

Current Highlights and Future Prospects from CMS

Sezen Sekmen Kyungpook National University for the CMS Collaboration

Light Cone 2021 28 November - 4 December 2021 Jeju Island, South Korea

Status at CMS

CMS

Run2 measurements & searches in a huge diversity of physics channels:

- Target most challenging and interesting signatures.
- Innovative analysis methods, e.g. extensive use of machine learning.
- More refined use of detector capabilities, e.g. searches with longlived particles.

- pp: 13 TeV, ~140 fb⁻¹,
- PbPb: 5.02 TeV/nucleon 2.26 nb⁻¹

2

Publications:

- >1100 total.
- > 500 on Run2 data.

CMS detector layout

General purpose detector capable of detecting different particles. Eligible for a wide range of physics studies.

SILICON TRACKERS

Pixel (100x150 μm^2) ~1.9 m² ~124M channels Microstrips (80–180 μm) ~200 m² ~9.6M channels

SUPERCONDUCTING SOLENOID

Niobium titanium coil carrying ~18,000 A

MUON CHAMBERS

Barrel: 250 Drift Tube, 480 Resistive Plate Chambers Endcaps: 540 Cathode Strip, 576 Resistive Plate Chambers

PRESHOWER

Silicon strips ~16 m² ~137,000 channels

FORWARD CALORIMETER Steel + Quartz fibres ~2,000 Channels

Phase2 upgrade for the CMS detector

Improved muon coverage and trigger increased RPC coverage (1.5 < $|\eta|$ < 2.4) new electronics

CMS-TDR-016

New precision timing detector

Timing resolution of 30-40 ps for MIPs full coverage of $|\eta| < 3.0$ CMS-TDR-020

New inner tracker

all silicon tracker 4 layers of pixels 5 layers of strips coverage to $|\eta| < 4$ CMS-TDR-014

Luminosity Detectors CMS-TDR-023

New endcap calorimeters

high granularity can reconstruct showers in 3D

CMS-TDR-019

Updates to calorimeter and trigger

higher granularity electronics for trigger CMS-TDR-015

L1: CMS-TDR-021 DAQ/HLT: CMS-TDR-022

Beam Radiation Instrumentation and

Upgrade to trigger and DAQ

L1 rate increased to 750 kHz High Level trigger rate to 7.5 kHz Track information at L1

High Luminosity LHC outlook

- Center of mass energy: 14 TeV
- Instantaneous luminosity: 5x10³⁴ cm⁻²s⁻¹
- Total luminosity to be delivered: 3-4ab⁻¹
- Pileup: 140-200

CMS

Opportunities: More data, improved detector coverage, new detector features.

Challenges: High pile-up, high beam-induced backgrounds, high radiation.

Dedicated physics studies exploring full potential of the HL-LHC and upgraded detectors:

- Improve current searches, design new searches exploiting the new detector capabilities. and develop new analysis strategies.
- access scenarios with lower cross sections, lower acceptance and open new search channels.

Results mainly in CERN Yellow Reports: SM (CERN-LPCC-2018-03), Higgs (CERN-LPCC-2018-04), BSM (CERN-LPCC-2018-05) (LHC experiments + theorists). Others in Technical Design Reports. More studies ongoing for the Snowmass 21 effort.

- Define final state describing the signal:
 - jets+E^{miss}, ...). A final state often probes multiple models/scenarios.
- Apply trigger / online selection.
- Reconstruct, identify and select objects: electrons, muons, jets, boosted tops, ...
- Apply an event selection to enhance signal and eliminate backgrounds.
 - Increased use of ML discriminants in Run2. •
- Estimate backgrounds via data control regions and/or simulation.
- Apply systematic uncertainties.
- search regions.
- Perform statistical analysis.
- Interpret the results on on relevant physics models.

• Analyses are mostly signature-based (designed around a given final state, e.g. dileptons,

• Do a blind analysis: validate analysis strategy before comparing data with background estimate in

Standard model physics

- CMS SM results: <u>https://twiki.cern.ch/twiki/bin/view/CMSPublic/</u> <u>PhysicsResultsSMP</u>
- CMS top results: <u>https://twiki.cern.ch/twiki/bin/view/CMSPublic/</u> <u>PhysicsResultsTOP</u>
- CMS heavy ion results: <u>https://twiki.cern.ch/twiki/bin/view/CMSPublic/</u> <u>PhysicsResultsHIN</u>

SM cross sections

Measurements of total cross sections in various production channels.

Also performing measurements of differential cross sections.

Deviations from SM prediction may indicate new physics.

Triple vector boson (VVV, V=W,Z) final state is sensitive to new particles coupling to V or modifying SM couplings.

VVV observed for the first time in 2020 (search in clean leptonic final states).

Compatible with the SM.

Observation of triple J/ ψ meson production

First observation of triple J/ ψ meson production Contributions from single (SPS), double (DPS) and triple (TPS) parton scattering final states:

Significance > 5σ . Measured the fiducial cross section: $\sigma(pp \rightarrow J/\psi J/\psi J/\psi X) = 272^{+141}_{-104}(stat) \pm 17$ (syst) fb. Measured process dominated by DPS and TPS contributions. Extracted $\sigma_{eff,DPS}$: DPS-associated effective cross section parameter. Consistent with measurements in other processes. Candidate channel for first observation of TPS.

 $\sigma_{\rm eff,DPS}$ [mb]

Observation in $B_{c^+} \rightarrow J/\psi (\rightarrow \mu\mu) \mu\nu$ decay channel in pp and PbPb collisions with $>5\sigma$:

- 3 displaced muons final state.
- B_c⁺ is the only meson containing both b and c quark: bridge between charmonia, bottomonia and open heavy mesons.
- Provides unique insight into the interplay between suppression and recombination (at low p_T).
- Measured cross section and nuclear modification factor in two bins of trimuon p_T and in two ranges of collision centrality.

CMS-PAS-HIN-20-004

Top rare decays at Run2: Observed upper limits above the SM predictions. A good probe for new physics.

4-tops production at HL-LHC: Expect 10-30% uncertainty.

Currently only projections done for Phase2. Expect dedicated analyses with sophisticated methods for Phase2.

CMS-PAS-FTR-18-031

Higgs physics

- CMS Higgs results https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ <u>HiggsPublicResults</u>
- CMS exotic Higgs results: https://twiki.cern.ch/twiki/bin/view/CMSPublic/ **PhysicsResultsHIG**

SM Higgs production channels

	process	13 Te
ggF	gluon-gluon fusion	49 pb
VBF	vector-boson fusion	3.8 pb
VH	associated production	2.3 pb
ttH	associated production	0.51 p

Run2 Higgs mass measurements:

CMS

Run 1: 5.1 fb⁻¹ (7 TeV) + 19.7 fb⁻¹ (8 TeV) Stat. Only - Total 2016: 35.9 fb⁻¹ (13 TeV) Total (Stat. Only) Run 1 H $\rightarrow\gamma\gamma$ 124.70 ± 0.34 (± 0.31) GeV 125.59 ± 0.46 (± 0.42) GeV Run 1 H \rightarrow ZZ \rightarrow 4I 125.07 ± 0.28 (± 0.26) GeV Run 1 Combined 2016 Н→үү 125.78 ± 0.26 (± 0.18) GeV 125.26 ± 0.21 (± 0.19) GeV $2016 \text{ H} \rightarrow \text{ZZ} \rightarrow 4\text{I}$ 125.46 ± 0.16 (± 0.13) GeV 2016 Combined 125.38 ± 0.14 (± 0.11) GeV Run 1 + 2016 125 122 123 124 126 127 128 129

First evidence for $H \rightarrow \mu\mu$:

- SM BR(H $->\mu\mu$) = 2.18x10⁻⁴. Challenging signature.
- Analysis done for all 4 Higgs production channels.
- Backgrounds suppressed due to forward jets, leading to highest sensitivity in the vector boson fusion channels.

CMS-HIG-19-006

- 3σ excess.
- The most recent discovery.
- Run1+Run2 results combined to obtain the best sensitivity.

SM Higgs: Higgs to invisible

H -> invisible: SM BR ~0.1%. Powerful probe for BSM, e.g. light DM coupling to Higgs.

- Measure in conjunction with a taggable object: Z, forward jets, high p_T jet, etc.

Run2 analyses exclusion limits summary: Current limit: ~20-25%

Most sensitive channel is vector boson fusion: 2 forward jets + E_T^{miss}. Challenging due to soft E_T^{miss}.

HL-LHC: Optimized **VBFH** analysis.

 $m_{ii} > 2500 \text{ GeV}.$

Exclusion limits on BH(H -> inv) vs. minimum E^{Tmiss} threshold.

CMS-PAS-FTR-18-016

Can be interpreted in various DM models.

HH allows to measure trilinear H self coupling $\lambda_{HHH} = m_{H^2/2v} - constrain$ H potential shape, nature of EWSB. Also sensitive to BSM physics.

Combinations with Run2 2016 measurements reach $\sigma/\sigma_{SM} = 10$. Full Run2 measurements in progress.

Observation requires HL-LHC and combining all channels. Expect 4σ from ATLAS+CMS for ggH. Most sensitive decay channels: $bb\gamma\gamma$ and $bb\tau\tau$.

- **CMS-PAS-FTR-18-019**

$$V(\Phi) = m^2 \Phi^{\dagger} \Phi + \lambda (\Phi^{\dagger} \Phi)$$

Coupling modifier:

$$\kappa_{\lambda} = c_{hh} = \lambda = \lambda_{HHH} / \lambda_{HH}^{SM}$$

BSM Higgses: Heavy Higgses in 2HDM

Extend SM with 2 Higgs doublets. Doublets couple to SM fermions in 4 different ways. -> Results in 5 Higgs bosons: CP-even h (~h₁₂₅), neutral H, charged H[±], CP-odd A.

MSSM is a Type II 2HDM: One doublet couples to up-type, other couples to down-type fermions. -> Higgs sector determined at tree level by 2 parameters: m_A and $tan\beta = v_1/v_2$.

Look for excess in invariant mass (for $H/A/H^{\pm} \rightarrow$ visible) or transverse mass ($H/A/H^{\pm} \rightarrow$ visible + neutrino).

MSSM Higgs sector + singlet field <— Motivated by next-to-MSSM Higgs sector. 7 Higgs bosons: h_1 , h_2 , H_3 , A_2 , a_1 , H^{\pm} . $h_{125} \rightarrow aa$ possible in NMSSM, where a is pseudoscalar or scalar. Many final states analyzed by varying m_a up to $m_{h125}/2$. Low $m_a \rightarrow boosted$ a decay products.

Search for excess in 4 object invariant $h \rightarrow aa \rightarrow 2b2\tau$ →2b2τ) (% mass (aa \rightarrow visible) 36 fb⁻¹ 12-CMS or transverse mass 300 fb⁻¹, with YR18 syst. unc. Projectior (aa \rightarrow vis + invis). 10 3000 fb⁻¹, with YR18 syst. unc. aa 95% CL limit on ^{σ(h)}B(h HL-LHC search for $H \rightarrow aa \rightarrow bb\tau\tau, \mu\mu\tau\tau$ (hadronic and leptonic τ decays). Sensitivity of the order of SM 15 20 25 30 35 40 45 50 h₁₂₅ cross section.

CMS-PAS-FTR-18-035

VBF production of charged and doubly-charged Higgses H^{±±}, H[±]. decaying to vector bosons. H^{±±}, H[±] mass degenerate

• 2 same charge leptons or 3 leptons + 2 VBF jets.

CMS-HIG-20-017

Extract signal via maximum likelihood fit to $m_{ii} \& m_T^{VV}$.

Interpreted in Georgi-Machacek (GM) model.

 $mH^{\pm\pm} < ~2.4 \text{ TeV}$ mH[±] < ~1.6 TeV.

BSM physics

- CMS SUSY results: <u>https://twiki.cern.ch/twiki/bin/view/AtlasPublic/</u> <u>ExoticsPublicResults</u>
- CMS Exotica results: <u>https://twiki.cern.ch/twiki/bin/view/CMSPublic/</u> <u>PhysicsResultsEXO</u>
- CMS Beyond 2 Generations results: <u>https://twiki.cern.ch/twiki/bin/view/CMSPublic/</u> <u>PhysicsResultsB2G</u>

23

SUSY is a symmetry between bosons and fermions.

- Every SM particle has a superpartner with a different spin.
- SUSY is a broken symmetry: SUSY particles are heavier than SM particles.

 SUSY offers solutions to deficiencies of the SM. O(100) free parameters -> different sparticle masses, cross \rightarrow sections, branching ratios -> rich phenomenology and a broad set of signatures.

LHC searches:

- Large diversity of searches targeting many flavors of SUSY and mass spectra.
- Interpreted using simplified models: Effective Lagrangian descriptions defined by sparticle masses, production and decay processes.
- Set upper limits on cross sections.

 $\widetilde{\chi}_1^0$

- - transverse momentum...

R parity conserving SUSY: Sparticle pair production, lightest SUSY particle is stable (dark matter candidate.) • High missing transverse energy E^{miss} (or momentum p^{miss}), high object multiplicities, high visible

RPV, compressed SUSY: multiple particles; small mass differences between sparticles -> low E_T^{miss} .

- Gluino, top squark and chargino/neutralino vs. neutralino mass limits: Decay BRs = 1 unless stated. • Searches in diverse final states with jets, leptons, photons, giving complementary sensitivity. Multiple disjoint search regions defined by object multiplicities and kinematic variables.
- Gluino vs NT1: Top squark vs NT1:

At HL-LHC, exclusion limits are expected to increase by ~O(few 100 GeV) - 1TeV.

CH1/NT2 vs NT1:

Compositeness models: Leptons and quarks are composite objects made of more fundamental constituents.

- Postulate excited states of quarks and leptons.
- New interactions occur above compositeness scale Λ.

Excited b* search via dijet resonances with at least one jet coming from a b quark.

- Energetic b quarks in jets identified by a deep neural network.
- Look for excess in dijet inv. mass over fit to BG.

Exclude $m_{b^*} < 4$ TeV.

(Also interpreted for Z' in sequential standard model.)

New bosons: Resonances with vector bosons

Long lived particles (LLPs): Overview

Some BSM models predict long-lived particles decaying away from the interaction point.

- Leads to unique and challenging signatures.
- Measure timing or displacement information for an object.

Many searches at Runs 1&2.

At HL-LHC, new Phase2 tracking and timing detectors, along with extended detector coverage and sensitivity will allow a wider diversity and reach.

EXO-20-003 Displaced jets 2012.01581 Hadronic MS 2107.04838 137 fb⁻¹, 13 TeV

LLPs: Phase2 timing detectors

CMS-TDR-020

- ~1000 SM measurements and new physics searches available with Run1/Run2 CMS data covering a large diversity of models and signatures.
 - Many precision measurements; no significant BSM signal observed.
- Preparations for Run3 ongoing.
- HL-LHC will offer unprecedented physics opportunities:
 - All technical design reports for Phase2 are ready.
 - Physics projections are ongoing.

"Data are coming! Data are coming!"

CMS Run2 exotic particles reach summary

Overview of CMS EXO results

Selection of observed exclusion limits at 95% C.L. (theory uncertainties are not included).

	36-140 fb ⁻¹ (13 T	eV)
4968 (3ℓ, ≥ 4 ℓ)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	137 fb ⁻¹ 36 fb ⁻¹ 36 fb ⁻¹ 137 fb ⁻¹ 137 fb ⁻¹ 137 fb ⁻¹ 137 fb ⁻¹
	<12.8	36 fb ⁻¹ 36 fb ⁻¹ 36 fb ⁻¹ 36 fb ⁻¹ 77 fb ⁻¹ 77 fb ⁻¹
$(0, 1l + \ge 3j + E_T^{criten})$ $(0, 1l + \ge 3j + E_T^{criten})$ $0.35-0.7 \qquad 1911.0376$ $0.3-0.6 \qquad 1811.10151 (1\mu)$		36 fb ⁻¹ 137 fb ⁻¹ 36 fb ⁻¹ 36 fb ⁻¹ 36 fb ⁻¹ 36 fb ⁻¹ 36 fb ⁻¹ 36 fb ⁻¹ 18 fb ⁻¹ 18 fb ⁻¹
52 1808.03124 (2j; 4j) 0.1-0.72 1806.010	58 (2j) 0.1-1.41 1806.01058 (2j) <1.5 1810.10092 (6j)	36 fb ⁻¹ 38 fb ⁻¹ 38 fb ⁻¹ 36 fb ⁻¹
	$ \begin{array}{c} < 12 & 1803.0803 \ (2j) \\ < < 9.3 & 1812.10443 \ (2\gamma, 2\ell) \\ < < 9.9 & 1712.02345 \ (\geq 1j + E_{T}^{mins}) \\ < < 8.2 & 1803.0803 \ (2j) \\ < < 8.2 & 1803.0803 \ (2j) \\ < < 8.2 & 1803.0803 \ (2j) \\ < < 8.2 & 1809.00327 \ (2\gamma) \\ < < 8.2 & 1803.0803 \ (2j) \\ < 8.2 & 1803.0803 \ (2j) \ (2j) \ ($	36 fb ⁻¹ 36 fb ⁻¹
	1-5.5 1711.04652 (γ + j) 1-1.8 1711.04652 (γ + j) 0.5-6.3 1911.03947 (2j) 0.25-3.9 1811.03052 (γ + 2e) 0.25-3.8 1811.03052 (γ + 2μ)	36 fb ⁻¹ 36 fb ⁻¹ 137 fb ⁻¹ 36 fb ⁻¹ 36 fb ⁻¹ 36 fb ⁻¹
<0.88 19	$\begin{array}{ll} 0.001 - 1.43 & 1802.02965; 1806.10905 (3\ell(\mu, e); \geq 1j + 2\ell(\mu, e)) \\ \hline 0.02 - 1.6 & 1806.10905 (\geq 1j + \mu + e) \\ 11.04968 (3\ell, \geq 4\ell) \\ 10853 (3\ell, \geq 4\ell, \geq 1\tau + 2\ell) \end{array}$	36 fb ⁻¹ 36 fb ⁻¹ 137 fb ⁻¹ 77 fb ⁻¹
	<pre><1.44 1811.01197 (2e+ 2j) <1.27 1811.01197 (2e+ 2j; e + 2j + E_T^{minn}) <1.53 1808.05082 (2µ + 2j) 0.8-1.5 1811.10151 (1µ + 1j + E_T^{minn}) <1.29 1808.05082 (2µ + 2j; µ + 2j + E_T^{minn}) 1811.00806 (2τ + 2j) 172 (2τ + b)</pre>	36 fb ⁻¹ 36 fb ⁻¹ 36 fb ⁻¹ 77 fb ⁻¹ 36 fb ⁻¹ 36 fb ⁻¹ 36 fb ⁻¹
1909.04114 (2j)	$\begin{array}{c} 0.5-2.9 & 1911.03947 \ (\textbf{2j}) \\ \hline 0.2-4.6 & 2103.02708 \ (\textbf{2e, }2\mu) \\ 0.2-4.4 & 1802.01122 \ (\textbf{e}\mu) \\ \hline 0.4-5.2 & 1803.11133 \ (\ell + \textbf{E}_{T}^{mins}) \\ 0.4-4 & 1807.11421 \ (\textbf{r} + \textbf{E}_{T}^{mins}) \\ 0.5-3.6 & 1911.03947 \ (\textbf{2j}) \\ \hline <4.4 & 1803.11116 \ (2\ell + \textbf{2j}) \\ \hline <3.5 & 1811.00806 \ (\textbf{2r} + \textbf{2j}) \\ \hline 0.5-6.6 & 1911.03947 \ (\textbf{2j}) \\ \hline \end{array}$	137 fb ⁻¹ 137 fb ⁻¹ 137 fb ⁻¹ 36 fb ⁻¹ 140 fb ⁻¹ 36 fb ⁻¹ 36 fb ⁻¹ 36 fb ⁻¹ 36 fb ⁻¹ 36 fb ⁻¹ 137 fb ⁻¹ 36 fb ⁻¹ 36 fb ⁻¹ 36 fb ⁻¹
1	10 10.0 Moriond	

HL-LHC exotic particles reach summary

Model	spin 95% CL Limit (solid	d), 5 σ Discover	ry (dash) Section нг/не-гнс
$KK \rightarrow 4b$	2		6.1.1
$HVT \rightarrow VV$			6.4.4 6.4.4
$G_{RS} \rightarrow W^+ W^-$	1		6.4.6
$G_{RS} \rightarrow t\bar{t}$			6.2.2 6.2.2
$Z_{TC2}^{'} \rightarrow t\bar{t}$	1		6.2.3 6.4.6
$Z_{SSM} \rightarrow t\bar{t}$	1		6.4.6
$Z_{SSM}^{'} \rightarrow t\bar{t}$ $Z_{\psi}^{'} \rightarrow + -$ $Z_{SSM}^{'} \rightarrow + -$ $Z_{SSM}^{'} \rightarrow \tau^{+}\tau^{-}$	1 1000000000000000000000000000000000000		6.2.5 6.2.5
$Z_{SSM}^{\phi} \rightarrow + -$	1		6.2.5 6.2.4
$Z'_{SSM} \rightarrow \tau^+ \tau^-$	1 1		6.2.4
$W_{SSM}^{'} \rightarrow \tau v$	1		6.2.7
$W_{SSM} \rightarrow V$			6.2.6
$W_{R}^{'} \rightarrow t\bar{b} \rightarrow b\bar{b} v$	1		6.2.6
$Q^* \rightarrow jj$	1/2		6.4.6
$v^{Majorana} \rightarrow qq'$		ш <u>-</u>	5.1.3 5.1.3
v^{Heavy} $(m_N = m_E)$		NN-	5.1.1 5.1.1
$* \rightarrow \gamma$			6.3.1
$LQ(pair prod.) \rightarrow b\tau$	0	HE-LHC	
$LQ \rightarrow t\mu$	0		$V, L = 15 ab^{-1}$ 5.2.1
$LQ \rightarrow t\tau$			521
$H^{++}H^{} \to \tau_h^{\pm \mp \mp} (I)$		HL-LHC	511511
$H^{++}H^{} \rightarrow \tau_h^{\pm \mp \mp \mp}(H^{++})$		√ <i>s</i> = 14 Te	$V, L = 3 ab^{-1}$ 5.1.1 5.1.1
	0 2 4 6	8 10	12 14 arXiv:1812.07831
$(=e,\mu)$			
		Mas	s scale [TeV]

CERN-LPCC-2018-005

CMS Run2 long-lived particles reach summary

Overview of CMS long-lived particle searches

CMS Preliminary

Selection of observed exclusion limits at 95% C.L. (theory uncertainties are not included). The y-axis tick labels indicate the studied long-lived particle.

Moriond 2021

Building HL-LHC SUSY reach summary

	Medel	RUTY	lata	HE-LHC, $\int \mathcal{L} dt = 15 \text{ab}^{-1}$: 5 σ discovery (95% CL exclusion)		$\sqrt{s} = 14, 2$
	Model	e, μ, τ, γ	Jets	Mass limit		Section
	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\bar{q}\tilde{\chi}_1^0$	0	4 jets	<i>ğ</i> 2.9 (3.2) TeV	$m(\tilde{\chi}_1^0)=0$	2.1.1
	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\bar{q}\tilde{\chi}_1^0$	0	4 jets	<i>ğ</i> 5.2 (5.7) TeV	$m(\tilde{\chi}_1^0)=0$	2.1.1
Gluino	$\tilde{g}\tilde{g}, \; \tilde{g} \rightarrow t t \tilde{\chi}_1^0$	0	Multiple	<i>ğ</i> 2.3 (2.5) TeV	$m(\tilde{\chi}_1^0)=0$	2.1.3
G	$\tilde{g}\tilde{g}, \; \tilde{g} \rightarrow t \bar{c} \tilde{\chi}_1^0$	0	Multiple	<i>ỹ</i> 2.4 (2.6) TeV	$m(\tilde{\chi}_1^0)$ =500 GeV	2.1.3
	NUHM2, $\tilde{g} \rightarrow t\tilde{t}$	0	Multiple/2b	<i>ğ</i> 5.5 (5.9) TeV		2.4.2
	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow t \tilde{\chi}_1^0$	0	Multiple/2b	<i>ĩ</i> ₁ 1.4 (1.7) TeV	$m(\tilde{\chi}_1^0)=0$	2.1.2, 2.1.3
Stop	$\tilde{t}_1\tilde{t}_1, \tilde{t}_1 \rightarrow t\tilde{\chi}_1^0$	0	Multiple/2b	<i>ĩ</i> ₁ 0.6 (0.85) TeV	$\Delta m(\tilde{t}_1, \tilde{\chi}_1^0) \sim m(t)$	2.1.2
S	$\tilde{t}_1\tilde{t}_1, \tilde{t}_1 \rightarrow b\tilde{\chi}^{\pm}/t\tilde{\chi}^0_1, \tilde{\chi}^0_2$	0	Multiple/2b	<i>ĩ</i> 3.16 (3.65) TeV		2.4.2
	$\tilde{\chi}_1^{\dagger} \tilde{\chi}_1^{-}, \tilde{\chi}_1^{\pm} \rightarrow W^{\pm} \tilde{\chi}_1^0$	2 <i>e</i> , μ	0-1 jets	$\tilde{\chi}_{1}^{\pm}$ 0.66 (0.84) TeV	$m(\tilde{\chi}_1^0)=0$	2.2.1
Chargino, neutralino	$ ilde{\chi}_1^{\pm} ilde{\chi}_2^0$ via WZ	3 <i>e</i> , <i>µ</i>	0-1 jets	$\tilde{\chi}_{1}^{\pm}/\tilde{\chi}_{2}^{0}$ 0.92 (1.15) TeV	$m(\tilde{\chi}_1^0)=0$	2.2.2
harg eutri	$\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$ via <i>Wh</i> , <i>Wh</i> $\rightarrow \ell \nu b \bar{b}$	1 <i>e</i> , <i>µ</i>	2-3 jets/2b	$\tilde{\chi}_{1}^{\pm}/\tilde{\chi}_{2}^{0}$ 1.08 (1.28) TeV	$m(\tilde{\chi}_1^0)=0$	2.2.3
Ŭ Ĕ	$\tilde{\chi}_2^{\pm} \tilde{\chi}_4^0 {\rightarrow} W^{\pm} \tilde{\chi}_1^0 W^{\pm} \tilde{\chi}_1^{\pm}$	2 <i>e</i> , <i>µ</i>	-	$ ilde{\chi}_2^{\pm}/ ilde{\chi}_4^0$ 0.9 TeV	$m(\tilde{\chi}_1^0)$ =150, 250 GeV	2.2.4
0	$\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0 + \tilde{\chi}_2^0 \tilde{\chi}_1^0, \tilde{\chi}_2^0 \rightarrow Z \tilde{\chi}_1^0, \tilde{\chi}_1^{\pm} \rightarrow W \tilde{\chi}_1^0$	2 <i>e</i> , <i>µ</i>	1 jet	$\tilde{\chi}_{1}^{\pm}/\tilde{\chi}_{2}^{0}$ 0.25 (0.36) TeV	$m(\tilde{\chi}_1^0)=15GeV$	2.2.5.1
Higgsino	$\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0 + \tilde{\chi}_2^0 \tilde{\chi}_1^0, \tilde{\chi}_2^0 \rightarrow Z \tilde{\chi}_1^0, \tilde{\chi}_1^{\pm} \rightarrow W \tilde{\chi}_1^0$	2 <i>e</i> , <i>µ</i>	1 jet	$\tilde{\chi}_{1}^{\pm}/\tilde{\chi}_{2}^{0}$ 0.42 (0.55) TeV	$m(\tilde{\chi}_1^0)=15 GeV$	2.2.5.1
Hig	$\tilde{\chi}_2^0 \tilde{\chi}_1^{\pm}, \tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\mp}, \tilde{\chi}_1^{\pm} \tilde{\chi}_1^{0}$	2 μ	1 jet	$ ilde{\chi}_2^0$ 0.21 (0.35) TeV	$\Delta m(\tilde{\chi}_2^0, \tilde{\chi}_1^0) = 5 \mathrm{GeV}$	2.2.5.2
Wino	$\tilde{\chi}_2^{\pm} \tilde{\chi}_4^0$ via same-sign <i>WW</i>	2 <i>e</i> , <i>µ</i>	0	Wino 0.86 (1.08) TeV		2.4.2
	$\tilde{\tau}_{L,R}\tilde{\tau}_{L,R}, \tilde{\tau} {\rightarrow} \tau \tilde{\chi}_1^0$	2 τ	-	τ̃ 0.53 (0.73) TeV	$m(\tilde{\chi}_1^0)=0$	2.3.1
Stau	$ ilde{ au} ilde{ au}$	$2\tau, \tau(e,\mu)$	-	τ̃ 0.47 (0.65) TeV	$m(\tilde{\chi}_1^0)=0, m(\tilde{\tau}_L)=m(\tilde{\tau}_R)$	2.3.2
()	$ ilde{ au} ilde{ au}$	$2\tau, \tau(e,\mu)$	-	τ̃ 0.81 (1.15) TeV	$m(\tilde{\chi}_1^0)=0, m(\tilde{\tau}_L)=m(\tilde{\tau}_R)$	2.3.4
	$\tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\mp}, \tilde{\chi}_1^{\pm} \tilde{\chi}_1^0$, long-lived $\tilde{\chi}_1^{\pm}$	Disapp. trk.	1 jet	$\tilde{\chi}_{1}^{\pm} = [\tau(\tilde{\chi}_{1}^{\pm})=1 \text{ns}]$ 0.8 (1.1) TeV	Wino-like $\tilde{\chi}_1^{\pm}$	4.1.1
	$\tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\mp}, \tilde{\chi}_1^{\pm} \tilde{\chi}_1^0$, long-lived $\tilde{\chi}_1^{\pm}$	Disapp. trk.	1 jet	$\tilde{\chi}_{1}^{\pm} [\tau(\tilde{\chi}_{1}^{\pm})=1\text{ns}]$ 0.6 (0.75) TeV	Higgsino-like $\tilde{\chi}_1^{\pm}$	4.1.1
	MSSM, Electroweak DM	Disapp. trk.	1 jet	DM mass 0.88 (0.9) TeV	Wino-like DM	4.1.3
s 3d	MSSM, Electroweak DM	Disapp. trk.	1 jet	DM mass 2.0 (2.1) TeV	Wino-like DM	4.1.3
Long-lived particles	MSSM, Electroweak DM	Disapp. trk.	1 jet	DM mass 0.28 (0.3) TeV	Higgsino-like DM	4.1.3
par	MSSM, Electroweak DM	Disapp. trk.	1 jet	DM mass 0.55 (0.6) TeV	Higgsino-like DM	4.1.3
	\tilde{g} R-hadron, $\tilde{g} \rightarrow qq \tilde{\chi}_1^0$	0	Multiple	$\tilde{g} = [\tau(\tilde{g}) = 0.1 - 3 \text{ ns}]$ 3.4 TeV	$m(\tilde{\chi}_1^0)$ =100 GeV	4.2.1
	\tilde{g} R-hadron, $\tilde{g} \rightarrow qq \tilde{\chi}_1^0$	0	Multiple	$\tilde{g} = [\tau(\tilde{g}) = 0.1 - 10 \text{ ns}]$ 2.8 TeV		4.2.1
	$GMSB\tilde{\mu}{\rightarrow}\mu\tilde{G}$	displ. μ	-	μ 0.2 TeV	$c\tau = 1000 \text{ mm}$	4.2.2
						arXiv:1812.0783
				10 ⁻¹ 1 Mass scale [TeV]		

CERN-LPCC-2018-005

