Higher-Spin Baryon Photoproduction with Twisted Photons

Carl E. Carlson
William \& Mary

Light Cone 2021: Physics of Hadrons on the Light Front 30 November-04 December 2021, Jeju Island, Korea \& Zoom

Talk based on work with Andrei Afanasev plus related work with Asmita Mukherjee, Maria Solyanik-Gorgone, Christian Schmiegelow, Ferdinand Kaler-Schmidt, Jonas Schulz, Hao Wang

Outline

There have been several talks about experiments that will or hope to run in the future. Here is also a talk about future possibilities, with specialized photon beams-twisted photonsnot yet produced at particle/nuclear physics energies, but which are widely produced and used in atomic physics.

- What are twisted photons?
- Existence in atomic physics.
- Hadronic application photoproduction of higher spins states
- Δ (1 232)
- Other high spin states

Intro to twisted photons

- Plane wave photons: angular momentum along direction of motion ("helicity") is just spin and just ± 1 (or $\pm \hbar$).
- Not true in general!
- Angular momentum along direction of motion can be any integer (times \hbar)
- Not realized until 1992, Allen et al., PRA with 8000 citations (Google Scholar, November 29, 2021)

Intro

- One way to build: in momentum space, make state from plane wave photons with momenta \vec{k} on a cone:
- Algebraically,

$$
\left|\kappa, m_{\gamma}, k_{z}, \Lambda\right\rangle=A_{0} \int \frac{d \phi_{k}}{2 \pi} i^{-m_{\gamma}} e^{i m_{\gamma} \phi_{k}} \quad \underbrace{|\vec{k}, \Lambda\rangle}_{\text {plane wave states }}
$$

- Phasing crucial!

- In coordinate space,

$$
\vec{A}_{\kappa, m \cdot k_{z} \Lambda}=A_{0} \hat{e} e^{i\left(k_{z} z-\omega t+m_{r} \phi\right)} J_{m_{r}-\Lambda}(\kappa \rho)+\text { smaller terms }
$$

Intro 3

- Can also work purely in coordinate space. Monochromatic (time dependence $e^{-i \omega t}$) and propagating in z-direction (z-dependence $e^{i \beta z}$). Scalar case,

$$
0=\left(\frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}}-\nabla^{2}\right) \psi(t, \vec{x})=\left(-\frac{\omega^{2}}{c^{2}}+\beta^{2}-\frac{\partial^{2}}{\partial x^{2}}-\frac{\partial^{2}}{\partial y^{2}}\right) \psi(t, \vec{x})
$$

- Solvable: $\psi(t, \vec{x})=e^{i \beta z-\omega t} e^{i \ell \phi} J_{t}(\alpha \rho) \quad\left[\alpha^{2}=\frac{\omega^{2}}{c^{2}}-\beta^{2}, \rho^{2}=x^{2}+y^{2}\right]$ (Do recall $L_{z}=-i \partial / \partial \phi$.)
- BTW, Bessel function wavefront does not spread or diffract linteresting, although not material to applications here).

Intro-pictures

$$
m_{\gamma}-\Lambda=-1
$$

Surface of constant phase

Azimuthal component of Poynting vector magnitude

Names: Twisted photons, Vortex photons, Structured light

Selection rules

- Special (i.e., non-plane wavel selection rules.
E.g., in photoproduction or photo excitation

- Target on-axis: all angular momentum must go to internal excitation.
- Off-axis: share angular momentum between internal excitation of target and OAM of CM of final state (relative to vortex line of photon).

Atomic studies

- Can we make twisted photons in the laboratory?
- Can we hold the target acurately enough in place?
- Learn from atomic physics.

Atomic studies 2

- Acknowledgement: I learned a lot from the QUANTUM group (Ferdinand SchmidtKaler and col at the JGU Mainz
- Yes can make twisted light, using laser light with circular polarization passing through spiral wave plates or tuning fork diffraction grating.

A spiral phase plate can generate a helically phased beam from a Gaussian. In this case $\ell=0 \rightarrow \ell=2$.

Atomic studies 3

- Yes, can localize atoms in Paul trap to few 10's of nanometers
- "Hole" in middle of vortex photons are few wavelengths
i.e., few times several hundred nm.
- Hence localization very good.
- Excellent study ion is ${ }^{40} \mathrm{Ca}^{+}$
- Ground state has $4 s_{1 / 2}$ valence electron
- Excite to $3 d_{5 / 2}$ with 729 nm photons
- $3 d_{5 / 2}$ (of course) has $m_{f}=-5 / 2,-3 / 2, \ldots, 5 / 2$
- Zeeman split levels by magnetic field, determine m_{f} from small changes in γ-energy needed to excite.

Atomic studies 4

- Hence $\Delta m=m_{f}-m_{i}$ measurable. m_{y} known. Plot for on-axis data.

$$
\Delta m=m_{\gamma} \quad \text { testable }
$$

Fig. from Schmiegelow et al., Nat. Comm. (2016)

Atomic studies 5

- In addition there is off-axis data for many m_{p}, m_{f}, m_{i}
- Experimenters have data for $m_{y}= \pm 2, \pm 1,0$ (two versions),
$m_{f}=5$ values lone missing), $m_{i}= \pm 1 / 2$, and 60 plots total, among them the following plots for $m_{y}=-2, \Lambda=-1, m_{i}=-1 / 2$

$$
m_{f}=-1 / 2
$$

$b(\mu \mathrm{~m})$

Hadronic physics

- Generic: selective excitation of high spin baryon states
- First example: in $\gamma+N \rightarrow \Delta$, isolate E2 transitions from dominant M1
- Notes: \mathbf{N} is $J^{P}=(1 / 2)^{+} ; \Delta$ is $J^{P}=(3 / 2)^{+}$
- More notes: $N \rightarrow \Delta$ photoproduction requires M1 or E2 transitions
- Ml means angular momentum change $L=1$, parity $(-1)^{L+1}=+$
- E2 means angular momentum change $L=2$, parity $(-1)^{L}=+$

Hadronic physics, esp. $p \rightarrow \Delta$ (1232)

- Ml transition often very small in atomic physics, not so for hadrons.
- For $N \rightarrow \Delta$, both mostly orbital S -states; Ml only needs spin flip and dominates
- The E2 needs two units of orbital angular momentum, involving the (small) D-state of the N or Δ, hence small. But important.

Hadronic physics

- How actually to calculate?
- Will give an atomic-like treatment lignoring recoill, and later correct for recoil lin archived paper if not in talk).
- Method: relate twisted photon amplitudes to plane wave helicity amplitudes, which in turn are related to Ml and E 2 amplitudes

Hadronic physics

- Put target at origin with twisted photon offset. Its vortex line will pass through $\vec{b}=b_{\perp}$ in the $x-y$ plane,

$$
\left|\gamma\left(\kappa m_{y} k_{z} \Lambda \vec{b}\right)\right\rangle=A_{0} \int \frac{d \phi_{k}}{2 \pi}(-i)^{m_{r}} e^{i m_{y}, \phi_{k}-i \vec{k} \cdot \vec{b}}|\gamma(\vec{k}, \Lambda)\rangle
$$

- Want amplitude

$$
\mathscr{M}=\left\langle\Delta\left(m_{f}\right)\right| \mathscr{H}(0)\left|N\left(m_{i}\right) ; \gamma\left(\kappa m_{r} k_{z} \Lambda \vec{b}\right)\right\rangle
$$

- \mathscr{H} is interaction Hamiltonian; nucleon is at rest; $m_{i} \varepsilon m_{f}$ are spin projections in z-direction.

Hadronic physics

- Plane wave states obtained by rotating states w/momentum in z-direction,

$$
|\gamma(\vec{k}, \Lambda)\rangle=R\left(\phi_{k}, \theta_{k}, 0\right)|\gamma(k \hat{k}, \Lambda)\rangle=R_{z}\left(\phi_{k}\right) R_{y}\left(\theta_{k}\right)|\gamma(k \hat{z}, \Lambda)\rangle
$$

using Wick (1962) phase convention.

- Rewrite the previous amplitude, since \mathscr{H} is rotation invariant. Rotate all plane wave constituent photons to z-direction. Then have to rotate N and Δ states at the same time. Easy.
- Since the nucleon is at rest, rotations are given in terms of Wigner functions

$$
R^{\dagger}\left(\phi_{k}, \theta_{k}, 0\right)\left|N\left(m_{i}\right)\right\rangle=e^{m_{m_{i}} \phi_{k}} \sum_{m_{i}^{\prime}} d_{m_{i}, m_{i}^{\prime}}^{1 / 2}\left(\theta_{k}\right)\left|N\left(m_{i}^{\prime}\right)\right\rangle
$$

(all spins projected along z-axis).

-

- Can do the same for Δ, if we neglect recoil

$$
\left.\left\langle\Delta\left(m_{f}\right)\right| R\left(\phi_{k}, \theta_{k}, 0\right)=\sum_{m_{f}^{\prime}}\left\langle\Delta\left(m_{f}^{\prime}\right)\right| e^{-i m_{f} \phi_{k} d_{m_{f}} d_{f}^{3 / 2}, m_{f}^{\prime}} \theta_{k}\right)
$$

- Put together. Do ϕ_{k} integral to obtain Bessel function. Result is

$$
\mathscr{M}=A_{0}(-i)^{m_{f}-m_{i}} e^{i\left(m_{r}+m_{i}-m_{f}\right) \phi_{b_{j}} J_{m_{f}-m_{i}-m_{f}}(\kappa b) \sum_{m_{i}^{\prime}} d_{m_{f}, m_{i}^{\prime}+\Lambda}^{3 / 2}}\left(\theta_{k}\right) d_{m_{i} m_{i}}^{1 / 2}\left(\theta_{k}\right) \mathscr{M}_{m_{i} \Lambda}^{(\mathrm{pww})}
$$

- The plane wave amplitude is

$$
\left\langle\Delta\left(m_{f}^{\prime}\right)\right| \mathscr{H}(0)\left|N\left(m_{i}^{\prime}\right) ; \gamma(k \hat{k}, \Lambda)\right\rangle=\mathscr{M}_{m_{i}^{\prime}, \Lambda}^{(\mathrm{pw})} \delta_{m_{f}^{\prime}, m_{i}^{\prime}+\Lambda}
$$

$p \rightarrow \Delta(1232)$

- There are two independent plane wave amplitudes land others connected by parity):

$$
\begin{aligned}
& \mathscr{M}_{1 / 2,1}^{(\mathrm{pw})} \propto G_{M}^{*}+G_{E}^{*} \\
& \mathscr{M}_{-1 / 2,1}^{(\mathrm{pw})} \propto \frac{1}{\sqrt{3}}\left(G_{M}^{*}-3 G_{E}^{*}\right)
\end{aligned}
$$

- The M1 and E2 amplitudes are represented by Jones-Scadron form factors G_{M}^{*} and G_{E}^{*}, resp.

$p \rightarrow \Delta(1232)$

- Can calculate. With $m_{r}= \pm 2, \pm 1,0$ (two versions), $m_{f}=4$ values, and $m_{i}= \pm 1 / 2$, could make 48 plots. Show 2. Done for $G_{E}^{*} / G_{M}^{*}=3 \%$.

- No Ml contribution for $\Delta m=2$ case (right hand plot)

Hadronic physics

- Comments (only) about recoil. Corrections worked out in published work. [A. Afanasev and CEC, Ann. Phys. (Berlin) 2021, 2100228; ArXiv:2105.07271] Size depends on small components of Δ wave function squared, nominally $\left(E_{\gamma} / 2 M_{\Delta}\right)^{2} \approx 1.9 \%$. Not so serious.

Higher spin baryons generally

- Generally two independent helicity amplitudes.
- Often called $A_{1 / 2}$ or $A_{3 / 2}$, equivalently $M_{m_{i} \Lambda}^{(\mathrm{pw})}=M_{1 / 2,1}^{(\mathrm{pw})}$ or $M_{-1 / 2,1}^{(\mathrm{pw})}$.
- Or, electric and magnetic multipole amplitudes, EJ and MJ (E2 and Ml for the \triangle)
- Again, generally two for each nucleon to resonance transition.

Example of $p \rightarrow F_{15}(1680)$

- a.k.a., $N(1680)$ with $I=1 / 2$ and $J^{P}=(5 / 2)^{+}$.
- The nonzero multipoles are $E 2$ and $M 3$. Can work out

$$
A_{1 / 2} \propto E 2+\sqrt{2} M 3,
$$

and

$$
A_{3 / 2} \propto \sqrt{2} E 2-M 3 .
$$

- From known data [PDG], $A_{1 / 2}$ small and $E 2 \approx-\sqrt{2} M 3$.
- Consider especially high $\Delta m=m_{f}-m_{i}=m_{N(1680)}-m_{p}$ transitions, e.g., $m_{f}=5 / 2$ with $m_{i}=-1 / 2$.

Plots for $p \rightarrow F_{15}(1680)_{\text {abreaus.absead }}$

$m_{\gamma}=2, \wedge=1, m_{f}=1 / 2, m_{i}=-1 / 2$

$m_{\gamma}=3, \wedge=1, m_{f}=1 / 2, m_{i}=-1 / 2$

$m_{\gamma}=2, \wedge=1, m_{f}=3 / 2, m_{i}=-1 / 2$

$m_{\gamma}=3, \wedge=1, m_{f}=3 / 2, m_{i}=-1 / 2$

$m_{\gamma}=2, \wedge=1, m_{f}=5 / 2, m_{i}=-1 / 2$

$m_{\gamma}=3, \wedge=1, m_{f}=5 / 2, m_{i}=-1 / 2$

Summary

- Used twisted photons: sticking to plane wave photons has angular momentum along direction of motion $m_{\gamma}= \pm 1$ only. Very standard.
- Explore what can be done with the extra degree of freedom.
- Communications.
- Atomic physics. BTW, can reverse and use final QN and off-axis behavior as diagnostic of structured photon state.
- Hadronic physics
- Higher spin states, can use to isolate the highest allowed multipole amplitude.
- For example, picking out the small E2 in Δ photoproduction.
- Beam requirements not trivial and not currently possible. But there is a future.

Extra

Target localization

- Want target at rest and stationary. But we know quantum mechanics. Best we can do is

$$
\Delta x \Delta p \geq \frac{1}{2} \hbar \approx \frac{1}{2} 200 \mathrm{MeV} \mathrm{fm}
$$

- A minimal possibility: $\Delta x \approx 3 \mathrm{fm}$ and $\Delta p \approx 30 \mathrm{MeV}$. Could be o.k.
- For Δ kinetic energy, $\Delta E_{\Delta} \approx 2 E_{\gamma} \Delta p /\left(2 M_{\Delta}\right) \approx 7 \mathrm{MeV}$, small compared to Δ width.
- Amplitude plots have minima a few or several λ, and $\lambda=3.65 \mathrm{fm}$. So 3 fm for Δx acceptable, and can adjust. See also Zheludev et al on super-resolution ideas

Unpolarized results

$$
A_{\sigma}^{(\Lambda)}=\frac{\sigma_{\Lambda=1}-\sigma_{\Lambda=-1}}{\sigma_{\Lambda=1}+\sigma_{\Lambda=-1}}
$$

Twisted vector potential

- Components for ($\kappa, m_{\gamma}, k_{z}, \Lambda$) and $b=0$, Coulomb gauge.
- $A_{\rho}=i \frac{A_{0}}{\sqrt{2}} e^{i\left(k_{z} z-\omega t+m_{l} \phi\right)}\left[\cos ^{2} \frac{\theta_{k}}{2} J_{m_{r}-\Lambda}(\kappa \rho)+\sin ^{2} \frac{\theta_{k}}{2} J_{m_{r}+\Lambda}(\kappa \rho)\right]$
. $A_{\phi}=-\Lambda \frac{A_{0}}{\sqrt{2}} e^{i\left(k_{z} z-\omega t+m_{l} \phi\right)}\left[\cos ^{2} \frac{\theta_{k}}{2} J_{m_{r}-\Lambda}(\kappa \rho)-\sin ^{2} \frac{\theta_{k}}{2} J_{m_{l}+\Lambda}(\kappa \rho)\right]$
- $A_{z}=\Lambda \frac{A_{0}}{\sqrt{2}} e^{i\left(k_{z} z-\omega t+m_{i}, \phi\right)} \sin \theta_{k} J_{m_{r}}(\kappa \rho)$

