Electron dose rate and oxygen depletion protect zebrafish embryo from radiation damage

Elke Beyreuther

Very High Energy Electron Radiotherapy Workshop (VHEE'2020)
Oct 5th – 7th 2020
CERN/Switzerland
Adding up the benefits to broaden the therapeutic window

- Tumor conform irradiation
- Differential tissue radiosensitivity

Sparring the normal tissue to broaden the window

Response probability (%)

- **Tumor control**
- **Normal tissue complication**
- **Therapeutic window**

Holthusen 1928
Adding up the benefits to broaden the therapeutic window

Tumor conform irradiation
Beneficial depth-dose distribution of protons spares normal tissue

Differential tissue radiosensitivity
High dose rate (Flash) beam delivery protects normal tissue, but treats tumours efficiently

Vozenin et al. Clin Cancer Res 2019
Proton Flash experiment in Dresden - Setup

- University Proton Therapy Dresden, $E_p = 70-230$ MeV
- Flash: 228 MeV, 95 nA \rightarrow 100 Gy/s
- Continuous: 228 MeV, 0.3 nA \rightarrow 0.08 Gy/s

Transmission proton beam @entrance plateau
Online dose control:
 Two Transmission ionisation chambers
Absolute dose:
 Markus chamber and radiochromic EBT3 films

Irradiation geometry

Zebrafish embryo, wildtype AB
- Doses ≤ 43 Gy, treatment time ~ 420 ms (Flash)
- Survival and morphological malformations up to four days post irradiation

Dose homogeneity within beam spot

Zebrafish embryo, wildtype AB
- Doses ≤ 43 Gy, treatment time ~ 420 ms (Flash)
- Survival and morphological malformations up to four days post irradiation
Proton Flash experiment in Dresden - results

No significant protecting proton Flash effect for zebrafish embryo

Why? What are the differences to other electron/proton Flash experiments?
Proton No-Flash: Biological model and endpoint?

- Majority of Flash experiments performed with mice or other higher vertebrates
- **Zebrafish embryo model** successfully applied, but
 - 4 hpf vs. 24 hpf → defines radiosensitivity (dose)

Morphological malformations in general vs. embryo length

Vozenin et al. Clin Oncol 2019
Proton No-Flash: Beam and pulse parameters?

Recipe for electron Flash-RT published in Wilson et al. (Frontiers in Oncology, 2020):

Proton Flash

Mean dose rate: 100 Gy/s ✓
Pulse dose rate: 10^3 Gy/s ❌
Total delivery time: ~400 ms ✓
Pulse length: 2 ns

Relevance?
Proton No-Flash: No control of partial oxygen pressure

- Oxygen depletion theory of Flash effect:
 - Physoxia in tissue vs. uncontrolled partial oxygen pressure in zebrafish embryo (in medium)

- Zebrafish embryos irradiated in Eppendorf tube
 → Accidentally too much / less oxygen?

We need to control the oxygen partial pressure somehow!?

Wilson et al. Frontiers in Oncology, 2020; modified
Electron Flash experiment @ELBE

Research electron accelerator with highly variable pulse structure

Pulse structure @ELBE:
- Basic frequency: 13 MHz
- Bunch length: 5 ps
- Bunch interval: 77 ns

See Talk of U. Schramm@06.10.2020

Reference
- Quasi-continuous bunches at 13 MHz
- Mean dose rate: 7 Gy/min
- Pulse dose rate: 10^3 Gy/s

Flash irradiation
- One pulse of 1441 bunches
- Mean dose rate: 2.6×10^5 Gy/s
- Pulse dose rate: 10^9 Gy/s
Electron Flash experiment @ELBE – oxygen pressure

- Daily measurement under experiment conditions
- High \(pO_2 \): 25-100 mmHg
- Low \(pO_2 \): Radiobiological hypoxia (<5 mmHg)

OxyLite™
Oxford Optronix

Zebradish embryo
Electron Flash experiment @ELBE – results

• No significant influence on survival by electron dose rate

4 days post irradiation: radiation effects

Flash vs. cw:
- 20% less pericardial edema
- 25% less embryo with curved spine
+ 4 % longer embryos (p<0.001) with larger eyes
General outcome:
Embryos are significantly longer after Flash irradiation ($p<0.001$)

- **The lower the oxygen pressure, the more pronounced is the Flash effect**
- **The older the embryos the more pronounced is the Flash effect**
Radiation response of zebrafish embryo depend on electron dose rate

- Very high doses required for ≥ 24 hpf embryos
- Very high pulse dose rate of 10^9 Gy/s
- Average dose rate of 10^5 Gy/s
- Whole organism response, individual organs hard to investigate
- Are these dose rates required to induce the Flash effect in zebrafish embryo?

Control of partial oxygen pressure intensifies the Flash effect

- Protecting effect measured for oxygen levels below atmospheric levels, but most pronounced at radiobiological hypoxia
- Partial oxygen pressure inside embryo?
Repetition of proton Flash experiment under controlled oxygen conditions, @ University Proton Therapy Dresden, in preparation

Proton Flash experiment at very high pulse dose rates @ Laser proton accelerator Draco (cf. Talk U. Schramm)
- Controlled oxygen conditions
- Single, ns-long laser pulse of 10^9 Gy/s
- In preparation
Acknowledgments

OncoRay/ Group of Laser-Radiooncology
Elisabeth Bodenstein, Leonhard Karsch, Elisabeth Lessmann, Michael Schürer, Jörg Pawelke

Other OncoRay groups
Experimental Radiation Therapy group: Kerstin Brüchner, Mechthild Krause, Liane Stolz-Kieslich, Katja Schumann, Anne Kluske, Elisabeth Jung, Dorothee Pfitzmann
Medical Radiation Physics: Wolfgang Enghardt, Steffen Löck
Universitäts Protonen Therapy Dresden & IBA crew

HZDR, Institute of Radiation Physics
ELBE operator crew: Peter Michel, Ulf Lehnert, Pavel Evtushenko, Rico Schurig
Group of Laser ion acceleration & Draco laser team

TU Dresden/CRTD
Group of Developmental Genetics: Michael Brand, Stefan Hans

ELI-Alps /Hungary: Rita Emilia Szabo, Katalin Hideghety