LCSR application to $p \rightarrow e^{+} \gamma$

Anshika Bansal
Physical Research Laboratory, Ahmedabad

Outline

- Motívation
- Introduction
- Light cone sum rules
- Form Factors in LCSR
- Results
- Summary \& Conclusions

Motivation

- Proton decay: Forbidden in the Standard Model
\Longrightarrow A clear signal of physics beyond the standard model.
- Promínent decay mode: $p \rightarrow e^{+} \pi^{0}$ (Experímental contraints: $\tau_{p}>10^{34}$ years).
- Has been studied using varíous methods and models (Bag Model, Lattice QCD,etc.)
- A recent analysis using LCSR.
[Haisch et al, JHEP O5 (2021) 258]
- Though it is prominent, it has not been observed experimentally yet.
- Detailed study of other modes is important.
- $p \rightarrow e^{+} \gamma$ is $\mathcal{O}\left(\alpha_{e m}\right)$ suppressed compared to mesonic mode.
- But, $p \rightarrow e^{+} \gamma$ is free from nuclear absorption and complications due to strong interactions compared to the mesonic modes.
- Hence, a cleaner channel for experímental analysis.
- Experímental partíal mean life $>6.7 \times 10^{32}$ year.
- Helpful in understanding the structure of Proton.
- Can help in constraining the parameter space of various BSM models.
- Gaíned very less attention in the past, only one paper by Silverman et. Al.
[PLB, Vol. 100, n. 2 (1981)]
- A careful analysis of the form factors is still missing.

Introduction

- Proton decay is possible via baryon number violating dím-6 operator.

$$
\mathcal{O}_{\Gamma \Gamma^{\prime}}=\epsilon^{a b c}\left(\bar{d}_{a}^{c} P_{\Gamma} u_{b}\right)\left(\bar{e}^{c} P_{\Gamma} u_{c}\right)
$$

Projection operators
[Weínberg, (PRL, Vol. 43, 21 (1979))]

- The amplitude for the process is:

$$
\mathscr{A}\left(p \rightarrow e^{+} \gamma\right)=\sum_{\Gamma, \Gamma^{\prime}} c_{\Gamma \Gamma^{\prime}}\left\langle e^{+}\left(p_{e}\right) \gamma(k)\right| \mathscr{O}_{\Gamma \Gamma^{\prime}}\left|p\left(p_{p}\right)\right\rangle=\sum_{\Gamma, \Gamma^{\prime}} c_{\Gamma \Gamma^{\prime}} \bar{v}_{e}^{c}\left(p_{e}\right) H_{\Gamma \Gamma}\left(p_{p}, p_{e}\right) u_{p}\left(p_{p}\right)
$$

- All the flavour effects are absorbed in wilson coefficients, $c_{\Gamma \Gamma^{\prime}}$,
- Using gauge invariance, it can be written in terms of two form factors (to be calculated using LCSR):

$$
\mathscr{A}\left(p \rightarrow e^{+} \gamma\right)=\sum_{\Gamma, \Gamma^{\prime}} c_{\Gamma \Gamma^{\prime}}\left\{i \sigma^{\alpha \beta} k_{\beta} \epsilon_{\alpha}^{*}\left(A_{\Gamma \Gamma^{\prime}}+B_{\Gamma \Gamma} \gamma_{5}\right)\right\}
$$

- Becaue the parity is conserved in QCD,

$$
A_{L L}=A_{R R}, \quad A_{L R}=A_{R L}, \quad B_{L L}=B_{R R}, \text { and } \quad B_{L R}=B_{R L}
$$

Light Cone Sum Rules

TOOLS TO DERIVE SUM RULES

- Idea: To compute hadronic parameters using the analytic properties of the correlation function (treated in the framework of OPE).

Dispersion Relation (relates real part of correlation function to its imaginary part)

Operator Product Expansion

(Enables one to write correlation function as a product of short distance and long distance physics)

Quark Hadron Duality

(Relates the non-perturbative spectral function to the perturbatively calculated amplitude function)

Borel Transformation
(To supress the effect of continuum and higher resonances)

Light Cone Sum Rules for $p \rightarrow e^{+} \gamma$

- The hadronic matrix element to be calculated is,

$$
H_{\Gamma \Gamma} u_{p}\left(p_{p}\right)=\langle\gamma(k)| \epsilon^{a b c}\left(d_{a}^{T} C P_{\Gamma} u_{b}\right) P_{\Gamma} u_{c}\left|p\left(p_{p}\right)\right\rangle
$$

- Two possibilities:

1. Interpolatíng proton current and usíng photon distribution amplitudes.
2. Interpolating electromagnetic current and using proton distribution amplitudes.

Distibution amplitude: The probability amplitude for finding meson (baryon) as a two (three) quark state with the momentum factions u and $(1-u)\left(\alpha_{1}, \alpha_{2}\right.$, and $\left.\alpha_{3}\right)$.

Case-1: Using proton DAs

- Interpolation the photon current:

$$
\overline{v_{e}^{c}} H_{\Gamma \Gamma} u_{p}\left(p_{p}\right)=-i e \epsilon^{* \alpha} \int d^{4} x e^{i k x}\left\langle e^{+}\right| T\left\{j_{\alpha_{e n n}} \theta^{a b c}\left(d_{a}^{T} C P_{\Gamma} u_{b}\right)\left(e^{T} C P_{\Gamma} u_{c}\right\}\left|p\left(p_{p}\right)\right\rangle\right.
$$

- The generalised Fierz transformations:
[arXiv: hep-ph/0306087]

$$
\begin{gathered}
e_{S}(1234)=\frac{1}{4}\left(e_{S}\left(31^{c} 4^{c} 2\right)-e_{V}\left(31^{c} 4^{c} 2\right)-e_{T}\left(31^{c} 4^{c} 2\right)-e_{A}\left(31^{c} 4^{c} 2\right)+e_{P}\left(31^{c} 4^{c} 2\right)\right) \\
\left(d_{a}^{T} C P_{L} u_{b}\right)\left(e^{T} C P_{L} u_{C}\right)=\frac{1}{4}\left(2\left(e^{T} C P_{L} d_{a}\right)\left(u_{c}^{T} C P_{L} u_{b}\right)-\left(e^{T} C \sigma_{\mu \nu} P_{L} d_{a}\right)\left(u_{c}^{T} C \sigma_{\mu \nu} P_{L} u_{b}\right)\right)
\end{gathered}
$$

- Leading twist (twist-3) nucleon DA,
$4\langle 0| \epsilon^{a b c} u_{\alpha}^{a}\left(a_{1} n\right) u_{\beta}^{b}\left(a_{2} n\right) d_{\gamma}^{c}\left(a_{3} n\right)\left|P\left(p_{P}\right)\right\rangle=f_{P}\left[\left(p_{P} \cdot \gamma C\right)_{\alpha \beta}\left(\gamma_{5} u_{P}\right) V_{1}\left(a_{i} n \cdot p_{P}\right)+\left(p_{P} \cdot \gamma C\right)_{\alpha \beta}\left(\gamma_{5} u_{P}\right) V_{1}\left(a_{i} n \cdot p_{P}\right)+\left(p_{P} \cdot \gamma \gamma_{5} C\right)_{\alpha \beta}\left(u_{P}\right) A_{1}\left(a_{i} n \cdot p_{P}\right)\right.$

$$
\left.+\left(i \sigma_{\rho \sigma} p_{P}^{\sigma} C\right)_{\alpha \beta}\left(\gamma_{\rho} \gamma_{5} u_{P}\right) T_{1}\left(a_{i} n \cdot p_{P}\right)\right]
$$

- In QCD,

$$
A_{L L}^{Q C D}=\frac{-e m_{P} \epsilon^{* \alpha}}{2} f_{P} \int \mathscr{D} \alpha_{i} T_{1}\left(\alpha_{i}\right)\left[\frac{Q_{d}}{2} \frac{1+2 \alpha_{3}}{\left(k-\alpha_{3} p_{P}\right)^{2}}+Q_{u} \frac{5 \alpha_{1}-2}{\left(k-\alpha_{1} p_{P}\right)^{2}}\right]
$$

- Dispersion relation (by sturating the sum rule with $\frac{1}{2}^{+}$and $\frac{1^{-}}{2}$ states.),

$$
\epsilon^{* \alpha}\langle 0| O_{L L}(0) j_{\alpha}^{e m}(x)\left|P\left(p_{P}\right)\right\rangle \sim \epsilon^{* \alpha}\langle 0| O_{L L}\left|P\left(p_{P}-k\right)\right\rangle\left\langle P\left(p_{P}-k\right)\right| j_{\alpha}^{e m}(x)\left|P\left(p_{P}\right)\right\rangle+\ldots
$$

Ellipses implies the negative parity

$$
\sim \lambda_{P} m_{P} u_{P}\left(p_{P}-k\right)
$$ states, higher resonances and continuam.

$$
\bar{u}_{P}\left(p_{P}-k\right)\left[\gamma_{\alpha} F_{1}\left(Q^{2}\right)-i \frac{\sigma_{\mu \nu} k^{\nu}}{2 m_{P}} F_{2}\left(Q^{2}\right)\right] u_{P}\left(p_{P}\right)
$$

- The final sum rule turns out be,

$$
\lambda_{P} F_{2}^{L L}\left(Q^{2}\right)=e f_{P} \int \mathscr{D} \alpha_{i} T_{1}\left(\alpha_{i}\right)\left[\frac{Q_{d}}{2} \frac{1+2 \alpha_{3}}{\alpha_{3}} e^{-\left(1-\alpha_{3} \frac{m_{p}^{2}}{M^{2}}\right.}+Q_{u} \frac{5 \alpha_{1}-2}{\alpha_{1}} e^{-\left(1-\alpha_{1} \frac{m_{p}^{2}}{M^{2}}\right.}\right] e^{\frac{m_{p}^{2}}{M^{2}}}
$$

M is the Borel parameter, and

$$
T_{1}\left(\alpha_{i}\right)=120 \alpha_{1} \alpha_{2} \alpha_{3}\left[1+\frac{1}{2}\left(\tilde{\phi}_{3}^{-}-\tilde{\phi}_{3}^{+}\right)(\mu)\left(1-3 \alpha_{3}\right)\right]
$$

- The form factor $A_{L L}\left(Q^{2}\right)$ is,

$$
A_{L L}\left(Q^{2}\right)=\frac{-m_{P}}{Q^{2}-m_{P}^{2}-i \epsilon} \lambda_{P} F_{2}^{L L}\left(Q^{2}\right)
$$

Case-2: Using photon DAs

- The leading twist (twist-2) DA for photon is:

$$
\begin{gathered}
\langle\gamma(k)| \bar{q}(x) \sigma_{\mu \nu} q(0)|0\rangle=-i e_{q}\langle\bar{q} q\rangle\left(\epsilon_{\mu}^{*} k_{\nu}-\epsilon_{\nu}^{*} k_{\mu}\right) \int_{0}^{1} d u e^{i q . x \bar{u}} \chi \phi_{\gamma}(u) \\
\text { Quark Condensate } \quad \begin{array}{c}
\text { Magnetic } \\
\text { Susceptibility }
\end{array} \\
\phi_{\gamma}(u)=6 u \bar{u}\left(1+\sum_{n=2,4, . .}^{\infty} L^{\left(\gamma_{n}-\gamma_{0}\right) / b} \phi_{n} c_{n}^{3 / 2}(u-\bar{u})\right)
\end{gathered}
$$

- The proton interpolation current is chosen to be,

$$
\eta(x)=2 \epsilon^{a b c}\left(u_{a}^{T}(x) C \gamma_{5} d_{b}(x)\right) u_{c}(x)
$$

Such that $\langle 0| \eta(0)\left|p\left(p_{p}\right)\right\rangle=m_{p} \lambda_{p} u_{p}\left(p_{p}\right)$.

Form Factors in QCD

- In QCD,

$$
\begin{aligned}
& \Pi_{\Gamma \Gamma^{\prime}}=i \int d^{4} x e^{i p_{e^{\prime}} x}\langle\gamma(k)| \underbrace{T\left\{\epsilon^{a b c}\left(d_{A}^{T}(x) C P_{\Gamma} u_{b}(x)\right) P_{\Gamma^{\prime}} u_{c}(x) \times 2 \epsilon^{i j k_{u}}(0)\left(u_{a}^{T}(0) C \gamma_{5} d_{b}(x)\right)\right\}}|0\rangle \\
& -\frac{1}{2} \epsilon_{i j k} \epsilon_{a b c} P_{\Gamma^{\prime}}\left(\bar{u}^{a}(0) \Gamma_{A} u^{i}(x)\right)\left(s_{u}^{k c}(x) \gamma_{5} \tilde{S}_{d}^{j b}(x) P_{\Gamma} \Gamma^{A}+s_{u}^{k c}(x) \operatorname{Tr}\left(\Gamma^{A} \gamma_{5} \tilde{S}_{d}^{j b}(x) P_{\Gamma}\right)+\Gamma^{A} \gamma_{5} \tilde{s}_{d}^{j b}(x) P_{\Gamma} s_{u}^{k c}(x)+\Gamma^{A} \operatorname{Tr}\left(s_{u}^{k c} \gamma_{5} \tilde{s}_{d}^{b b}(x) P_{\Gamma}\right)\right) \\
& \left.+\left(\bar{d}^{a}(0) \Gamma_{A} d^{i}(x)\right)\left(s_{u}^{k c}(x) \gamma_{5} \tilde{\Gamma}^{A} P_{\Gamma}{ }_{u}^{j b}(x)+s_{u}^{k c}(x) \operatorname{Tr}\left(s_{u}^{j b}(x) \gamma_{5} \tilde{\Gamma}^{A} P_{\Gamma}\right)\right)\right\} \\
& \Gamma_{A}=\left\{1, \gamma_{5}, \gamma^{\rho}, i \gamma_{\rho} \gamma_{5}, \frac{1}{\sqrt{2}} \sigma^{\rho \sigma}\right\} \\
& s^{i j}(x)=\frac{i x_{\mu} \gamma^{\mu}}{2 \pi^{2} x^{4}}
\end{aligned}
$$

- At leading twist, only $\Gamma_{A}=\frac{1}{\sqrt{2}} \sigma^{\rho \sigma}$ will contribute.
- In QCD,

$$
A_{L L}^{Q C D}\left(Q^{2}\right)=\frac{-630 \chi\langle\bar{q} q\rangle}{576 \pi^{2}} \int_{0}^{1} \frac{d \alpha}{36} P^{2} \ln \left(-P^{2}\right) \phi_{\gamma}(\alpha)
$$

where, $P^{2}=\left(p_{e}+\alpha k\right)^{2}=-\alpha P_{p}^{2}-\bar{\alpha} Q^{2}$ and $Q^{2}=-p_{e}^{2}$

- For dispersion relation, we again saturate the sum rule with proton.
- The higher resonances and contínuam contribution can be related to QCD result using quark hadron duality.
- The final sum rule turns out to be,

$$
i \lambda_{p} m_{p}^{2} e^{\frac{-m_{D}^{2}}{M^{2}}} A_{L L}\left(s_{0}, Q^{2}\right)=\frac{1}{\pi} \int_{0}^{s_{0}} d s e^{\frac{-5}{M^{2}}} \operatorname{Im}\left(A_{L L}^{Q C D}\left(s, Q^{2}\right)\right)
$$

Results

Using proton DAs

Using photon DAs

Summary \& Conclusions

- $p \rightarrow e^{+} \gamma$ decay involves 2 FFs: calculated in the fracmework of LCSR.
- FFs presented upto leading twist accuracy using photon DA (twist-2) and proton decay (twist-3).
- At this accuracy, the numerical estimates for form factors using different DAs seems different.
- Higher twist three-particel DAs are required to get better estimates for the form factor involved.
- If the differences persists than it might give deeper insight to the structure of proton.

Thank You

