The Hyper-Kamiokande Experiment

Mark Hartz for the

Hyper-K Canada Collaboration

IPP Town Hall Meeting July 16, 2020

Hyper-Kamiokande Detector

- Hyper-Kamiokande Detector:
 - Water Cherenkov detector
 - 187 kton fiducial mass (8x larger than Super-Kamiokande)
- Broad Physics Program
 - Accelerator neutrinos
 - Proton decay searches
 - Supernova neutrino detection
 - Atmospheric neutrinos
 - Solar neutrinos
 - Dark matter searches

Hyper-K approved in January 2020

Hyper-K Design Report: arXiv:1805.04163

•

Hyper-K Accelerator Program

- Build on successful program of T2K
 - 8x larger detector
 - 2.5x higher beam intensity
 - New near detectors to reduce systematic uncertainties

Hyper-K Accelerator Program

- Build on successful program of T2K
 - 8x larger detector
 - 2.5x higher beam intensity
 - New near detectors to reduce systematic uncertainties

Accelerator Neutrino: CP Violation Search

Sign flips between neutrino and antineutrino

$$P_{\mu \to e} = \sin^2 \theta_{23} \sin^2 2 \,\theta_{13} \sin^2 \left(\frac{\Delta \, m_{31}^2 \, L}{4 \, E_{\nu}}\right) = \frac{\sin 2 \,\theta_{12} \sin 2 \,\theta_{23}}{2 \sin \theta_{13}} \sin^2 2 \,\theta_{13} \sin \left(\frac{\Delta \, m_{21}^2 \, L}{4 \, E_{\nu}}\right) \sin^2 \left(\frac{\Delta \, m_{31}^2 \, L}{4 \, E_{\nu}}\right) \sin \delta_{CP} + \dots$$

NOvA Talk, Neutrino 2020

Neutrino Candidates: 82 109 Antineutrino Candidates: 33 16

No clear picture yet

Hyper-K, 10 years operation

- Statistical errors on asymmetry measurement of ~3%
- Systematic error reduction is critical

Oscillation Sensitivities

- For known mass hierarchy CP violation discovery for:
 - 76% of values at 3σ
 - 57% of values at 5σ
- CP phase can be measured with 7-20 degree precision
- 4σ sensitivity to mass hierarchy with atmospheric neutrinos

Proton Decay

GUT theories unify quarks and leptons → predict proton (nucleon) decay

Supernova Neutrinos

- 54k-90k events for 10 kpc distant supernova
- ~10 neutrino events for supernova in Andromeda
- Neutrino-electron scattering introduces pointing capability
- 1.0-1.3 degree accuracy for 10 kpc distant supernova

- There is a background of supernova neutrinos from all past supernovas
- Probes history of heavy element synthesis in stars

Detector in Korea

- Opportunity to extend HK program with second detector in Korea
- Korean Neutrino Observatory (KNO) organization formed to develop this option
- Study neutrino oscillations at the second oscillation maximum
- Deeper site than HK (~2700 m.w.e)
- New large scale water Cherenkov detector
 - Opportunity for development and application of new technologies

PTEP 063C01, 2018

Hyper-K Canada

Hyper-K Canada Collaboration

- Hyper-K Canada group is formed at 8 institutes room for growth!
- PIs: M. Barbi, S. Bhadra, P. de Perio, R. Gornea, M. Hartz, B. Jamieson, D. Karlen, N. Kolev, A. Konaka, T. Lindner, J. Martin, B. Pointon
- 4 postdocs (and growing), 6 graduate students (and growing), ~10 undergraduates per year (coop, CAPSTONE, senior thesis)
- Currently funded through joint T2K+HK NSERC Discovery grant
- Research highlights on following slides

Canadian Contribution: IWCD (NuPRISM)

- Intermediate detector for Hyper-K
- Located about 750 m from neutrino source
- 600 ton water Cherenkov detector
- Position can be moved to different off-axis angles
- Loading with Gd to enhance neutron detection
- Using new high resolution multi-PMT modules inspired by KM3NeT
- Project conceived and led by Canadian institutes

Approved Hyper-K project includes IWCD Stage-1 approval at J-PARC as E61

https://j-parc.jp/researcher/Hadron/en/pac_1507/pdf/P61_2015-5.pdf

Multi-PMT (mPMT) Photosensor

mPMT prototype (Ashley Ferreira, TRIUMF Coop from Waterloo)

Reflector optimization study Purvaja Karthikeyan (UVic Grad. Student)

- 19 3-inch diameter PMTs integrated in module with high voltage and readout electronics
- Improved spatial and timing resolution for IWCD
- Considered as a photodetector for Hyper-K detector as well
- TRIUMF support for development, MRS support at Carleton, UVic, Univ. of Winnipeg
- 2020 CFI-IF submitted to build 250 modules for IWCD
- Consider future CFI-IF to build ~1000 for Hyper-K

Calibration

- IWCD and Hyper-K require precise position, energy, efficiency calibration
- Hyper-K Canada leading photogrammetry system:
 - Fixed cameras and remote operated submersible take pictures of the tank interior
 - Software able to build an accurate 3-D model of the detector
- Collaboration on Super-K: large scale deployment before Hyper-K

Former TRIUMF
Postdoc Saul CuenRochin (now faculty)

TRIUMF Postdoc Nick Prouse

Testing at UBC Pool

UBC CAPSTONE
Students 12

Machine Learning

- Improvements to water Cherenkov detectors
 → take advantage of additional/more precise data
- Application of machine learning to WC detectors led in Canada
- Formation of WatChMaL group
- Topics:
 - Multi-ring reconstruction
 - Multi-interaction reconstruction
 - Electron/gamma/muon separation

Tia Tuinstra
TRIUMF coop
(from Waterloo)

Callum Macdonald TRIUMF coop (from UBC)

Water Cherenkov Test Experiment

- 50-ton scale water Cherenkov detector in particle beam at CERN
- Platform for testing water Cherenkov hardware, calibration techniques, event reconstruction

Water Cherenkov

- Initial run focused on Hyper-K/IWCD, but potential for future operation with alternative configurations
- Canadian contribution funded through SAP-RTI
- Conceived and led by Canada

Aerogel
Threshold
TOF TO

Permanent
Magnet (0.1 TM)

Aerogel
Threshold
Shielding
TOF

Am

Permanent
Secondary Beam Direction

8 m

Location: CERN East Area

Proposal: CERN-SPSC-2020-005 Planned operation in 2022-2023

Beam design Matej Pavin TRIUMF postdoc

EMPHATIC Experiment

- EMPHATIC
- Table top hadron production experiment improve neutrino flux simulation
- Unique application of technologies to hadron production measurements
 - Silicon strip tracking layers
 - Halbach array permanent magnet
 - Aerogel ring imaging Cherenkov detector for PID
- Operating in Fermilab MTEST beam line
 - 2018 Pilot Run
 - 2020 First Physics run with
 100 mrad acceptance (COVID-19 permitting)
 - 2022 Second physics run with 400 mrad acceptance

Hyper-K Project Status

- Schedule:
 - 2020 Approval and start of Hyper-K construction
 - 2022 Operation of water Cherenkov test experiment at CERN
 - 2023 Start of IWCD facility construction
 - 2025 Hyper-K and IWCD detector assembly/installation
 - 2027 Start of Hyper-K operation
- While project is advancing to construction, many areas where new contributions can be made:
 - Water system
 - Radon free air
 - Calibration
 - Beam line monitoring and maintenance

•

Hyper-K Construction

Access tunnel construction to start in FY2021
Access tunnel entrance,

Construction of the entrance yard is proceeding!

Thank You

Multi-PMT (mPMT) Photosensor

- 19 3-inch diameter PMTs integrated in module with high voltage and readout electronics
- Improved spatial and timing resolution compared to 20-inch PMTs is necessary for detector of IWCD size
- Considered as a photodetector for Hyper-K detector as well
- 2020 CFI-IF submitted to build 250 modules for IWCD
- Future CFI-IF to build ~1000 for Hyper-K planned

Proton Decay

GUT theories unify quarks and leptons → predict proton (nucleon) decay

- Hyper-K excels in the $p\rightarrow e^+\pi^0$ channel, very high efficiency
- Largest fiducial mass

- Hyper-K is competitive p→vK+ channel, very high efficiency
- DUNE has potential for better efficiency since kaon is visible

Supernova Burst Neutrino

- 54k-90k events for 10 kpc distant supernova
- ~10 neutrino events for supernova in Andromeda

- Neutrino-electron scattering introduces pointing capability
- 1.0-1.3 degree accuracy for 10 kpc distant supernova

Relic Supernova Neutrinos

- There is a background of supernova neutrinos from all past supernovas
- Can learn about the history of heavy element synthesis in stars

Other Oscillation Parameters

- Determine if θ_{23} mixing angle is <, > or consistent with 45° (symmetry?)
- Combination of atmospheric and accelerator neutrinos gives $>4\sigma$ wrong mass ordering rejection