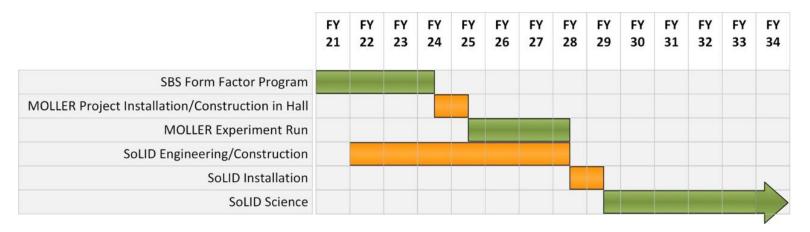
FUTURE OPPORTUNITIES WITH CEBAF UPGRADES

Bob McKeown

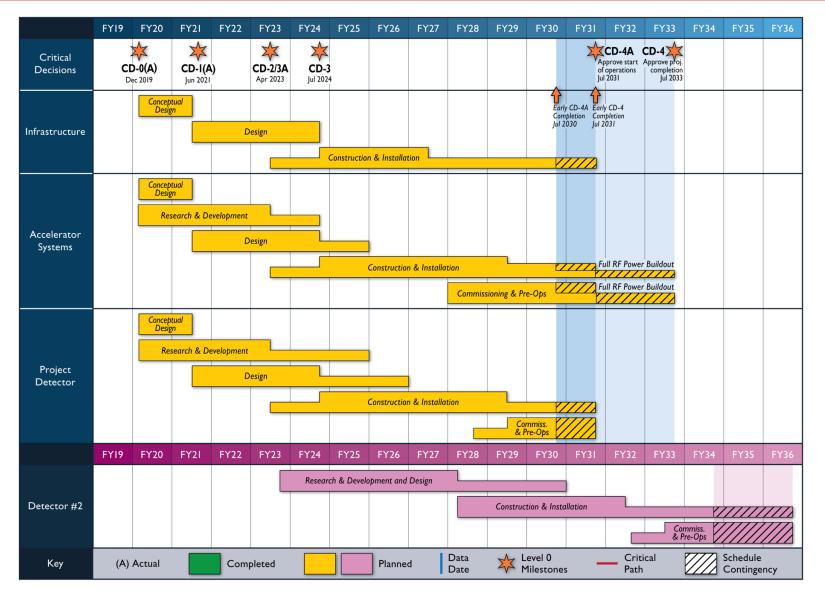
- Light Cone 2021
- Dec. 4, 2021

- Current Program
- Future Opportunities
 - Higher Luminosity/Acceptance
 - Positron Beams
 - Higher Energy
- Accelerator Upgrade Options
- Summary

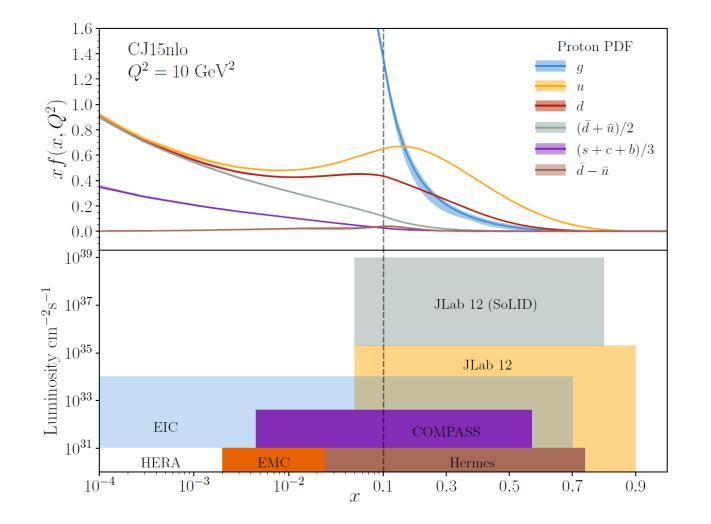
Торіс	Hall A	Hall B	Hall C	Hall D	Total
Hadron spectra as probes of QCD	0	2	1	4	7
Transverse structure of the hadrons	7	4	3	1	15
longitudinal structure of the hadrons	1	3	7	1	12
3D structure of the hadrons	6.5	9	6.5	0	22
Hadrons and cold nuclear matter	10	6	8	1	25
Low-energy tests of the Standard Model and Fundamental Symmetries	3	1	0	1	5
Total	27.5	25	25.5	8	86
Total Experiments Completed	10	10	8.0	1.0	29
Total Experiments Remaining	18	15	17.5	7	57.5


Topic 9/10	Hall A	Hall B	Hall C	Hall D	Total
Hadron spectra as probes of QCD	0	219	11	740	970
Transverse structure of the hadrons	152.5	125	146	25	448.5
Longitudinal structure of the hadrons	42	170	211	33	456
3D structure of the hadrons	371	872	225	0	1468
Hadrons and cold nuclear matter	254.5	305	205	15	779.5
Low-energy tests of the Standard Model and Fundamental Symmetries	547	180	0	79	806
Total Days	1367.0	1871.0	798.0	892	4928.0
Total Days - (includes MOLLER)	893.0	1871	798	892	4454
Total Approved Run Group Days (includes MIE)	1319.5	1066	755	692	3832.5
Total Approved Run Group Days (includes MOLLER)	893	1066	755	692	3406
Total Days Completed	256.5	323	173.0	206	958.5
Total Days Remaining	610.5	743	561.0	486	2400.5

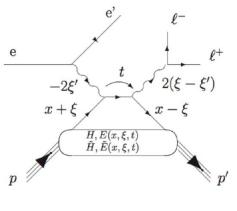
JEFFERSON LAB 12 GEV VISION: LUMINOSITY FRONTIER


- CEBAF has a long program ahead that is complementary to the envisioned EIC program
- CEBAF will remain the prime facility for fixed target electron scattering at the luminosity frontier

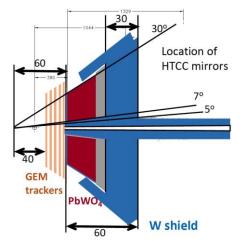
Approved Hall A Program – projected schedule:



PROJECTED EIC SCHEDULE

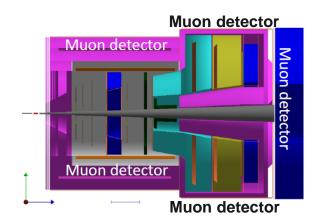


Double Deeply Virtual Compton Scattering (DDVCS)


 $ep \rightarrow e'p'\mu^+\mu^-$

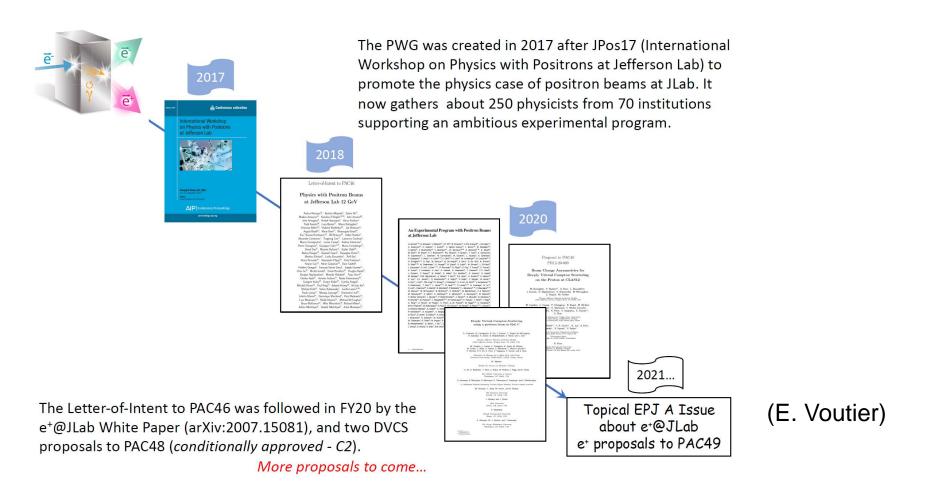
- Access GPD's away from $x=\pm \xi$
- Cross section 100x smaller than DVCS
- Requires large acceptance, high luminosity detector with superb muon detection
- Two Letters of Intent submitted to PAC

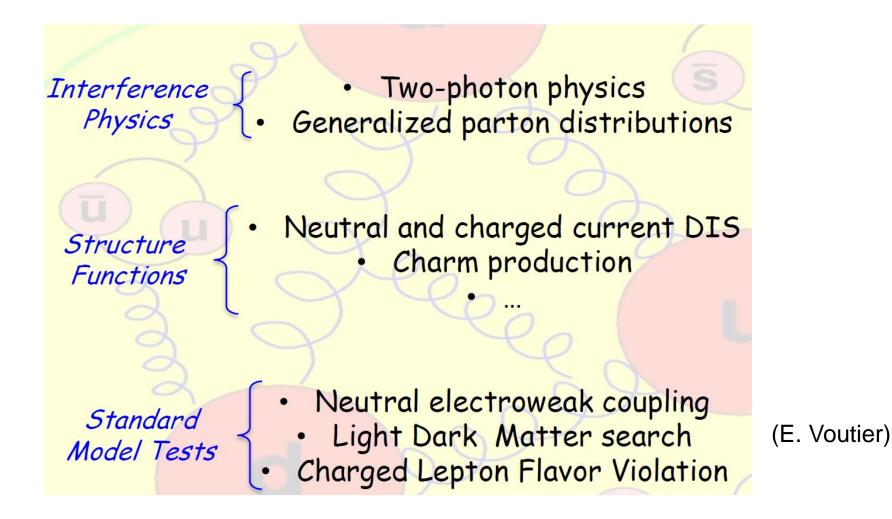
CLAS12 Upgrade $\Rightarrow \mu$ -CLAS12


Will handle few $\times 10^{37} cm^{-2} s^{-1}$ luminosities

Calorimeter is for electron detection. The shielding in front of the CLAS12 forward detector converts it into a muon detector.

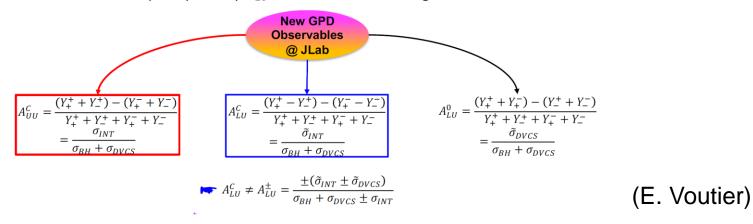
SoLID with Muon detectors


Can run at luminosities > $10^{37} cm^{-2} s^{-1}$


With target inside the solenoid and added shielding luminosity of $10^{38} cm^{-2} s^{-1}$ can be reach

JLAB POSITRON WORKING GROUP

Jefferson Lab

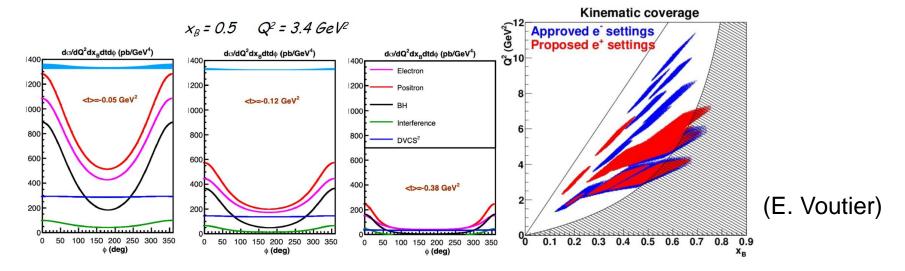

Pr12-20-009

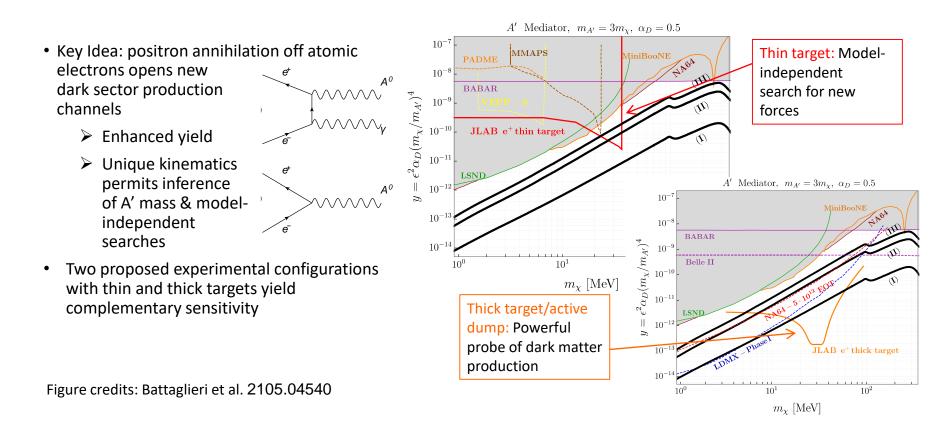
V. Burkert, L. Elouadrhiri, F.-X. Girod, S. Niccolai, E. Voutier et al.

V. Burkert et al. EPJ A 57 (2021) 186

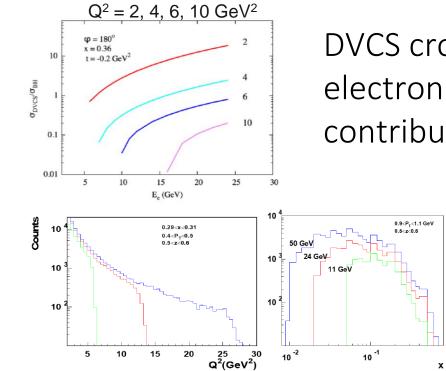
Beam Charge Asymmetries are proposed to be measured at CLAS12:

- The unpolarized beam charge asymmetry A_{UU}^{c} , which is sensitive to the CFF real part
- The polarized beam charge asymmetry A_{LU}^{c} , which is sensitive to the CFF imaginary part
- The neutral beam spin asymmetry A_{LU}^0 , which is sensitive to higher twist effects

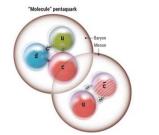



A. Afanasev et a	. arXiv:2105.06540	(2021)
------------------	--------------------	--------

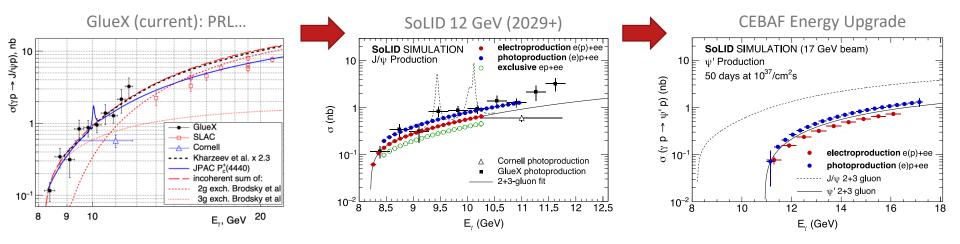
> Combining the HMS and the NPS spectrometers, precise cross section measurements with unpolarized positron beam will be performed at selected kinematics where electron beam data will soon be accumulated.



Positron Beam \rightarrow New Dark Sector Opportunities

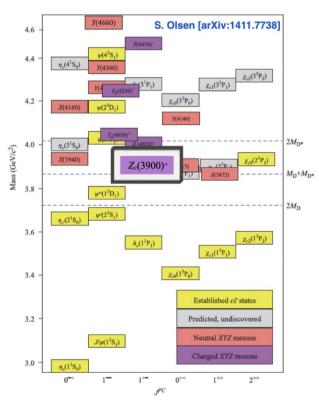

DVCS cross section grows with electron energy relative to BH contribution

Higher Q² , lower x for SIDIS

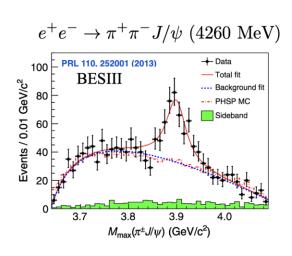


THRESHOLD CHARMONIUM PRODUCTION

- Proton mass decomposition... mass radius?
- Connection to pentaquarks at LHCb
- Connection between GlueX -> SOLID -> CEBAF energy upgrade...

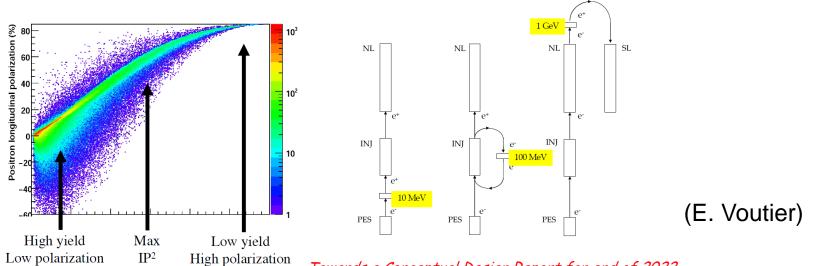


"Bag of quarks" pentaquark



EXCLUSIVE XYZ PRODUCTION

- Unexpected XYZ structures observed in charmonium, with many models for interpretation: resonant states, meson molecules, re-scattering, etc.
- Novel photoproduction mechanism, with models suggesting enhanced production *near threshold for X and Z states*
- Unique access with high luminosity, CEBAF energy upgrade



Posítron Source & Beam

It is the goal of the current R&D to identify the most appropriate implementation of PEPPo at CEBAF, taking into account the many constraints and technological challenges (target heating, collection system, emittance filter, injection into CEBAF, radiation environment, civil construction, cost...) towards the development of a prototype and a CDR.

Towards a Conceptual Design Report for end of 2022...

CEBAF FFA UPGRADE CONCEPT

FFA Arc

- Starting with 12 GeV CEBAF as a baseline
- NO new SRF (1090 MeV per linac)
- Remove the highest pass recirculation arcs (Arc 9 and Arc A) and replace them with a pair of FFA arcs and time-of-flight chicanes

FFA

(A. Bogacz)

- Recirculate as many times as feasible to get to 24 GeV:
 - 4 passes with the current CEBAF (Arcs 1-8)
 - 7 passes through nonscaling FFA arcs
 - Permanent magnets used for power and cost savings

Physics with CEBAF at 12 GeV and Future Opportunities

J. Arrington¹, M. Battaglieri^{2,15}, A. Boehnlein², S.A. Bogacz², W.K. Brooks¹⁰, E. Chudakov², I. Cloët³, R. Ent², H. Gao⁴, J. Grames², L. Harwood², X. Ji^{5,6}, C. Keppel², G. Krafft², R. D. McKeown^{2,8,*}, J. Napolitano⁷, J.W. Qiu^{2,8}, P. Rossi^{2,14}, M. Schram², S. Stepanyan², J. Stevens⁸, A.P. Szczepaniak^{12,13,2}, N. Toro⁹, X. Zheng¹¹

¹Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
²Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606, USA
³Physics Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
⁴Duke University, Durham, North Carolina 27708, USA
⁵Center for Nuclear Femtography, SURA, 1201 New York Ave. NW, Washington, DC 20005, USA
⁶Maryland Center for Fundamental Physics, Department of Physics, University of Maryland, College Park, Maryland 20742, USA
⁷Temple University, Philadelphia, Pennsylvania 19122, USA
⁸William & Mary, Williamsburg, Virginia 23185, USA
⁹SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
¹⁰Universidad Técnica Federico Santa María, Valparaiso, Chile
¹¹University of Virginia, Charlottesville, Virginia 22904, USA
¹²Physics Department, Indiana University, Bloomington, Indiana 47403, USA
¹⁴INFN, Laboratori Nazionali di Frascati, 00044 Frascati, Italy
¹⁵INFN, Sezione di Genova, 16146 Genova, Italy

arXiv:2112.00060

To be published in Progress in Particle and Nuclear Physics, 2022

Physics with CEBAF at 12 GeV and Future Opportunities

- Overview
- Electromagnetic Form Factors and Parton Distributions
- Nuclear Femtography
- Hadron Spectroscopy
- QCD and Nuclei
- Standard Model and Beyond
- Experimental Equipment
- Positron Beams at CEBAF
- CEBAF Energy Upgrade
- Computation for NP

- CEBAF has a long program ahead that is complementary to the envisioned EIC program
- Upgrades for higher luminosity, polarized and unpolarized positron beams, and higher energies up to 24 GeV are envisioned
- CEBAF will remain the prime facility for fixed target electron scattering at the luminosity frontier

