Current Highlights and Future Prospects from CMS

Sezen Sekmen
Kyungpook National University for the CMS Collaboration

Light Cone 2021
28 November - 4 December 2021
Jeju Island, South Korea
Status at CMS

Run2 measurements & searches in a huge diversity of physics channels:

- Target most challenging and interesting signatures.
- Innovative analysis methods, e.g. extensive use of machine learning.
- More refined use of detector capabilities, e.g. searches with long-lived particles.

Run2 (2016-18):
- pp: 13 TeV, ~140 fb$^{-1}$,
- PbPb: 5.02 TeV/nucleon 2.26 nb$^{-1}$

Publications:
- >1100 total.
- > 500 on Run2 data.
General purpose detector capable of detecting different particles. Eligible for a wide range of physics studies.
Phase2 upgrade for the CMS detector

Improved muon coverage and trigger
- increased RPC coverage ($1.5 < |\eta| < 2.4$)
- new electronics

CMS-TDR-016

New precision timing detector
- Timing resolution of 30-40 ps for MIPs
- full coverage of $|\eta| < 3.0$

CMS-TDR-020

New inner tracker
- all silicon tracker
- 4 layers of pixels
- 5 layers of strips
- coverage to $|\eta| < 4$

CMS-TDR-014

Beam Radiation Instrumentation and Luminosity Detectors

CMS-TDR-023

New endcap calorimeters
- high granularity
- can reconstruct showers in 3D

CMS-TDR-019

Updates to calorimeter and trigger
- higher granularity
- electronics for trigger

CMS-TDR-015

L1
- CMS-TDR-021
- DAQ/HLT: CMS-TDR-022

Upgrade to trigger and DAQ
- L1 rate increased to 750 kHz
- High Level trigger rate to 7.5 kHz
- Track information at L1
Towards the HL-LHC

High Luminosity LHC outlook

• Center of mass energy: 14 TeV
• Instantaneous luminosity: $5 \times 10^{34} \text{ cm}^{-2}\text{s}^{-1}$
• Total luminosity to be delivered: 3-4 ab$^{-1}$
• Pileup: 140-200

Opportunities: More data, improved detector coverage, new detector features.

Challenges: High pile-up, high beam-induced backgrounds, high radiation.

Dedicated physics studies exploring full potential of the HL-LHC and upgraded detectors:

• Improve current searches, design new searches exploiting the new detector capabilities, and develop new analysis strategies.
• access scenarios with lower cross sections, lower acceptance and open new search channels.

Typical analysis flow

- Define final state describing the signal:
 - Analyses are mostly signature-based (designed around a given final state, e.g. dileptons, jets+E_T^{miss}, …). A final state often probes multiple models/scenarios.

- Apply trigger / online selection.
- Reconstruct, identify and select objects: electrons, muons, jets, boosted tops, …
- Apply an event selection to enhance signal and eliminate backgrounds.
 - Increased use of ML discriminants in Run2.
- Estimate backgrounds via data control regions and/or simulation.
- Apply systematic uncertainties.
- Do a blind analysis: validate analysis strategy before comparing data with background estimate in search regions.
- Perform statistical analysis.
- Interpret the results on relevant physics models.
Standard model physics

- CMS SM results: https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSMP
- CMS top results: https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsTOP
- CMS heavy ion results: https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsHIN
SM cross sections

Measurements of total cross sections in various production channels.

Also performing measurements of differential cross sections.

Deviations from SM prediction may indicate new physics.
First measurement of the $Z \rightarrow \nu \nu$ (Z to invisible) width at a hadron collider. Based on 2016 data.

Ratio of $\Gamma_{\nu \nu} / \Gamma_{ll}$ from a simultaneous fit of $Z \rightarrow \nu \nu$, $Z \rightarrow ee$ and $Z \rightarrow \mu \mu$ enriched event categories.

$\Gamma_{Zinv} = 523 \pm 3$ (stat) ± 16 (syst) MeV.

Single most precise direct measurement of the Z to invisible width competitive with the direct LEP result.
Observation of VVV production

Triple vector boson (VVV, V=W,Z) final state is sensitive to new particles coupling to V or modifying SM couplings.

VVV observed for the first time in 2020 (search in clean leptonic final states).

Compatible with the SM.
First observation of triple J/ψ meson production

Contributions from single (SPS), double (DPS) and triple (TPS) parton scattering final states:

Significance > 5σ. Measured the fiducial cross section:

$$\sigma(pp \rightarrow J/\psi J/\psi J/\psi X) = 272^{+141}_{-104}\text{(stat)} \pm 17\text{ (syst)} \text{ fb}$$

Measured process dominated by DPS and TPS contributions.

Extracted $$\sigma_{eff,DPS}$$: DPS-associated effective cross section parameter. Consistent with measurements in other processes.

Candidate channel for first observation of TPS.
First observation of B_{C}^{+} meson in PbPb collisions

Observation in $B_{C}^{+} \rightarrow J/\psi (\rightarrow \mu \mu) \mu \nu$ decay channel in pp and PbPb collisions with $>5\sigma$:

- 3 displaced muons final state.
- B_{C}^{+} is the only meson containing both b and c quark: bridge between charmonia, bottomonia and open heavy mesons.
- Provides unique insight into the interplay between suppression and recombination (at low p_T).
- Measured cross section and nuclear modification factor in two bins of trimuon p_T and in two ranges of collision centrality.

CMS-PAS-HIN-20-004
Top quark measurements

Top rare decays at Run2: Observed upper limits above the SM predictions. A good probe for new physics.

4-tops production at HL-LHC: Expect 10-30% uncertainty.
Currently only projections done for Phase2. Expect dedicated analyses with sophisticated methods for Phase2.
Higgs physics

• CMS Higgs results
 https://twiki.cern.ch/twiki/bin/view/AtlasPublic/HiggsPublicResults

• CMS exotic Higgs results:
 https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsHIG
SM Higgs boson: LHC production and decay

- Higgs boson can be produced via several processes and decay into several final states.
- Observed mass 125 GeV presents a particular diversity of decay channels.
 → multiple probes for studying the Higgs!

<table>
<thead>
<tr>
<th>process</th>
<th>13 TeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>ggF</td>
<td>49 pb</td>
</tr>
<tr>
<td>VBF</td>
<td>3.8 pb</td>
</tr>
<tr>
<td>VH</td>
<td>2.3 pb</td>
</tr>
<tr>
<td>ttH</td>
<td>0.51 pb</td>
</tr>
</tbody>
</table>

- SM Higgs branching ratios

- cc, 2.9
- WW, 21.5
- ZZ, 2.6
- gg, 8.6
- Zγ, 0.2
- γγ, 0.2
SM Higgs: Mass and couplings

Run2 Higgs mass measurements:

Run2 Higgs coupling strength measurements:

CMS

<table>
<thead>
<tr>
<th>Run 1: 5.1 fb⁻¹ (7 TeV) + 19.7 fb⁻¹ (8 TeV)</th>
<th>Run 1: 5.1 fb⁻¹ (7 TeV) + 19.7 fb⁻¹ (8 TeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2016: 35.9 fb⁻¹ (13 TeV)</td>
<td>2016: 35.9 fb⁻¹ (13 TeV)</td>
</tr>
</tbody>
</table>

- **Run 1 H → γγ**
 - Total: 124.70 ± 0.34 (± 0.31) GeV
 - Stat. Only: 124.70 ± 0.34 (± 0.31) GeV
- **Run 1 H → ZZ → 4l**
 - Total: 125.59 ± 0.46 (± 0.42) GeV
 - Stat. Only: 125.59 ± 0.46 (± 0.42) GeV
- **Run 1 Combined**
 - Total: 125.07 ± 0.28 (± 0.26) GeV
 - Stat. Only: 125.07 ± 0.28 (± 0.26) GeV
- **2016 H → γγ**
 - Total: 125.78 ± 0.26 (± 0.18) GeV
 - Stat. Only: 125.78 ± 0.26 (± 0.18) GeV
- **2016 H → ZZ → 4l**
 - Total: 125.26 ± 0.21 (± 0.19) GeV
 - Stat. Only: 125.26 ± 0.21 (± 0.19) GeV
- **2016 Combined**
 - Total: 125.46 ± 0.16 (± 0.13) GeV
 - Stat. Only: 125.46 ± 0.16 (± 0.13) GeV
- **Run 1 + 2016**
 - Total: 125.38 ± 0.14 (± 0.11) GeV
 - Stat. Only: 125.38 ± 0.14 (± 0.11) GeV

Ratio to SM

- Vector bosons
- 3rd generation fermions
- Muons
- Dashed line: SM Higgs boson
SM Higgs: Evidence for Higgs to $\mu\mu$

First evidence for $H \rightarrow \mu\mu$:

- SM BR($H \rightarrow \mu\mu$) = 2.18×10^{-4}. Challenging signature.
- Analysis done for all 4 Higgs production channels.
- Backgrounds suppressed due to forward jets, leading to highest sensitivity in the vector boson fusion channels.

- 3σ excess.
- The most recent discovery.
- Run1+Run2 results combined to obtain the best sensitivity.
SM Higgs: Higgs to invisible

H → invisible: SM BR ~0.1%. Powerful probe for BSM, e.g. light DM coupling to Higgs.

- Measure in conjunction with a taggable object: Z, forward jets, high p_T jet, etc.
- Most sensitive channel is vector boson fusion: 2 forward jets + E_T^{miss}. Challenging due to soft E_T^{miss}.

Run2 analyses exclusion limits summary:
Current limit: ~20-25%

HL-LHC: Optimized VBFH analysis.
m_{jj} > 2500 GeV.
Exclusion limits on BH(H → inv) vs. minimum E_T^{miss} threshold.

Can be interpreted in various DM models.
SM Higgs: diHiggs and Higgs self coupling

HH allows to measure trilinear H self coupling $\lambda_{HHH} = m_H^2/2v \rightarrow$ constrain H potential shape, nature of EWSB. Also sensitive to BSM physics.

Combinations with Run2 2016 measurements reach $\sigma/\sigma_{SM} = 10$.

Full Run2 measurements in progress.

Observation requires HL-LHC and combining all channels. Expect 4σ from ATLAS+CMS for ggH. Most sensitive decay channels: $b\bar{b}\gamma\gamma$ and $b\bar{b}\tau\tau$.

$V(\Phi) = m^2\Phi^\dagger\Phi + \lambda(\Phi^\dagger\Phi)^2$

Coupling modifier:

$\kappa_\lambda = c_{hh} = \lambda = \lambda_{HHH}/\lambda_{HHH}^{SM}$

Run2 2016 combination

HL-LHC projections

ATLAS and CMS

3000 fb$^{-1}$ (14 TeV)

HL-LHC prospects

ATLAS

CMS

Combination

Stat. uncertainty
BSM Higgses: Heavy Higgses in 2HDM

Extend SM with 2 Higgs doublets. Doublets couple to SM fermions in 4 different ways.

→ Results in 5 Higgs bosons: CP-even h (~h_{125}), neutral H, charged H^±, CP-odd A.

MSSM is a Type II 2HDM: One doublet couples to up-type, other couples to down-type fermions.

→ Higgs sector determined at tree level by 2 parameters: \(m_A \) and \(\tan\beta = v_1/v_2 \).

Look for excess in invariant mass (for H/A/H^± → visible) or transverse mass (H/A/H^± → visible + neutrino).

Run2 direct searches for heavy H/A.

HL-LHC search for H/A → ττ (\(τ_{lep}τ_{had} + τ_{had}τ_{had} \) channels). Increased sensitivity wrt Run2.
BSM Higgses: 2HDM+S

MSSM Higgs sector + singlet field ← Motivated by next-to-MSSM Higgs sector.

7 Higgs bosons: \(h_1, h_2, H_3, A_2, a_1, H^\pm \). \(h_{125} \rightarrow aa \) possible in NMSSM, where \(a \) is pseudoscalar or scalar.

Many final states analyzed by varying \(m_a \) up to \(m_{h_{125}}/2 \). Low \(m_a \) → boosted a decay products.

Search for excess in 4 object invariant mass (\(aa \rightarrow \text{visible} \)) or transverse mass (\(aa \rightarrow \text{vis + invis} \)).

HL-LHC search for \(H \rightarrow aa \rightarrow bb\tau\tau, \mu\mu\tau\tau \) (hadronic and leptonic \(\tau \) decays). Sensitivity of the order of SM \(h_{125} \) cross section.
BSM Higgses: Charged Higgs in Higgs triplet models

VBF production of charged and doubly-charged Higgses $H^{±±}$, $H^{±}$, decaying to vector bosons. $H^{±±}$, $H^{±}$ mass degenerate

- 2 same charge leptons or 3 leptons + 2 VBF jets.

CMS-HIG-20-017

Extract signal via maximum likelihood fit to m_{jj} & m_{VV}.

No excess.

Interpreted in Georgi-Machacek (GM) model.

Exclude $m_{H^{±±}} < ~2.4$ TeV

$m_{H^{±}} < ~1.6$ TeV.
BSM physics

- CMS SUSY results: https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ExoticsPublicResults
- CMS Exotica results: https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsEXO
- CMS Beyond 2 Generations results: https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsB2G
Supersymmetry (SUSY): Overview

SUSY is a symmetry between bosons and fermions.

- Every SM particle has a superpartner with a different spin.
- SUSY is a broken symmetry: SUSY particles are heavier than SM particles.
- SUSY offers solutions to deficiencies of the SM.

$O(100)$ free parameters \rightarrow different sparticle masses, cross sections, branching ratios \rightarrow rich phenomenology and a broad set of signatures.

LHC searches:

- Large diversity of searches targeting many flavors of SUSY and mass spectra.
- Interpreted using simplified models: Effective Lagrangian descriptions defined by sparticle masses, production and decay processes.
- Set upper limits on cross sections.
SUSY: Characteristic signatures

- **R parity conserving SUSY:** Sparticle pair production, lightest SUSY particle is stable (dark matter candidate.)
- **High missing transverse energy** E_T^{miss} (or momentum p_T^{miss}), **high object multiplicities, high visible transverse momentum**...

RPV, compressed SUSY: multiple particles; small mass differences between sparticles \rightarrow **low** E_T^{miss}.
Gluino, top squark and chargino/neutralino vs. neutralino mass limits: Decay BRs = 1 unless stated.

- Searches in diverse final states with jets, leptons, photons, giving complementary sensitivity.
- Multiple disjoint search regions defined by object multiplicities and kinematic variables.

Gluino vs NT1:

Top squark vs NT1:

CH1/NT2 vs NT1:

At HL-LHC, exclusion limits are expected to increase by ~O(few 100 GeV) - 1TeV.
Compositeness models: Leptons and quarks are composite objects made of more fundamental constituents.

- Postulate excited states of quarks and leptons.
- New interactions occur above compositeness scale Λ.

Excited b^* search via dijet resonances with at least one jet coming from a b quark.

- Energetic b quarks in jets identified by a deep neural network.
- Look for excess in dijet inv. mass over fit to BG.

Exclude $m_{b^*} < 4$ TeV.

(Also interpreted for Z' in sequential standard model.)
New bosons: Resonances with vector bosons

Search for heavy resonances X decaying to ZW. ZZ pairs:
- \(Z \rightarrow \nu \nu, \text{boosted } Z/W \rightarrow jj \): Merged jets + \(E_{T}^{\text{miss}} \) + forward jets.
- Extract signal in a fit to transverse mass of merged jet + \(E_{T}^{\text{miss}} \). No excess.

Spin-2 bulk graviton < 1.8 TeV
Radion < 3.1 TeV
Graviton < 1.2 TeV
W' < 3.0 TeV
W' < 4.0 TeV

Search for heavy resonances X decaying to WW, WZ, WH pairs:
- \(W \rightarrow l\nu, \text{boosted } W/Z/H \rightarrow jj \): Lepton + merged jet final state. Dedicated VBF selection via forward jets.
- Extract signal in 2D fit to \(m_{jj} \) vs \(m_{\text{diboson}} \). No excess.

Spin-2 bulk graviton < 1.8 TeV
Radion < 3.1 TeV
Z' < 3.9 TeV
W' < 4 TeV
W' < 3.9 TeV
Some BSM models predict long-lived particles decaying away from the interaction point.

- Leads to unique and challenging signatures.
- Measure timing or displacement information for an object.

Many searches at Runs 1&2.

At HL-LHC, new Phase2 tracking and timing detectors, along with extended detector coverage and sensitivity will allow a wider diversity and reach.
LLPs: SM Higgs decays to long-lived BSM particles

Complementarity of different LLP searches for SM Higgs decays to LL BSM particles. Different searches sensitive to different LLP proper lifetime ranges.
LLPs: Phase2 timing detectors

CMS MIP Timing Detector: MIP timing with 30ps precision. Acceptance of $|\eta| < 3$ for p_T, $p < 0.7$ GeV in barrel/endcap.

Displaced photons from GMSB (gauge-mediated SUSY breaking models): $\tilde{\chi}_0 \rightarrow G + \gamma$

Use time of arrival of photons to MTD to discriminate signal \rightarrow determine neutralino time of flight.

Increased sensitivity with MTD to short $c\tau$ and high masses.

Heavy charged stable particles:

Long-lived GMSB stau:

Measure particle velocity β.

MTD improves time resolution.

Discriminate signals, extract mass.
• ~1000 SM measurements and new physics searches available with Run1/Run2 CMS data covering a large diversity of models and signatures.
 • Many precision measurements; no significant BSM signal observed.
• Preparations for Run3 ongoing.
• HL-LHC will offer unprecedented physics opportunities:
 • All technical design reports for Phase2 are ready.
 • Physics projections are ongoing.

“Data are coming! Data are coming!”

Summary and outlook
Extra slides
HL-LHC exotic particles reach summary

Model

<table>
<thead>
<tr>
<th>Model</th>
<th>spin</th>
<th>95% CL Limit (solid), 5 σ Discovery (dash)</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>KK → 4b</td>
<td>2</td>
<td></td>
<td>6.1.1</td>
</tr>
<tr>
<td>HVT → VV</td>
<td>1</td>
<td></td>
<td>6.4.4</td>
</tr>
<tr>
<td>G_RS → W⁺W⁻</td>
<td>1</td>
<td></td>
<td>6.4.6</td>
</tr>
<tr>
<td>G_RS → t̅t̅</td>
<td>1</td>
<td></td>
<td>6.2.2</td>
</tr>
<tr>
<td>Z_TC2 → t̅t̅</td>
<td>1</td>
<td></td>
<td>6.2.3</td>
</tr>
<tr>
<td>Z_SSM → tt</td>
<td>1</td>
<td></td>
<td>6.2.4</td>
</tr>
<tr>
<td>Z_SSM → t̅t̅</td>
<td>1</td>
<td></td>
<td>6.2.5</td>
</tr>
<tr>
<td>Z_SSM → t̅t̅</td>
<td>1</td>
<td></td>
<td>6.2.6</td>
</tr>
<tr>
<td>Z_SSM → τ⁺τ⁻</td>
<td>1</td>
<td></td>
<td>6.2.7</td>
</tr>
<tr>
<td>W_SSM → τν</td>
<td>1</td>
<td></td>
<td>6.2.6</td>
</tr>
<tr>
<td>W_SSM → ν̅ν̅</td>
<td>1</td>
<td></td>
<td>6.2.7</td>
</tr>
<tr>
<td>W_R → t̅b → b̅b̅ν</td>
<td>1</td>
<td></td>
<td>6.2.6</td>
</tr>
</tbody>
</table>

Additional Models

<table>
<thead>
<tr>
<th>Model</th>
<th>spin</th>
<th>95% CL Limit (solid), 5 σ Discovery (dash)</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q → jj</td>
<td>1</td>
<td></td>
<td>6.4.6</td>
</tr>
<tr>
<td>ν_majorana</td>
<td>1</td>
<td></td>
<td>5.1.3</td>
</tr>
<tr>
<td>ν_Heavy</td>
<td>1</td>
<td></td>
<td>5.1.1</td>
</tr>
<tr>
<td>ℓ → γ</td>
<td>1</td>
<td></td>
<td>6.3.1</td>
</tr>
</tbody>
</table>

- **HE-LHC**
 - $\sqrt{s} = 27$ TeV, $L = 15$ ab⁻¹
 - 5.2.3 5.2.4

- **HL-LHC**
 - $\sqrt{s} = 14$ TeV, $L = 3$ ab⁻¹
 - 5.1.1 5.1.1

arXiv:1812.07831
CMS Run2 long-lived particles reach summary

Overview of CMS long-lived particle searches

<table>
<thead>
<tr>
<th>CMS Preliminary</th>
<th>3 - 140 fb⁻¹ (8, 13 TeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RPV UDD, (g \to t \bar{b} s), (m_t = 2500) GeV</td>
<td>140 fb⁻¹ (13 TeV)</td>
</tr>
<tr>
<td>RPV UDD, (g \to t \bar{b} s), (m_t = 2500) GeV</td>
<td>132 fb⁻¹ (13 TeV)</td>
</tr>
<tr>
<td>RPV UDD, (g \to t \bar{b} s), (m_t = 1600) GeV</td>
<td>140 fb⁻¹ (13 TeV)</td>
</tr>
<tr>
<td>RPV UDD, (t \to g b), (m_t = 1600) GeV</td>
<td>132 fb⁻¹ (13 TeV)</td>
</tr>
<tr>
<td>RPV LQD, (t \to b l), (m_t = 600) GeV</td>
<td>36 fb⁻¹ (13 TeV)</td>
</tr>
<tr>
<td>RPV LQD, (t \to b l), (m_t = 600) GeV</td>
<td>3 fb⁻¹ (13 TeV)</td>
</tr>
<tr>
<td>RPV LQD, (t \to b l), (m_t = 1600) GeV</td>
<td>132 fb⁻¹ (13 TeV)</td>
</tr>
<tr>
<td>GMSB, (g \to q \bar{q} Z), (m_Z = 2450) GeV</td>
<td>132 fb⁻¹ (13 TeV)</td>
</tr>
<tr>
<td>GMSB, (g \to q \bar{q} G), (m_g = 2100) GeV</td>
<td>137 fb⁻¹ (13 TeV)</td>
</tr>
<tr>
<td>Split SUSY, (g \to q \bar{q} Z), (m_Z = 1300) GeV</td>
<td>36 fb⁻¹ (13 TeV)</td>
</tr>
<tr>
<td>Split SUSY (HSCP), (f_0 = 0.1), (m_{\chi^0} = 1600) GeV</td>
<td>133 fb⁻¹ (13 TeV)</td>
</tr>
<tr>
<td>mGMSB (HSCP) (\tan \beta = 10), (\mu > 0), (m_{\chi^0} = 247) GeV</td>
<td>13 4fb⁻¹ (13 TeV)</td>
</tr>
<tr>
<td>Stopped (g \to q \bar{q} g), (m_{q \bar{q}} = 700) GeV</td>
<td>39 fb⁻¹ (13 TeV)</td>
</tr>
<tr>
<td>Stopped (g \to q \bar{q} g), (f_0 = 0.1), (m_{\chi^0} = 1300) GeV</td>
<td>39 fb⁻¹ (13 TeV)</td>
</tr>
<tr>
<td>Stopped (g \to q \bar{q} g), (\mu > 0), (m_{\chi^0} = 940) GeV</td>
<td>39 fb⁻¹ (13 TeV)</td>
</tr>
<tr>
<td>AMSB, (\chi^{\pm} \to \chi^0 \pi^\pm), (m_{\chi^0} = 700) GeV</td>
<td>140 fb⁻¹ (13 TeV)</td>
</tr>
<tr>
<td>GMSB+SPSB, (\chi^{\pm} \to \chi^0 \bar{g}), (m_{\chi^0} = 400) GeV</td>
<td>77 fb⁻¹ (13 TeV)</td>
</tr>
</tbody>
</table>

Selection of observed exclusion limits at 95% C.L. (theory uncertainties are not included). The y-axis tick labels indicate the studied long-lived particle.

Moriond 2021
HL-LHC SUSY reach summary

<table>
<thead>
<tr>
<th>Model</th>
<th>ξ, μ, τ, γ</th>
<th>Jets</th>
<th>Mass limit</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gluino</td>
<td>0</td>
<td>4 jets</td>
<td>2.9 (3.2) TeV</td>
<td>2.1.1</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>4 jets</td>
<td>5.2 (6.7) TeV</td>
<td>2.1.1</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>Multi</td>
<td>2.3 (2.5) TeV</td>
<td>2.1.3</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>Multi</td>
<td>2.4 (2.6) TeV</td>
<td>2.1.3</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>Multi</td>
<td>5.5 (5.9) TeV</td>
<td>2.4.2</td>
</tr>
</tbody>
</table>

Stop	0	Multi	1.4 (1.7) TeV	2.1.2, 2.1.3
	0	Multi	0.6 (0.8) TeV	2.1.2
	0	Multi	3.1 (3.6) TeV	2.4.2

Eggi or Higgsino	2 c, μ	0	0.56 (0.64) TeV	2.1.2
	3 c, μ	0	0.92 (1.1) TeV	2.2.2
	1 c, μ	2.3 jets	1.08 (1.26) TeV	2.2.3
	2 c, μ	-	0.9 TeV	2.4.2

Eggi or Higgsino	2 c, μ	1 jet	0.25 (0.36) TeV	2.2.5.1
	2 c, μ	1 jet	0.42 (0.55) TeV	2.2.5.1
	2 c, μ	1 jet	0.21 (0.35) TeV	2.2.5.2

| WW | 2 c, μ | 0 | 0.86 (1.08) TeV | 2.4.2 |

Site	2 c, μ	-	0.53 (0.73) TeV	2.3.1
	2 c, μ	-	0.47 (0.65) TeV	2.3.2
	2 c, μ	-	0.81 (1.15) TeV	2.3.4

Long-lived particles	Disapp. trk.	1 jet	0.9 (1.1) TeV	4.1.1
	Disapp. trk.	1 jet	0.4 (0.5) TeV	4.1.1
	Disapp. trk.	1 jet	0.88 (0.9) TeV	4.1.3
	Disapp. trk.	1 jet	2.0 (2.1) TeV	4.1.3
	Disapp. trk.	1 jet	0.28 (0.3) TeV	4.1.3
	Disapp. trk.	1 jet	0.55 (0.6) TeV	4.1.3
	R-hadron, $\xi \to \gamma$	0	3.4 TeV	4.2.1
	R-hadron, $\xi \to \gamma$	0	2.6 TeV	4.2.1
	GMSB $p \to \gamma$	-	0.2 TeV	4.2.2

Simulation Preliminary

$\sqrt{s} = 14, 27$ TeV

arXiv:1812.07831