

Inha University, Republic of Korea

Medium modification of Chiral Soliton Models Ulugbek Yakhshiev

Talk @ Light Cone 2021: Physics of Hadrons on the Light Front November 29 - December 4, 2021, Jeju, Korea How to construct a theoretical framework (model of ``nuclear physics")?

Our guiding principles are

- simplicity (easy to analyse, transparent, etc...) <=> e.g. a small number terms in the Lagrangian;
- relation to phenomenology in an attractive way as much as possible the peculiarities of strong interactions should be taken into account using as less as possible the number of parameters;
- universality <=> applicability to
 - hadron structure and spectrum studies (from light to heavy sector);
 - analysis of NN interactions;
 - nuclear many body problems <=> nucleonic systems (finite nuclei) and nuclear matter properties (EOS);
 - relation to mesonic atoms;
 - hadron structure changes in nuclear environment;
 - extreme density phenomena (e.g. neutron stars);
 - etc.

Two possible ways:

- to construct completely new approach;
- a bit fresh look to old ideas (e.g. putting a bit more phenomenological information).

The studies were performed and going on in direction of

a single baryon properties

- in separate state considering it as a structure-full system
- nucleon in the community of their partners (EM and EMT form factors)
- nucleon in finite nuclei
- hyperons in nuclear matter (Thursday 4-B, 2:15 by Nam-Yong GHIM)
- heavy particles in nuclear matter (Thursday 4-B, 2:30 by Ho-Yeon WON)

as well as on the properties of the whole nucleonic systems

- infinite nuclear matter properties (volume and symmetry energy properties)
- matter under extreme conditions (e.g. neutron stars)
- matter with a strangeness
- few/many nucleon systems (symmetric nuclei, mirror nuclei, rare isotopes, halo nuclei,...)
- nucleon knock-out reactions (lepton-nucleus scattering)
- operation possible changes in in-medium NN interactions
- etc

- Topological models
- Medium modifications
 - Mesons in nuclear matter
 - Baryons in nuclear matter
- Nuclear matter
- Neutron stars
- Non-spherically deformed nucleons
- Finite nuclei

Why topological models?

At fundamental level we may have

- fermions -> bosons are trivial fermion systems
- bosons -> fermions are <u>nontrivial topological structures</u>

Structure

From what made a nucleon and, in particular, its core?

- The structure treatment depends on an energy scale
- At the limit of large number colours the core still has the mesonic content

Shell is made from the meson cloud

Topological models

Shrinks

Swells

Stabilization mechanism

- Soliton has the finite size and the finite energy
- One needs at least two counter terms in the effective (mesonic) Lagrangian

Prototype: Skyrme model

[T.H.R. Skyrme, Pros.Roy.Soc.Lond. A260 (1961)]

Nonlinear chiral effective meson (pionic) theory

Shrinking term

$$\mathcal{L} = \frac{F_{\pi}^2}{16} \operatorname{Tr} \left(\partial_{\mu} U \partial^{\mu} U^{\dagger} \right) - \frac{1}{16e^2} \operatorname{Tr} \left[U^{\dagger} \partial_{\mu} U, U^{\dagger} \partial_{\nu} U \right]^2$$

Swelling term

<u>Hedgehog</u> solution (nontrivial mapping)

$$U = \exp\left\{\frac{i\overline{\tau}\ \overline{\pi}}{2F_{\pi}}\right\} = \exp\left\{i\overline{\tau}\ \overline{n}F(r)\right\}$$

The free space Lagrangian (was widely in use)

[G.S.Adkins et al. Nucl.Phys. B228 (1983)]

$$\mathcal{L} = \frac{F_{\pi}^2}{16} \operatorname{Tr} \left(\partial_{\mu} U \partial^{\mu} U^{\dagger} \right) - \frac{1}{16e^2} \operatorname{Tr} \left[U^{\dagger} \partial_{\mu} U, U^{\dagger} \partial_{\nu} U \right]^2 + \frac{F_{\pi}^2 m_{\pi}^2}{16} \operatorname{Tr} \left(U + U^{\dagger} - 2 \right)$$

 Nontrivial structure: topologically stable solitons with the corresponding conserved topological number (baryon number) A

$$U = \exp\{i\overline{\tau} \,\overline{\pi} / 2F_{\pi}\} = \exp\{i\overline{\tau} \,\overline{n}F(r)\}$$
$$B^{\mu} = \frac{1}{24\pi^{2}} \varepsilon^{\mu\nu\alpha\beta} Tr(L_{\nu}L_{\alpha}L_{\beta}) \qquad L_{\alpha} = U^{+}\partial_{\alpha}U$$

$$H = M_{cl} + \frac{\overline{S}^2}{2I} = M_{cl} + \frac{\overline{T}^2}{2I},$$

 $A = \int d^3 r B^0$

$$|S = T, s, t \ge (-1)^{t+T} \sqrt{2T + 1} D_{-t,s}^{S=T}(A)$$

What happens in the nuclear medium?

The possible medium effects

- Deformations (swelling or shrinking, multipole deformations) of nucleons
- Characteristic changes in: effective mass, charge distributions, all possible form factors
- NN interactions may change
- etc.

One should be able to describe all those phenomena

Soliton in the nuclear medium (phenomenological way)

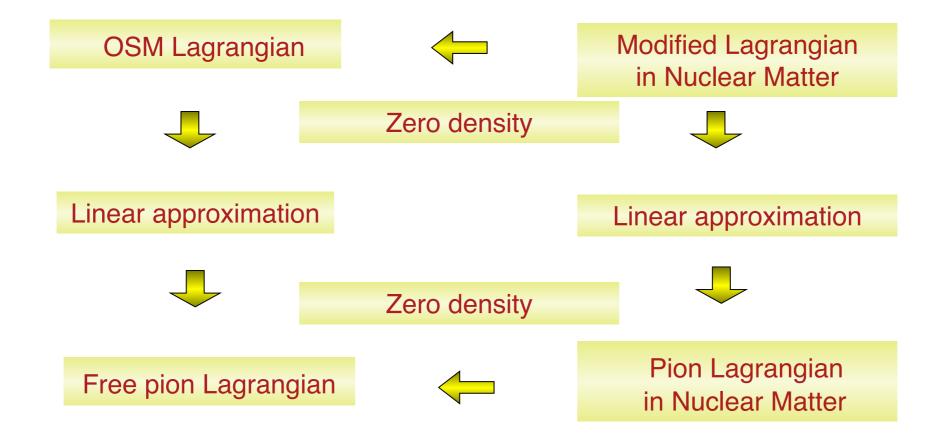
- Outer shell modifications (informations from pionic atoms)
- Inner core modifications, in particular, at large densities (nuclear matter properties)

Inner core modifications in the nuclear medium may be related to:

- vector meson properties in the nuclear medium
- nuclear matter properties at saturation density

Meson cloud modifications in the nuclear medium: Pion physics in the nuclear medium

- Modifications of the mesonic sector modifies the baryonic sector
- Lagrangian satisfies some limiting conditions



"Outer shell" modifications

- In free space three types of pions can be treated separately: isospin breaking
- In nuclear matter: three types of polarization operators

$$(\partial^{\mu}\partial_{\mu} + m_{\pi}^{2})\vec{\pi}^{(\pm,0)} = 0$$
$$(\partial^{\mu}\partial_{\mu} + m_{\pi}^{2} + \hat{\Pi}^{(\pm,0)})\vec{\pi}^{(\pm,0)} = 0$$
$$\hat{\Pi}^{0} = 2\omega U_{\text{opt}} = \chi_{s}(\rho, b_{0}, c_{0}) + \vec{\nabla} \cdot \chi_{p}(\rho, b_{0}, c_{0})\vec{\nabla}$$
$$\hat{\Pi}^{0} = (\hat{\Pi}^{-} + \hat{\Pi}^{+})/2, \qquad \hat{\Delta}\Pi = (\hat{\Pi}^{-} - \hat{\Pi}^{+})/2$$

 Optic potential approach: parameters 		π -atom	$T_{\pi}=50~{\rm MeV}$
from the pion-nucleon	$b_0 \left[m_\pi^{-1}\right]$	- 0.03	- 0.04
scattering (including the isospin	$b_1 [m_{\pi}^{-1}]$	- 0.09	- 0.09
dependents)	$c_0 [m_{\pi}^{-3}]$	0.23	0.25
	$c_1 [m_{\pi}^{-3}]$	0.15	0.16
	g'	0.47	0.47

Medium modifications

"Outer shell" modifications in the Lagrangian [U.Meissner et al., EPJ A36 (2008)]

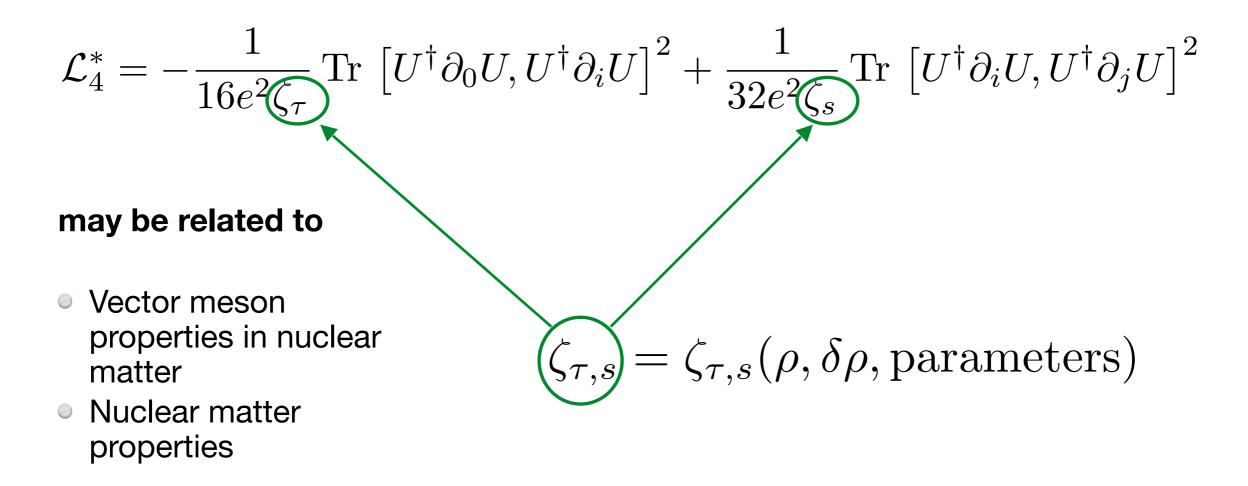
$$\mathcal{L}_{2}^{*} = \frac{F_{\pi}^{2}}{16} \underbrace{\alpha_{\tau}}_{\Gamma} \operatorname{Fr} \left(\partial_{0} U \partial_{0} U^{\dagger} \right) - \frac{F_{\pi}^{2}}{16} \underbrace{\alpha_{s}}_{\Gamma} \operatorname{Tr} \left(\partial_{i} U \partial_{i} U^{\dagger} \right)$$
$$\mathcal{L}_{m}^{*} = -\frac{F_{\pi}^{2} m_{\pi}^{2}}{16} \underbrace{\alpha_{m}}_{\Gamma} \operatorname{Tr} \left(2 - U - U^{\dagger} \right)$$

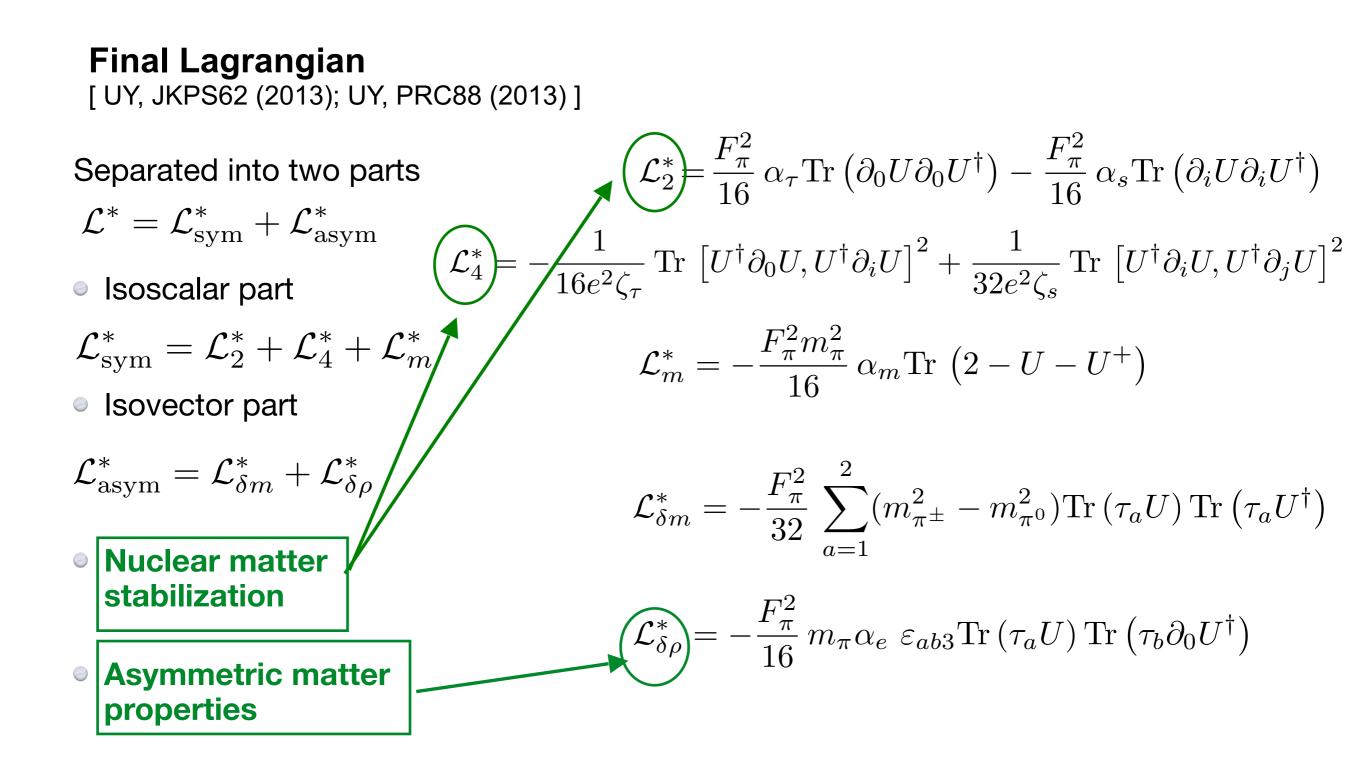
- Due to the nonlocality of optic potential the kinetic term is also modified
- Due to energy and momentum dependence of the optic potential parameters the following parts of the kinetic term are modified in different forms:
 - Temporal part
 - Space part

	$\pi\text{-}\mathrm{atom}$	$T_{\pi} = 50 \text{ MeV}$
$b_0 [m_\pi^{-1}]$	- 0.03	- 0.04
$b_1 [m_{\pi}^{-1}]$	- 0.09	- 0.09
$c_0 [m_{\pi}^{-3}]$	0.23	0.25
$c_1 \left[m_\pi^{-3}\right]$	0.15	0.16
g'	0.47	0.47

 $\hat{\Pi}^0 = 2\omega U_{\text{opt}} = \chi_s(\rho, b_0, c_0) + \vec{\nabla} \cdot \chi_p(\rho, b_0, c_0) \vec{\nabla}$

"Inner core" modifications [UY & H.Ch. Kim, PRC83 (2011); UY, PRC88 (2013)]

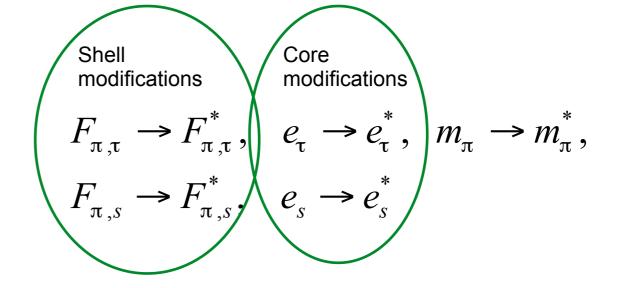




Reparametrization

[UY, PRC88 (2013)]

 Five density dependent parameters



 Rearrangment (technical simplification to describe nuclear matter)

$$+C_{1} \frac{\rho}{\rho_{0}} = f_{1} \left(\frac{\rho}{\rho_{0}}\right) \equiv \sqrt{\frac{\alpha_{p}^{0}}{\gamma_{s}}}$$
$$+C_{2} \frac{\rho}{\rho_{0}} = f_{2} \left(\frac{\rho}{\rho_{0}}\right) \equiv \frac{\alpha_{s}^{00}}{(\alpha_{p}^{0})^{2} \gamma_{s}}$$
$$+C_{3} \frac{\rho}{\rho_{0}} = f_{3} \left(\frac{\rho}{\rho_{0}}\right) \equiv \frac{(\alpha_{p}^{0} \gamma_{s})^{3/2}}{\alpha_{s}^{02}}$$

$$\frac{\alpha_e}{\gamma_s} = f_4 \left(\frac{\rho}{\rho_0}\right) \frac{\rho_n - \rho_p}{\rho_0} = \frac{C_4 \frac{\rho}{\rho_0}}{1 + C_5 \frac{\rho}{\rho_0}} \frac{\rho_n - \rho_p}{\rho_0}$$

Nucleon in nuclear matter

Structure studies 1: Energy momentum tensor

- It allows to address the questions like:
 - How are the total angular momentum and angular momentum of the nucleon shared among its constituents?
 - How are the strong forces experienced by its constituents distributed inside the nucleon?
- EMT form factors studied in lattice QCD, ChPT and in different models (chiral quark soliton model, Skyrme model, etc.)
- We made further step studying EMT form factors in nuclear matter

Structure studies 1: Energy momentum tensor

Definition

$$\langle p' | \hat{T}_{\mu\nu}(0) | p \rangle = \bar{u}(p', \, s') \left[M_2(t) \, \frac{P_\mu P_\nu}{M_N} + J(t) \, \frac{i(P_\mu \sigma_{\nu\rho} + P_\nu \sigma_{\mu\rho})\Delta^\rho}{2M_N} + d_1(t) \, \frac{\Delta_\mu \Delta_\nu - g_{\mu\nu}\Delta^2}{5M_N} \right] u(p, \, s) \, ,$$

 Three form factors give an information about energy distribution, angular momentum distribution and about the stabilization of strong forces inside the nucleon

$$\begin{split} T_{00}^{*}(r) &= \frac{F_{\pi,s}^{*2}}{8} \left(\frac{2\sin^{2}F}{r^{2}} + F'^{2} \right) + \frac{\sin^{2}F}{2\,e^{*2}\,r^{2}} \left(\frac{\sin^{2}F}{r^{2}} + 2F'^{2} \right) + \frac{m_{\pi}^{*2}F_{\pi,s}^{*2}}{4} \left(1 - \cos F \right), \\ T_{0k}^{*}(r,s) &= \frac{\epsilon^{klm}r^{l}s^{m}}{(s \times r)^{2}} \, \rho_{J}^{*}(r), \\ T_{ij}^{*}(r) &= s^{*}(r) \left(\frac{r_{i}r_{j}}{r^{2}} - \frac{1}{3}\,\delta_{ij} \right) + p^{*}(r)\,\delta_{ij} \end{split} \\ M_{2}^{*}(t) - \frac{t}{5M_{N}^{*2}} \, d_{1}^{*}(t) &= \frac{1}{M_{N}^{*}} \int d^{3}r \, T_{00}^{*}(r) \, j_{0}(r\sqrt{-t}), \\ d_{1}^{*}(t) &= \frac{15M_{N}^{*}}{2} \int d^{3}r \, p^{*}(r) \, \frac{j_{0}(r\sqrt{-t})}{t}, \\ M_{2}^{*}(0) &= \frac{1}{M_{N}^{*}} \int d^{3}r \, T_{00}^{*}(r) = 1, \quad J^{*}(0) = \int d^{3}r \, \rho_{J}^{*}(r) = \frac{1}{2} \, . \end{split}$$

Structure studies1: Energy momentum tensor related quantities [H.C.Kim, P. Schweitzer, UY, Phys. Lett. B718 (2012)]

Different quantities related to the nucleon EMT densities and their form factors: $T_{00}^*(0)$ denotes the energy in the center of the nucleon; $\langle r_{00}^2 \rangle^*$ and $\langle r_J^2 \rangle^*$ depict the mean square radii for the energy and angular momentum densities, respectively; $p^*(0)$ represents the pressure in the center of the nucleon, whereas r_0^* designates the position where the pressure changes its sign; d_1^* is the value of the $d_1^*(t)$ form factor at the zero momentum transfer.

ρ/ρ_0	$T_{00}^*(0)$ [GeV fm ⁻³]	$\langle r_{00}^2 \rangle^*$ [fm ²]	$\langle r_J^2 \rangle^*$ [fm ²]	p*(0) [GeV fm ⁻³]	r ₀ * [fm]	d_1^*
0	1.45	0.68	1.09	0.26	0.71	-3.54
0.5	0.96	0.83	1.23	0.18	0.82	-4.30
1.0	0.71	0.95	1.35	0.13	0.90	-4.85

Structure studies 1: Pressure distribution inside the nucleon in free space and in symmetric matter [H.C.Kim, P. Schweitzer, UY, Phys. Lett. B718 (2012)]

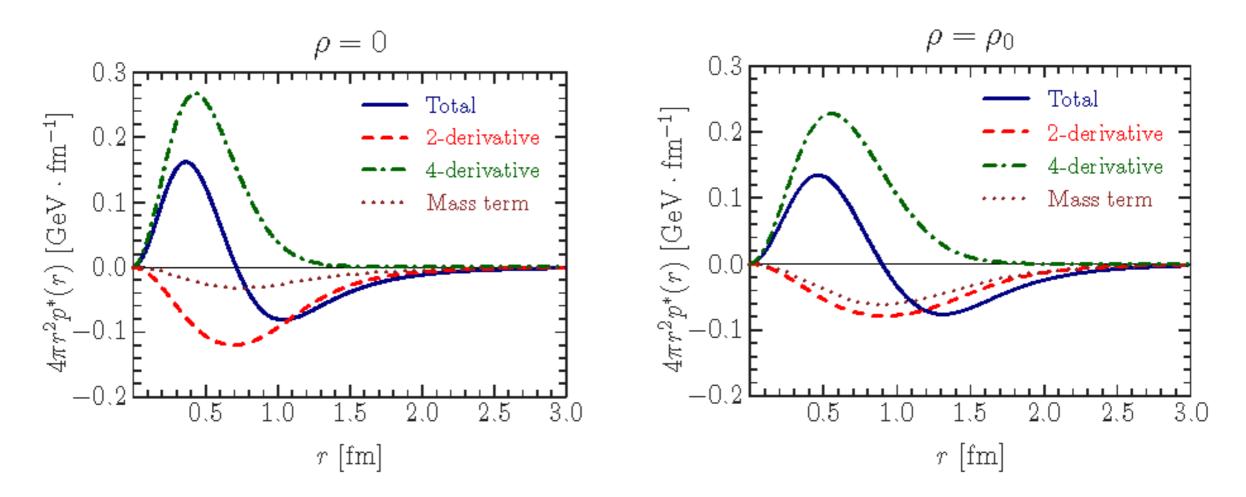


FIG. 3: (Color online) The decomposition of the pressure densities $4\pi r^2 p^*(r)$ as functions of r, in free space ($\rho = 0$) and at $\rho = \rho_0$, in the left and right panels, respectively. The solid curves denote the total pressure densities, the dashed ones represent the contributions of the 2-derivative (kinetic) term, the long-dashed ones are those of the 4-derivative (stabilizing) term, and the dotted ones stand for those of the pion mass term.

Structure studies 2: Transverse EM charge densities

• Definition of EM FF's $\langle N(p', S') | J_{\mu}^{EM}(0) | N(p, S) \rangle$

$$= \overline{u}_N(p',S') \left[\gamma_\mu F_1^*(q^2) + i \frac{\sigma_{\mu\nu} q^\nu}{2m_N} F_2^*(q^2) \right] u_N(p,S)$$

These Pauli and Dirac FF's can be expressed by Sachs FF's

$$G_E(Q^2) = F_1(Q^2) + \frac{Q^2}{4M_N^2}F_2(Q^2)$$

$$G_M(Q^2) = F_1(Q^2) + F_2(Q^2),$$

 They give an information about transverse charge distributions inside the nucleon

$$\rho_{0}^{*}(b) = \int_{0}^{\infty} \frac{Q \, dQ}{2\pi} J_{0}(bQ) \frac{G_{E}^{*}(Q^{2}) + \tau G_{M}^{*}(Q^{2})}{1 + \tau}$$

$$\rho_{T}^{*}(\mathbf{b}) = \rho_{0}^{*}(b) - \sin(\phi_{b} - \phi_{S})$$

$$\times \int_{0}^{\infty} \frac{Q^{2} \, dQ}{4\pi \, m_{N}} J_{1}(bQ) \frac{-G_{E}^{*}(Q^{2}) + G_{M}^{*}(Q^{2})}{1 + \tau}, \qquad \mathbf{b} = b(\cos\phi_{b}\hat{\mathbf{e}}_{x} + \sin\phi_{b}\hat{\mathbf{e}}_{y})$$

Structure studies 2: Transverse EM charge densities inside an unpolarized nucleon [UY, H.C.Kim, Phys.Lett. B726 (2013)]

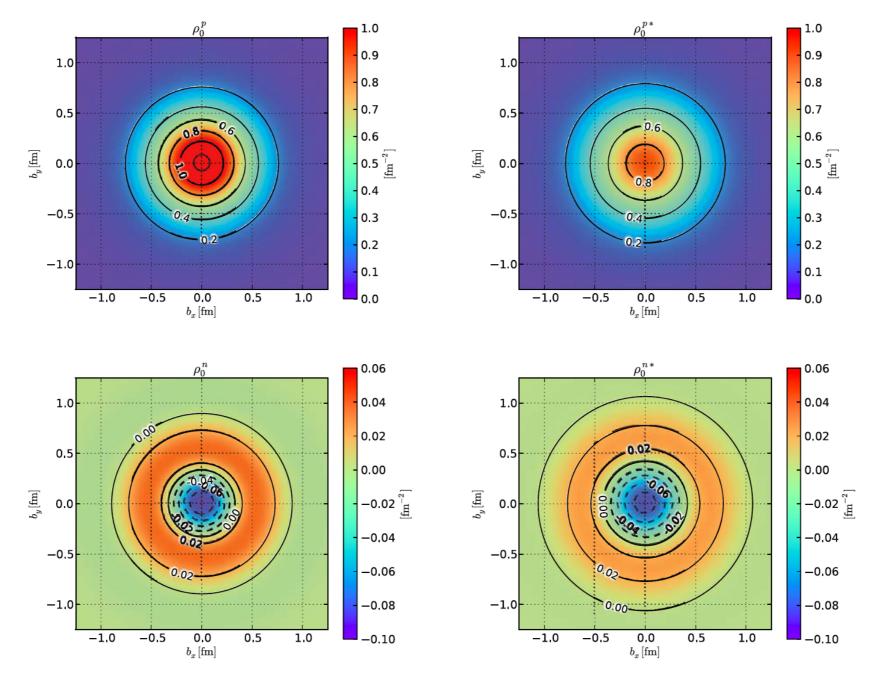


Fig. 3. Quark transverse charge densities inside an unpolarized proton (upper panels) and a neutron (lower panels) in free space (left panels) and at nuclear matter density $\rho_0 = 0.5m_{\pi}^3$ (right panels).

Structure studies 2: Transverse EM charge densities inside the polarized nucleon [UY, H.C.Kim, Phys. Lett. B726 (2013)]

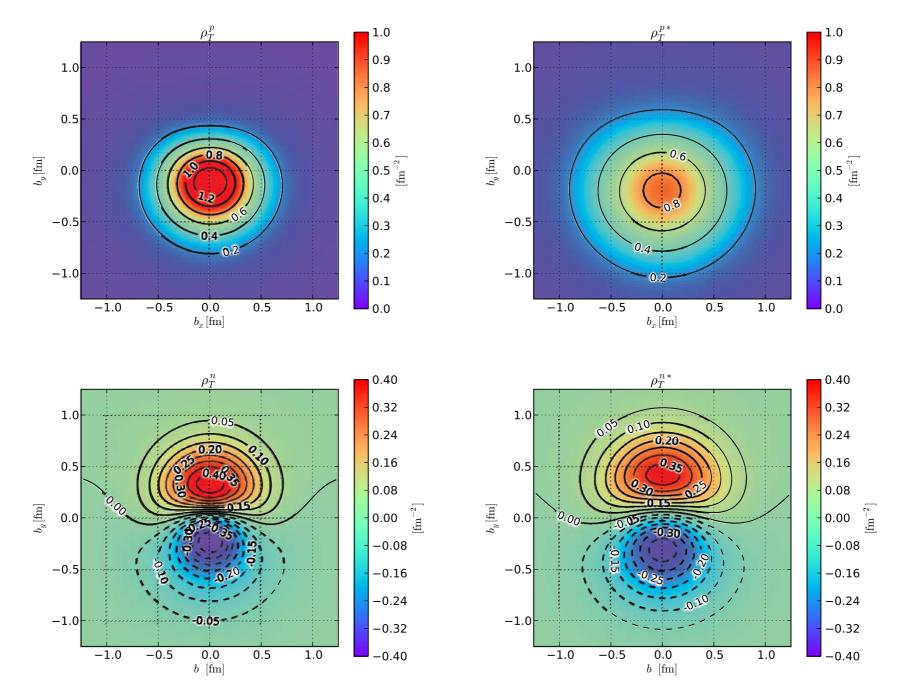


Fig. 4. Transverse charge densities of the proton (upper panels) and neutron (lower panels) in free space (left panels) and in nuclear matter with the density $\rho_0 = 0.5m_{\pi}^3$ (right panels).

Masses [UY, PRC88 (2013)]

- Isoscalar effective mass
- Isovector effective mass (relevant to: universe evolution in Early stage; stability of drip line nuclei; mirror nuclei; transport in heavy-ion collisions; asymmetric nuclear matter)
- Effective masses of the nucleons

$$m_{N,s}^{*} = M_{S}^{*} + \frac{3}{8\Lambda^{*}} + \frac{\Lambda^{*}}{2} \left(a^{*2} + \frac{\Lambda_{env}^{*2}}{\Lambda^{*2}}\right)$$

$$\Delta m_{np}^* = a^* + \frac{\Lambda_{env}^*}{\Lambda^*}$$

$$m_{n,p}^* = m_{N,s}^* - \Delta m_{np}^* T_3$$

Nuclear matter

From the Bethe-Weizsacker formula

$$\varepsilon(A,Z) = -a_V + a_S \frac{(N-Z)^2}{A^2} + \mathbb{X}$$

The binding-energy-formula terms in the framework of present model can be obtained considering

We reproduced

- Volume term
 Symmetric infinite nuclear matter
 Asymmetry term
 - - Isospin asymmetric environment
 - Surface and Coulomb terms
 - Nucleons in a finite volume
 - Finite nuclei properties
 - Local density approximation

Nuclear matter

The volume term and Symmetry energy

 At infinite nuclear matter approximation the binding energy per nucleon takes the form

$$\varepsilon(\lambda,\delta) = \varepsilon_V(\lambda) + \varepsilon_S \delta^2 + O(\delta^4) = \varepsilon_V(\lambda) + \varepsilon_A(\lambda,\delta)$$

- \cdot λ is normalised nuclear matter density
- \cdot δ is asymmetry parameter
- ϵ_s is symmetry energy
- In our model
 - Symmetric matter
 - Asymmetric matter

$$\varepsilon_{V}(\lambda) = m_{N,s}^{*}(\lambda,0) - m_{N}^{\text{free}}$$

$$\varepsilon_{A}(\lambda,\delta) = \varepsilon(\lambda,\delta) - \varepsilon_{V}(\lambda)$$

$$= m_{N,s}^{*}(\lambda,\delta) - m_{N,s}^{*}(\lambda,0) + m_{N,V}^{*}(\lambda,\delta)\delta$$

Nuclear matter

Nuclear matter properties

Symmetric matter properties (pressure, compressibility and third derivative)

$$p = \rho_0 \lambda^2 \frac{\partial \varepsilon_V(\lambda)}{\partial \lambda} \bigg|_{\lambda=1}, \quad K_0 = 9\rho^2 \frac{\partial^2 \varepsilon_V(\lambda)}{\partial \rho^2} \bigg|_{\rho=\rho_0} \qquad Q = 27\lambda^3 \frac{\partial^3 \varepsilon_V(\lambda)}{\partial \lambda^3} \bigg|_{\lambda=1}$$

Symmetry energy properties (coefficient, slop and curvature)

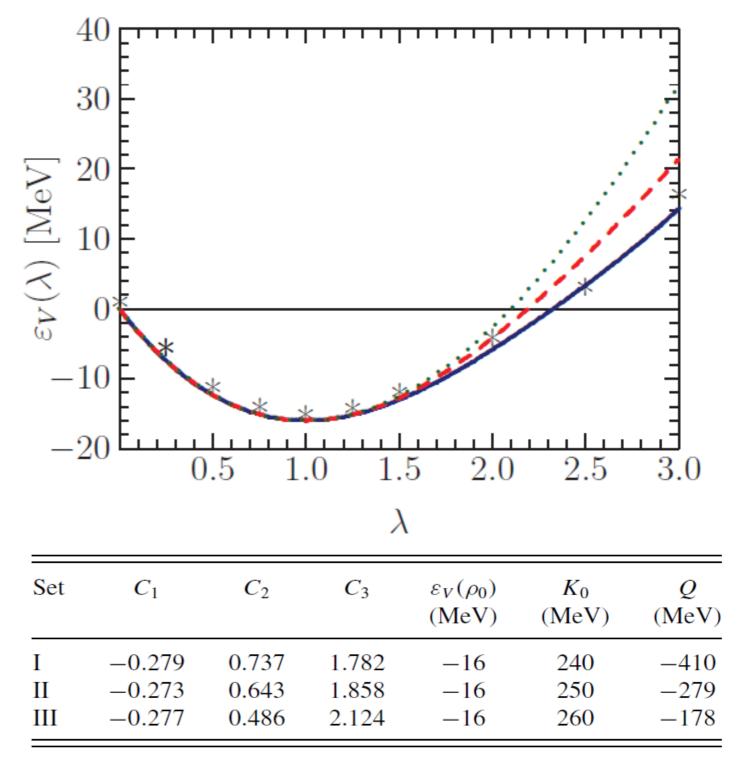
$$\varepsilon_{s}(\lambda) = \varepsilon_{s}(1) + \frac{L_{s}}{3}(\lambda - 1) + \frac{K_{s}}{18}(\lambda - 1)^{2} + \mathbb{W}$$

Symmetric matter

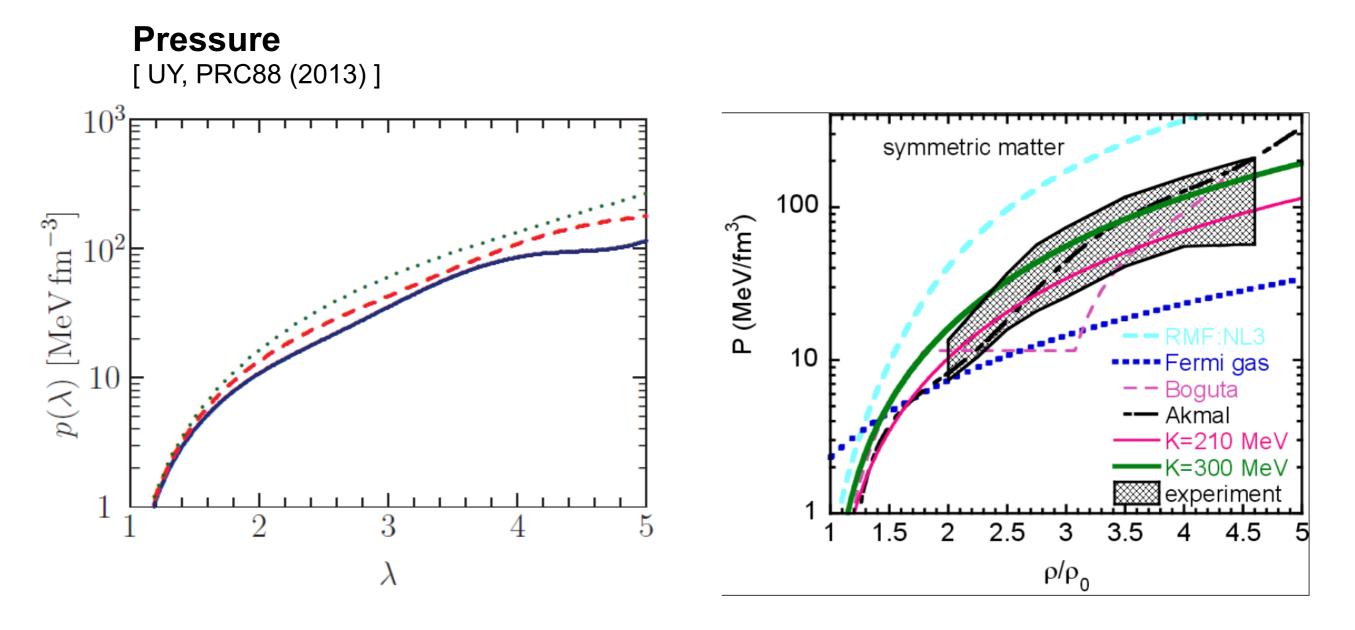
Volume energy [UY, PRC88 (2013)]

- Set I solid
- Set II dashed
- Set III dotted

For comparison: Akmal-Pandharipande-Ravenhall (APR) predictions [PRC 58, 1804 (1998)] are given by stars. (From Arigonna 2 body interactions + 3 body interactions)



Symmetric matter



For comparison: Right figure from Danielewicz- Lacey-Lynch, Science 298, 1592 (2002). (Deduced from experimental flow data and simulations studies)

Asymmetric matter

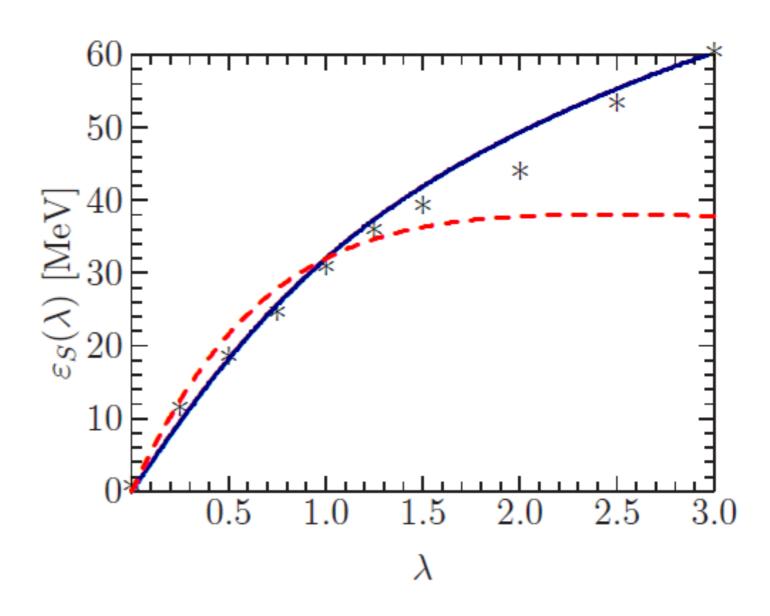
Symmetry energy

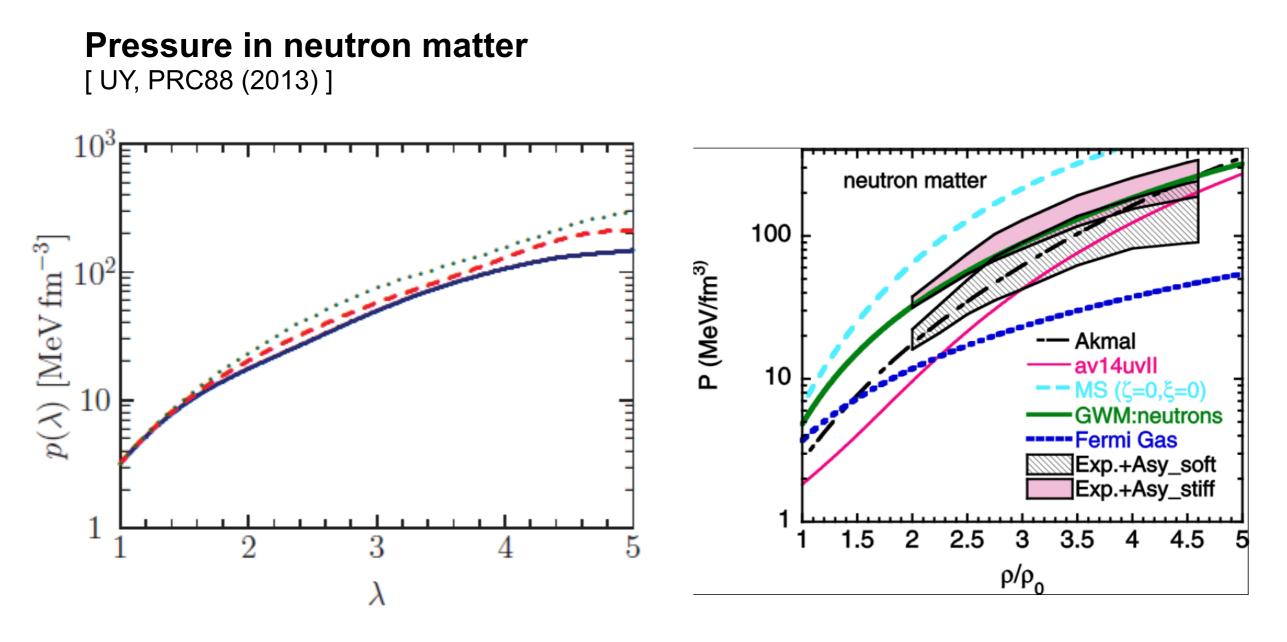
• Solid $L_s = 70 \text{ MeV}$

• Dashed
$$L_s = 40 \,\mathrm{MeV}$$

For comparison: Akmal-Pandharipande-Ravenhall (APR) predictions [PRC 58, 1804 (1998)] are given by stars. (From arigonna 2 body interactions + 3 body

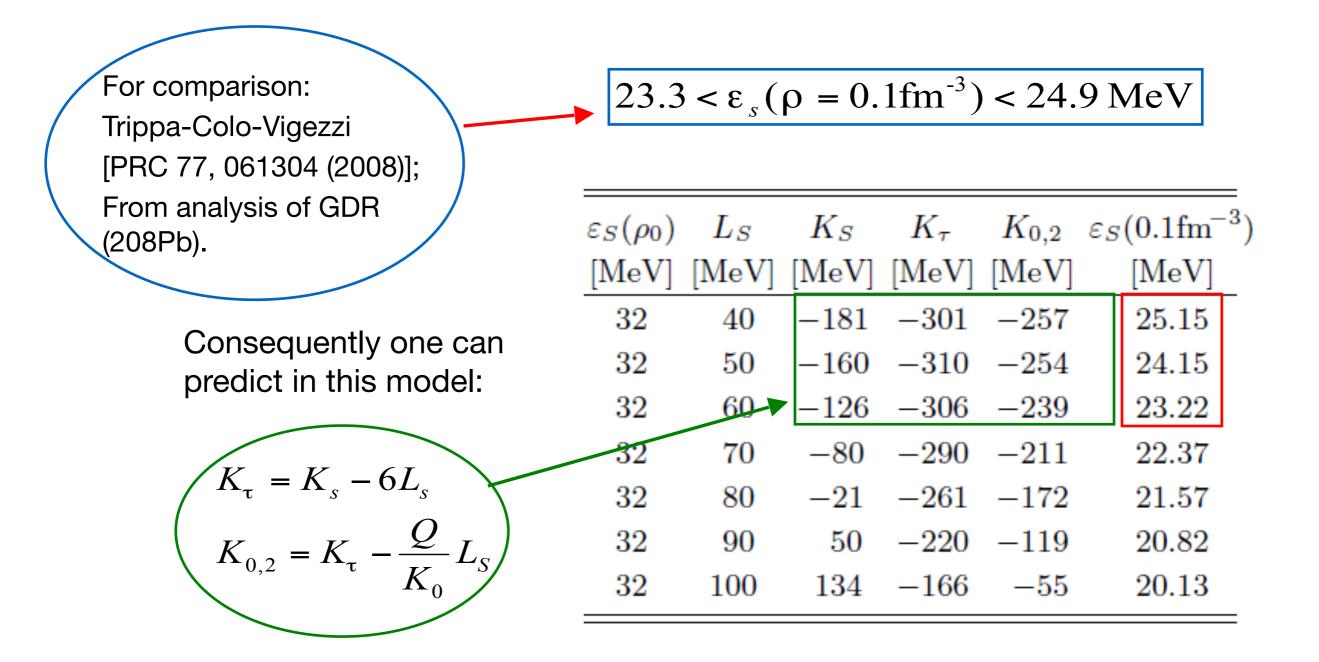
interactions)





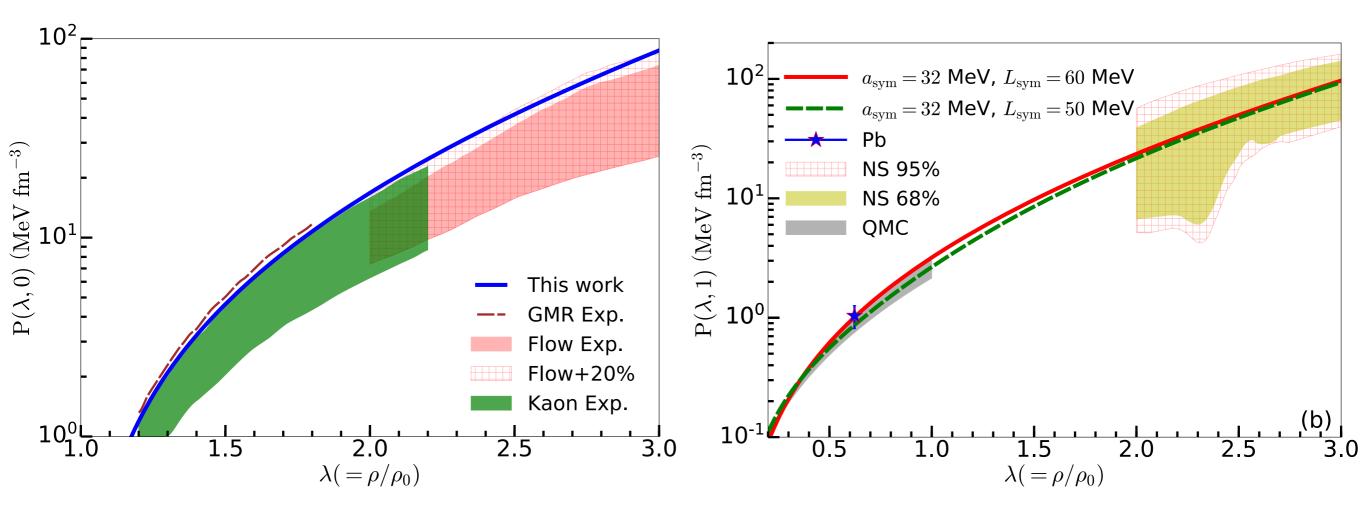
For comparison: Right figure from Danielewicz- Lacey-Lynch, Science 298, 1592 (2002). (Deduced from experimental flow data and simulations studies)

Low density behaviour of symmetry energy



Nuclear matter (SU(3) model independent approach with hyperons) Thursday 4-B, 2:15 by Nam-Yong GHIM

Pressure [N.Y.Ghim, G.S.Yang, H.Ch.Kim, UY, PRC103 (2021)]



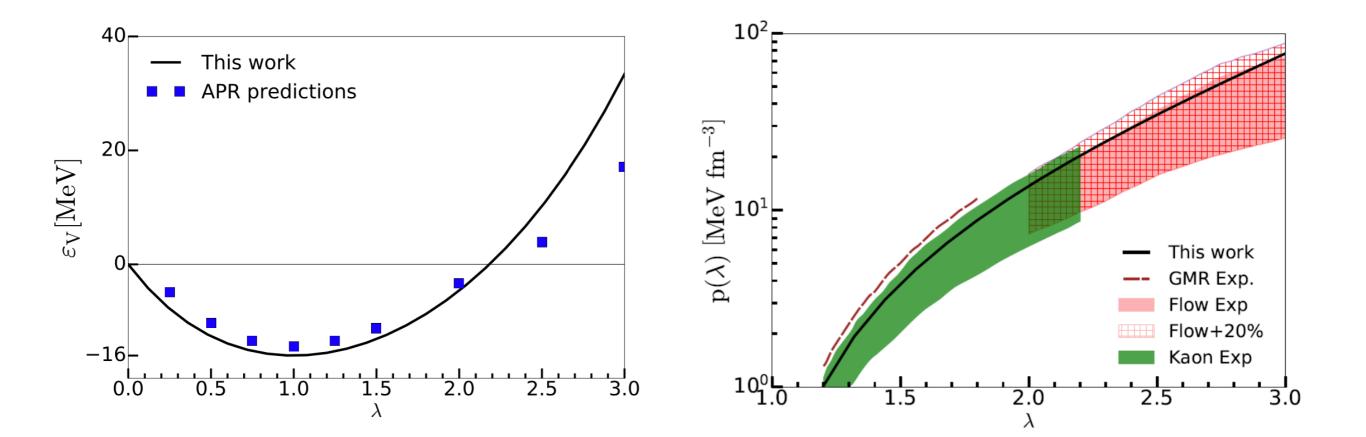
[6] W. G. Lynch, M. B. Tsang, Y. Zhang, P. Danielewicz, M. Famiano, Z. Li and A. W. Steiner, Prog. Part. Nucl. Phys. 62, 427 (2009).

[7] A. W. Steiner, J. M. Lattimer and E. F. Brown, Astrophys. J. Lett. 765, L5 (2013).

[8] M. B. Tsang et al., Phys. Rev. C 86, 015803 (2012).

Nuclear matter (SU(3) model with heavy baryons) <u>Thursday 4-B, 2:30 by Ho-Yeon WON</u>

Volume energy and Pressure [H.Y.Won, UY, H.Ch.Kim, 2110.04561 [nucl-th]]



Nuclear matter (SU(3) model with heavy baryons) <u>Thursday 4-B, 2:30 by Ho-Yeon WON</u>

Charmed baryons in nuclear matter [H.Y.Won, UY, H.Ch.Kim, 2110.04561 [nucl-th]]

$$M^* \equiv M_D^* = (1 + C_4 \lambda) M_D \qquad \tau_{\text{heavy}}^* = (1 + C_4 \lambda) \tau_{\text{heavy}}$$

	M_B	, $\rho = 0$	$\Delta M_B, \rho = \rho_0$				
Baryon	$\operatorname{Exp.}[5]$	This work	$C_4 = -0.1$	$C_{4} = 0$	$C_4 = 0.1$		
Λ_c	2286.5	2286.0	-166.91	21.22	209.34		
Ξ_c	2469.4	2437.8	-132.30	54.48	241.25		
Σ_c	2453.5	2564.5	-86.50	101.54	289.57		
Ξ_c'	2576.8	2646.8	-69.89	117.27	304.43		
Ω_c	2695.2	2721.6	-54.23	132.17	318.56		

$$\Delta M_B = M_B^* - M_B$$

Neutron star properties

• TOV equations

$$-\frac{dP(r)}{dr} = \frac{G\mathcal{E}(r)\mathcal{M}(r)}{r^2} \left(1 - \frac{2G\mathcal{M}(r)}{r}\right)^{-1} \left(1 + \frac{P(r)}{\mathcal{E}(r)}\right) \left(1 + \frac{4\pi r^3 P(r)}{\mathcal{M}(r)}\right)$$

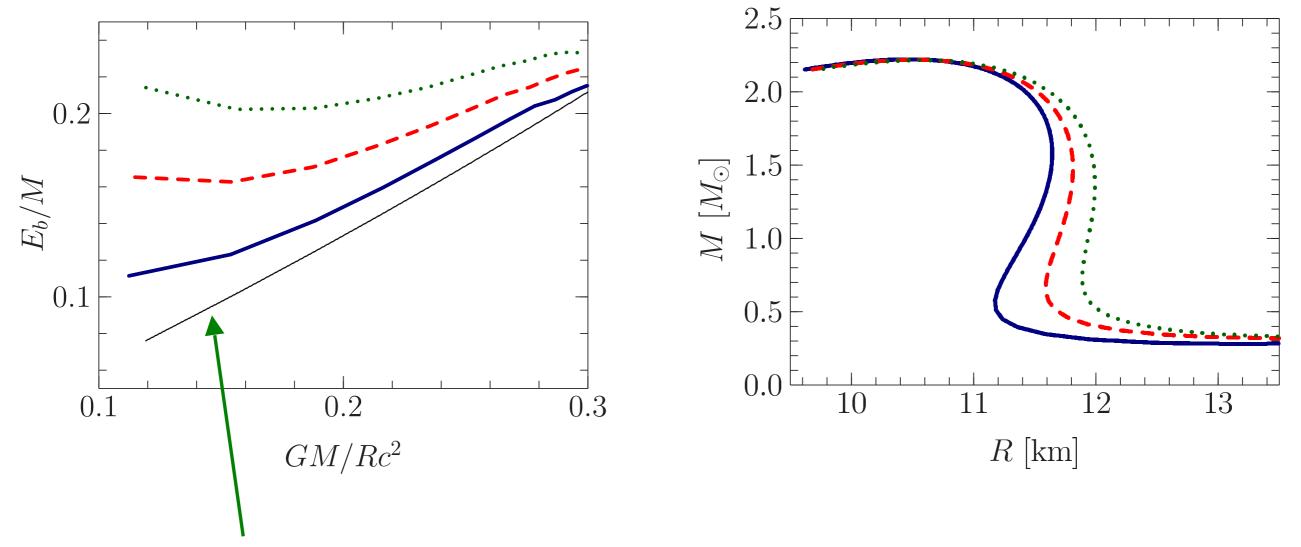
Energy-pressure relation

$$P = P(\mathcal{E}) \qquad P(\lambda) = \rho_0 \lambda^2 \frac{\partial \varepsilon(\lambda, 1)}{\partial \lambda}, \\ \mathcal{E}(\lambda) = [\varepsilon(\lambda, 1) + m_N] \lambda \rho_0.$$

Neutron star's mass

$$\mathcal{M}(r) = 4\pi \int_0^r \mathrm{d}r \, r^2 \mathcal{E}(r) \, .$$

Neutron star properties [UY, PLB749 (2015)]



From Ref. [J.M. Lattimer & M. Prakash, Astrophys. J. 550 (2001)].

Neutron star properties [UY, PLB749 (2015)]

TABLE III: Properties of the neutron stars from the different sets of parameters (see Tables I and II for the values of parameters): n_c is central number density, ρ_c is central energy-mass density, R is radius of the neutron star, M_{max} is possible maximal mass, A is number of baryons in the star, E_b is binding energy of the star. In the left panel we represent the neutron star properties corresponding to the maximal mass M_{max} and in right panel approximately 1.4 solar mass neutron star properties. The last two lines are results from the Ref. [21].

Set	n_c	$ ho_c$	R	M_{\max}	A	E_b	n_c	$ ho_c$	R	M	A	E_b
	$[\mathrm{fm}^{-3}]$	$[10^{15}\mathrm{gr/cm^3}]$	$[\mathrm{km}]$	$[M_{\odot}]$	$[10^{57}]$	$[10^{53} \mathrm{erg}]$	$[\mathrm{fm}^{-3}]$	$[10^{15}\mathrm{gr/cm^3}]$	$[\mathrm{km}]$	$[M_{\odot}]$	$[10^{57}]$	$[10^{53} { m erg}]$
III-a	1.046	2.445	10.498	2.226	3.227	8.721	0.479	0.861	11.587	1.402	1.898	3.503
III-b	1.045	2.444	10.547	2.223	3.216	8.557	0.471	0.861	11.772	1.402	1.895	3.453
III-c	1.037	2.424	10.616	2.221	3.200	8.397	0.460	0.832	11.953	1.402	1.887	3.339
III-d	1.047	2.452	10.494	2.221	3.213	8.598	0.481	0.867	11.619	1.402	1.893	3.422
III-e	1.044	2.440	10.554	2.218	3.203	8.495	0.473	0.858	11.809	1.403	1.890	3.384
III-f	1.040	2.433	10.609	2.216	3.189	8.311	0.464	0.842	11.992	1.403	1.887	3.334
SLy230a [21]	1.15	2.69	10.25	2.10	2.99	7.07	0.508	0.925	11.8	1.4	1.85	2.60
SLy230b [21]	1.21	2.85	9.99	2.05	2.91	6.79	0.538	0.985	11.7	1.4	1.85	2.61

Non-spherical nucleons

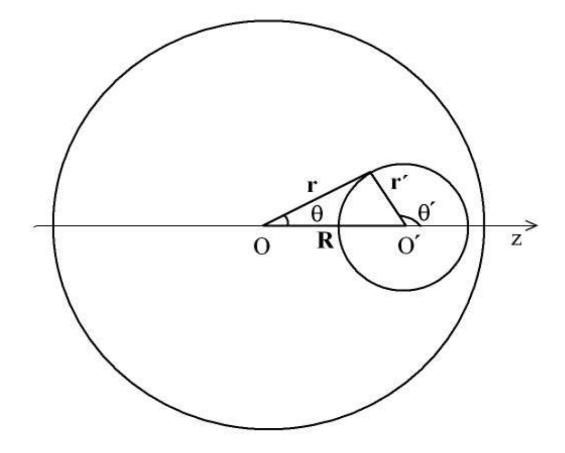
The nucleon in a nucleus will include

- Local density approach for environment
- R dependence of a results
- Deformations
 - In particular, axially symmetric case allows the deformations in polar direction
- Polar deformations can be represented
 - in the isotopic vector and
 - in the profile function in ordinary space

$$\boldsymbol{N}(\boldsymbol{r}-\boldsymbol{R}) = \begin{pmatrix} \sin \Theta(\boldsymbol{r}-\boldsymbol{R}) \cos \varphi \\ \sin \Theta(\boldsymbol{r}-\boldsymbol{R}) \sin \varphi \\ \cos \Theta(\boldsymbol{r}-\boldsymbol{R}) \end{pmatrix}$$

$$P = P(|\boldsymbol{r} - \boldsymbol{R}|, \theta), \qquad \Theta = \Theta(|\boldsymbol{r} - \boldsymbol{R}|, \theta)$$

$$U(\boldsymbol{r}-\boldsymbol{R}) = \exp\left[i\boldsymbol{\tau}\cdot\boldsymbol{N}(\boldsymbol{r}-\boldsymbol{R})P(\boldsymbol{r}-\boldsymbol{R})\right]$$



The Equations of Motion

• The coupled partial differential equations (not an easy problem)

$$f(F_{\tilde{r}\tilde{r}}, F_{\theta\theta}, F_{\tilde{r}}, F_{\theta}, \Theta_{\theta}, F, \Theta) = 0,$$

$$g(\Theta_{\theta\theta}, \Theta_{\theta}, F_{\tilde{r}}, F_{\theta}, \Theta, F) = 0,$$

A numerical variational method can be applied

$$P(r,\theta) = 2 \arctan\left\{\frac{r_0^2}{r^2}(1+m_\pi r)(1+u(\theta))\right\} e^{-f(r)r}$$

$$\Theta(r,\theta) = \theta + \zeta(r,\theta),$$

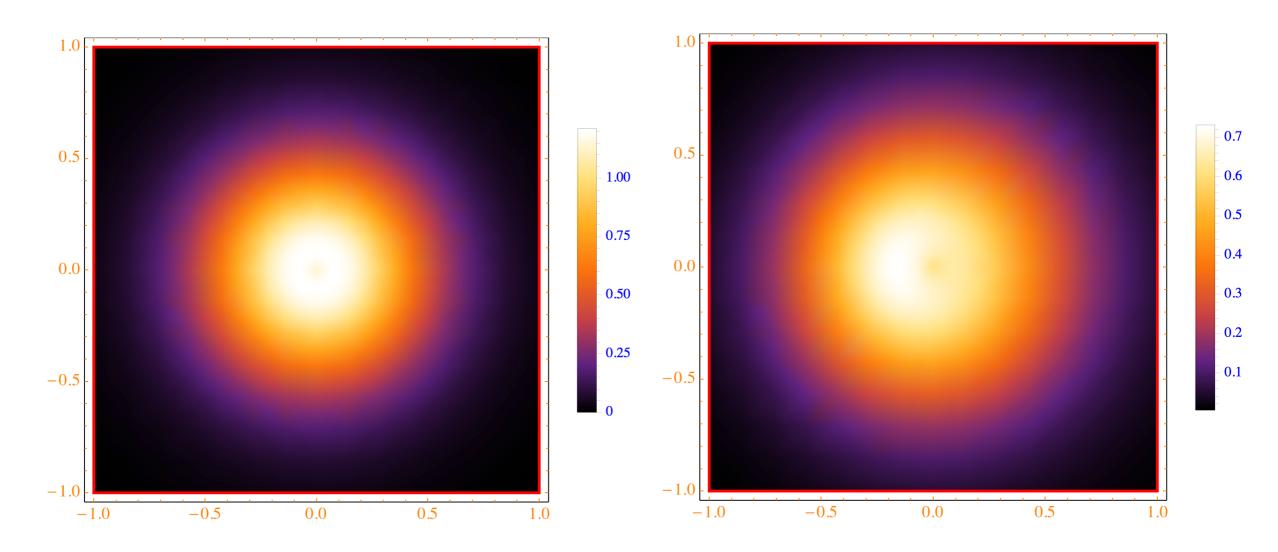
$$F(r) = 2 \arctan\left\{\frac{r_0^2}{r^2}(1+m_\pi r)\right\} e^{-f(r)r}, \qquad u(\theta) = \sum_{n=1}^{\infty} \gamma_n \cos^n \theta$$

$$f(r) = \beta_0 + \beta_1 e^{\beta_2 r^2}.$$

$$\zeta(r,\theta) = r e^{-\delta_0^2 r^2} \sum_{n=1}^{\infty} \delta_n \sin 2n\theta,$$

$$\lim_{r \to \infty} F(r) = D (1+m_\pi r) \frac{e^{-m_\pi r}}{r^2},$$

Non-spherical nucleons



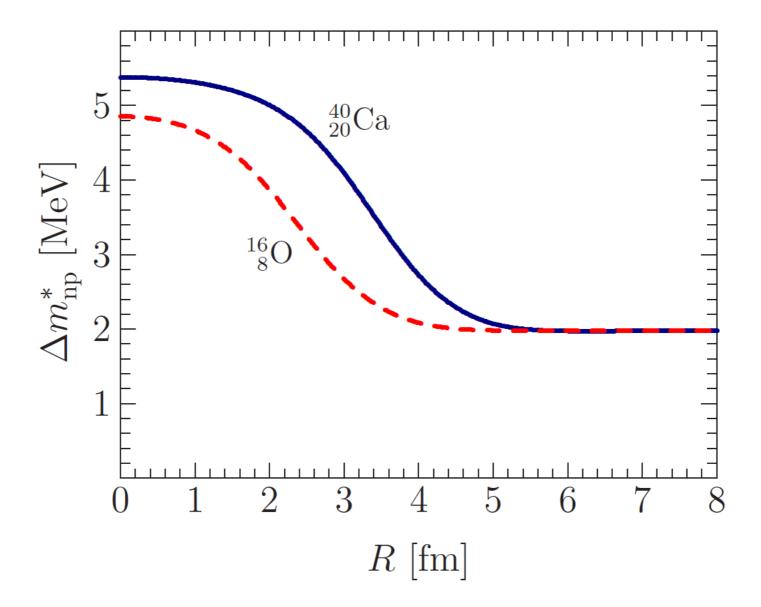
Baryon charge distribution inside the nucleon under the consideration

In free space (left)

and

in O16 (right), R = 1.5fm

The neutron-proton mass difference in finite nuclei



R is a distance between the geometrical centres of nucleus and nucleon

Thank you very much for your attention!