perp}} \frac{\left.\partial \tau^{+k}\right\rangle}{\partial \Delta_{\perp}^{j}}, \quad\left\langle S^{z}\right\rangle\left(b_{\perp}\right)=\frac{s^{z}}{2} \int \frac{d^{2} \vec{\Lambda}_{\perp}}{(2 \pi)^{2}} e^{-i \vec{\Delta}_{\perp} \overrightarrow{\mathrm{b}}_{\perp}} G_{A}\left(-\vec{\Delta}_{\perp}^{2}\right)
\end{gathered}
$$

Light-Front QCD Hamiltonian

$$
\begin{gathered}
\left|P_{\text {baryon }}\right\rangle=\psi_{1}|q q q\rangle+\psi_{2}|q q q g\rangle \\
\boldsymbol{H}_{\text {Interact }}=\boldsymbol{H}_{\text {Vertex }}+\boldsymbol{H}_{\text {inst }}=g \bar{\psi} \gamma^{\mu} \boldsymbol{T}^{a} \psi A_{\mu}^{a}+\frac{g^{2} C_{F}}{2} \boldsymbol{j}^{+} \frac{1}{\left(\boldsymbol{i \partial ^ { + }) ^ { 2 }} j^{+}\right.} \\
N_{\max }=9, K=16.5
\end{gathered}
$$

Electromagnetic Form Factor

- Elastic scattering of proton
[R. Hofstadter, Nobel Prize 1961]

$$
e(p)+h(P) \rightarrow e\left(p^{\prime}\right)+h\left(P^{\prime}\right)
$$

- Elastic electron scattering established the extended nature of the proton (proton radius).

The Fourier transformation of these form factors provide spatial distributions (charge and magnetization distributions).
$\left\langle N\left(p^{\prime}\right)\right| J^{\mu}(0)|N(p)\rangle=$
$\bar{u}\left(p^{\prime}\right)[\gamma^{\mu} \underbrace{F_{1}\left(q^{2}\right)}+\frac{i \sigma^{\mu \nu}}{2 m_{N}} q_{\nu} \underbrace{F_{2}\left(q^{2}\right)}] u(p)$
Dirac Form Factor
Pauli Form Factor

Form Factor with Dynamical Gluon

Form Factor with Dynamical Gluon

Including the One Dynamical Gluon Fock Sector, the valence quark distributions are almost same with effective interaction results

Form Factor with Dynamical Gluon

[In preparation, Siqi Xu, C. Mondal et.al]

At $Q^{2} \gg m^{2}=0.09 \mathrm{GeV}^{2}$, we find our Form Factor ratio is proportional to $\log ^{2}\left(Q^{2} / \Lambda\right) / Q^{2}$.
In our calculation, we use the quark mass around 0.3 GeV , and fix the proton mass around 0.94 GeV

Nucleon Observable

- Nucleon radii and magnetic moment
[In preparation, Siqi Xu, C. Mondal et.al]

Quantity	BLFQ (no gluon)	BLFQ (gluon)	Measurement $^{\mathbf{a}}$	Lattice $^{\mathrm{b}}$
μ_{p}	2.443 ± 0.027	2.228	2.79	$2.43(9)$
$r_{E}^{P}[\mathrm{fm}]$	0.802 ± 0.04	0.847	0.833 ± 0.01	$0.742(13)$
$r_{M}^{P}[\mathrm{fm}]$	0.834 ± 0.029	0.88	0.851 ± 0.026	$0.710(26)$

a. C. Alexandrou et al. Phys. Rev. D 96, no. 11, 114509
b. M.Tanabashi et al. [Particle Data Group], Phys. Rev. D 98, no.3, 030001
c. 2108.03909 [hep-ph], Siqi Xu, C. Mondal, et al. , accepted by PRD

Parton Distribution Functions (PDF)

- Deep Inelastic Scattering (SLAC 1968)

$$
e(p)+h(P)=e^{\prime}\left(p^{\prime}\right)+X\left(P^{\prime}\right)
$$

\diamond Localized probe:

$$
\begin{gathered}
Q^{2}=-\left(p-p^{\prime}\right)^{2} \gg 1 \mathrm{fm}^{-2} \\
\\
>\frac{1}{Q} \ll 1 \mathrm{fm}
\end{gathered}
$$

Discovery of spin $1 / 2$ quarks and partonic structure

- Parton distribution functions (PDFs) are extracted from DIS processes.

$$
\Phi^{\left[\gamma^{+}\right]}\left(x, Q^{2}\right)=\int \frac{d z^{-}}{8 \pi} e^{i x P^{+} z^{-} / 2}\langle P, \Lambda| \bar{\psi}(z) \gamma^{+} \psi(0)|P, \Lambda\rangle
$$

PDFs encode the distribution of longitudinal momentum and polarization carried by the constituents

Unpolarized Parton Distribution Functions

Without second Fock sector $|q q q g\rangle$, the gluon is generated dynamically from the DGLAP evolution。

Including the One Dynamical Gluon Fock Sector, the gluon distribution is closer to the global fit.

Unpolarized Parton Distribution Functions

Including the One Dynamical Gluon Fock Sector, the gluon distribution is closer to the global fit.

Axial Form Factor of The Proton

- Provide information on spin-isospin distributions

$$
\left\langle N\left(p^{\prime}\right)\right| A_{\mu}^{a}|N(p)\rangle=\bar{u}\left(p^{\prime}\right)\left[\gamma_{\mu} G_{A}(t)+\frac{\left(p^{\prime}-p\right)_{\mu}}{2 m} G_{P}(t)\right] \gamma_{5} \frac{\tau^{a}}{2} u(p) \quad A_{\mu}^{a}=\bar{q} \gamma_{\mu} \gamma_{5} T^{a} q
$$

Including the dynamic gluon, the u quark's contribution is suppressed and closer to the experimental data results.

$$
\Delta \Sigma_{q} \approx 0.7 \quad \Delta \Sigma_{u} \approx 0.86 \quad \Delta \Sigma_{d} \approx 0.16 \quad \Delta G \approx 0.13<0.2 \quad \text { (COMPASS) }
$$

[Chandan Mondal, EPJC 2017] [In preparation, Siqi Xu, C. Mondal et.al] [COMPASS, EPJC 77 (2017) 209]

Prediction of Other Approach

[Alexandre Deur et al 2019 Rep. Prog. Phys. 82 076201]

Reference	$Q^{2}\left(\mathrm{GeV}^{2}\right)$	$\Delta \Sigma$	Remarks
[109]	-	0.75 ± 0.05	Relativistic quark model
[100]		10.12	Qrio
[106]	-	0.60	Quark parton model
[113]	10.7	$0.14 \pm \mathbf{0 . 2 3}$	EMC
[109]	10.7	$\mathbf{0 . 0 1} \pm \mathbf{0 . 2 9}$	EMC (Jaffe-Manohar analysis)
[414]	-	0.30	Skyrme model
[415]	-	0.09	Instanton model
[271]	10	0.28 ± 0.16	SMC
[255]	-	0.41 ± 0.05	Global analysis
[268]	3	0.33 ± 0.06	E143
[32]	10	$\mathbf{0 . 3 1} \pm \mathbf{0 . 0 7}$	BBS
[416]	-	0.37	χ quark model
[299]	1	0.5 ± 0.1	Global fit
[123]	4	0.168	GRSV 1995
[267]	2	$\mathbf{0 . 3 9} \pm \mathbf{0 . 1 1}$	E142
[256]	5	0.20 ± 0.08	E154
[302]	4	0.342	LSS 1997
[417]	-	0.4	Relativistic quark model
[300]	1	$\mathbf{0 . 4 5} \pm \mathbf{0 . 1 0}$	ABFR 1998
[309]	5	0.26 ± 0.02	AAC 2000
[257]	5	0.23 ± 0.07	E155
[316]	5	0.197	StandardGRSV2000
		0.273	$\mathbf{S U}(\mathbf{3})_{f}$ breaking
[336]	4	0.282	Stat. model
[304]	1	$\mathbf{0 . 2 1} \pm \mathbf{0 . 1 0}$	LSS 2001
[301]	4	0.198	ABFR 2001
[418]	5	0.16 ± 0.08	Global analysis
[375]	4	0.298	BB 2002
[310]	5	$\mathbf{0 . 2 1 3} \pm \mathbf{0 . 1 3 8}$	AAC 2003
[367]	5	0.35 ± 0.08	Neutron (${ }^{\mathbf{3}} \mathrm{He}$) data (section 6.9.1)
[282]	5	$\mathbf{0 . 1 6 9} \pm 0.084$	Proton data (section 6.9.1)
[419]	-	0.366	χ Quark soliton model
[124, 420]	∞	0.33	Chiral quark soliton model. $n_{f}=6$
[311]	5	0.26 ± 0.09	AAC 2006
[274]	5	$\mathbf{0 . 3 3 0} \pm \mathbf{0 . 0 3 9}$	HERMES Glob. fit
[272]	10	0.35 ± 0.06	COMPASS
[312]	5	0.245 ± 0.06	AAC 2008

Helicity Parton Distribution Functions

Preliminary results

Including the One Dynamical Gluon Fock Sector, the valence quark distributions at small x region are improved.

Helicity Parton Distribution Functions

- Without second Fock sector $|q q q g\rangle$, the gluon is generated dynamically from the DGLAP evolution。
- Including the One Dynamical Gluon Fock Sector, the valence quark distributions at small x region and x larger than 0.5 region are improved.

Generalized Parton Distribution Functions (GPD)

Generalized Parton Distribution Functions (GPD)

$$
\tilde{H}^{u}(\mathrm{x}, 0, \mathrm{t})
$$

With dynamical gluon

Generalized Parton Distribution Functions (GPD)

$>$ Generalized Parton Distribution Functions For Gluon

Including the One Dynamical Gluon Fock Sector, we can calculate the gluon distribution at initial scale and Increase the distribution of gluon at large x region.

Transversity Parton Distribution Functions

Conclusion

- Light-front Hamiltonian approach: mass spectrum and structure.
- Investigate the structure of the nucleon from the eigenstates of effective Hamiltonians and one dynamical gluon effective Hamiltonians.
- Wavefunctions lead to a good description of various observables such as electromagnetic form factors, PDFs, GPDs, etc.
- While including higher Fock Sectors, the effective interaction is replaced by the QCD vertex function and the gluon distribution can be explored.
- Including the one dynamical gluon Fock Sector, the Axial Form Factor of u quark is suppressed, and the d quark's Axial FF is almost same with only the leading Fock sector case.
- As we include the gluon contribution at initial scale, the gluon distributions are closer to the NNPDF results.

Thank you

Effective Hamiltonian

$$
\begin{aligned}
& \left|P_{\text {baryon }}\right\rangle=\psi_{1}|q q q\rangle \\
& H_{\text {Interact }}=-\frac{C_{F} 4 \pi \alpha_{s}}{Q^{2}} \sum_{i, j(i<j)} \bar{u}_{s_{i}^{\prime}}\left(k_{i}^{\prime}\right) \gamma^{\mu} u_{s_{i}}\left(k_{i}\right) \bar{u}_{s_{j}^{\prime}}\left(k_{j}^{\prime}\right) \gamma_{\mu} u_{s_{j}}\left(k_{j}\right) \\
& N_{\max }=10, K=16.5
\end{aligned}
$$

Note: In our calculation, we fix the basis scale b equal to 0.6 GeV

Nucleon Radii and Axial Charges

- The magnetic moment of the proton and neutron

Quantity	BLFQ	Measurement $^{\mathrm{a}}$	Lattice
μ_{p}	2.443 ± 0.027	2.79	$2.43(9)$
μ_{n}	-1.405 ± 0.026	-1.91	$-1.54(6)$

- The radii of the proton and neutron

Quantity	BLFQ	Measurement	Lattice
$r_{\mathrm{E}}^{\mathrm{P}}[\mathrm{fm}]$	$0.802_{-0.040}^{+0.042}$	0.833 ± 0.010	$0.742(13)$
$r_{\mathrm{M}}^{\mathrm{P}}[\mathrm{fm}]$	$0.834_{-0.029}^{+0.029}$	0.851 ± 0.026	$0.710(26)$
$\left\langle r_{\mathrm{E}}^{\mathrm{n}}\right\rangle^{\mathrm{n}}\left[\mathrm{fm}^{2}\right]$	-0.033 ± 0.198	-0.1161 ± 0.0022	$-0.074(16)$
$r_{\mathrm{M}}^{\mathrm{n}}[\mathrm{fm}]$	$0.861_{-0.019}^{+0.021}$	$0.864_{-0.008}^{+0.009}$	$0.716(29)$

- The axial charge and axial radius

Quantity	BLFQ	Extracted data	Lattice
g_{A}^{u}	1.16 ± 0.04	0.82 ± 0.07	$0.830(26)$
g_{A}^{d}	-0.248 ± 0.027	-0.45 ± 0.07	$-0.386(16)$
g_{A}^{u-d}	1.41 ± 0.06	1.2723 ± 0.0023	$1.237(74)$
$\sqrt{\left\langle r_{\mathrm{A}}^{2}\right\rangle} \mathrm{fm}$	$0.680_{-0.073}^{+0.070}$	0.667 ± 0.12	$0.512(34)$

The Quark Tensor Charge in The Proton

Quantity	BLFQ	Extracted data	Lattice
g_{T}^{u}	$0.94_{-0.15}^{+0.06}$	$0.39_{-0.12}^{+0.18}$	$0.784(28)$
g_{T}^{d}	$-0.20_{-0.04}^{+0.02}$	$-0.25_{-0.10}^{+0.30}$	$-0.204(11)$
$\langle x\rangle_{T}^{u-d}$	$0.229_{-0.048}^{1+0.019}$	-	$0.203(24)$

- The first moment of the transversitv PDF

$$
g_{T}^{q}=\int d x h_{1}^{q}\left(x, \mu^{2}\right) . \quad \quad \mu^{2}=2.4 \mathrm{GeV}^{2}
$$

The BLFQ predicts the tensor charges for the down quark in good agreement with the global QCD qnqlysis

- The second moment of the transversity PDF

$$
\langle x\rangle_{T}^{u-d}=\int d x x\left(h_{1}^{u}\left(x, \mu^{2}\right)-h_{1}^{d}\left(x, \mu^{2}\right)\right), \quad \mu^{2}=2.4 \mathrm{GeV}^{2}
$$

The BLFQ prediction for $\langle x\rangle_{T}^{u-d}$ agrees reasonably well with the lattice data.

Generalized Parton Distribution Functions (GPD)

[2108.03909 [hep-ph], Siqi Xu, C. Mondal, et.al]

Encode the information about three dimensional spatial structure the spin and orbital angular momentum

With increasing momentum transfer (t), the peaks of distributions shift to larger x;

$$
t=\Delta^{2}, x=\frac{k^{+}}{P^{+}}, \zeta=\frac{\Delta^{+}}{P^{+}}=0 \quad b_{\perp} \xrightarrow{F T} \Delta_{\perp}
$$

Impact parameter distribution $\left(b_{\perp}\right)$:

$$
\begin{aligned}
& \left\langle b_{\perp}^{2}\right\rangle^{q}(x)=-\left.4 \frac{\partial}{\partial \vec{q}_{\perp}^{2}} \ln H^{q}\left(x, 0,-\vec{q}_{\perp}^{2}\right)\right|_{\vec{q}_{\perp}=0} \\
& \left\langle b_{\perp}^{2}\right\rangle(x)=2 e_{u}\left\langle b_{\perp}^{2}\right\rangle^{u}(x)+e_{d}\left\langle b_{\perp}^{2}\right\rangle^{d}(x)
\end{aligned}
$$

Generalized Parton Distribution Functions (GPD)

Angular Momentum Distributions

- Total angular momentum density:

$$
\begin{gathered}
\left\langle J^{Z}\right\rangle\left(b_{\perp}\right)=\left\langle L^{Z}\right\rangle\left(b_{\perp}\right)+\left\langle S^{Z}\right\rangle\left(b_{\perp}\right) \\
\left\langle L^{Z}\right\rangle\left(b_{\perp}\right)=-i \epsilon^{3 j k} \int \frac{d^{2} \vec{\Delta}_{\perp}}{(2 \pi)^{2}} e^{-i \vec{\Delta}_{\perp} \overrightarrow{\mathrm{b}}_{\perp} \frac{\partial\left(T^{+k}\right\rangle}{\partial \Delta_{\perp}^{j}} \quad, \quad\left\langle S^{Z}\right\rangle\left(b_{\perp}\right)=\frac{s^{z}}{2} \int \frac{d^{2} \vec{\Delta}_{\perp}}{(2 \pi)^{2}} e^{-i \vec{\Delta}_{\perp} \overrightarrow{\mathrm{b}}_{\perp}} G_{A}\left(-\vec{\Delta}_{\perp}^{2}\right)}
\end{gathered}
$$

- Belinfante-improved tensors

$$
\left\langle J^{z}\right\rangle\left(b_{\perp}\right)=\left\langle J_{B e l}^{Z}\right\rangle\left(b_{\perp}\right)+\left\langle M^{z}\right\rangle\left(b_{\perp}\right)
$$

Quark Helicity > 90\%

$$
\begin{aligned}
T_{\text {Bel }}^{\mu \nu}(x) & =T^{\mu \nu}(x)+\partial_{\lambda} G^{\lambda \mu \nu}(x), \\
J_{\mathrm{Bel}}^{\mu \alpha \beta}(x) & =J^{\mu \alpha \beta}(x)+\partial_{\lambda}\left[x^{\alpha} G^{\lambda \mu \beta}(x)-x^{\beta} G^{\lambda \mu \alpha}(x)\right],
\end{aligned}
$$

