Conformal Field Theory

Jean-François Fortin

Département de Physique, de Génie Physique et d'Optique Université Laval, Québec, QC G1V 0A6, Canada

> July 16, 2020 IPP Town-hall Meeting

Fundamental physics

Two pillars of fundamental physics (\sim 1920s)

- General relativity (GR)
 - Long distance scales
 - Classical
- Quantum field theory (QFT)
 - Short distance scales
 - Quantum

Holy grail of fundamental physics

- Quantum gravity
 - Unification of GR and QFT (string theory?)

Conformal field theory (CFT) \subset QFT

- Why study QFT?
 - Standard model of particle physics \Rightarrow QFT of $SU(3) \times SU(2) \times U(1) + \text{matter} (\sim 1970s)$
 - 3d QFT in Euclidean time ⇒ Condensed matter systems
- Many questions still left unanswered
 - Non-perturbative control \Rightarrow QFT at strong coupling

Observables ← Correlation functions

$$\langle \mathcal{O}(x)\mathcal{O}(y)\rangle = \frac{f(m|x-y|,\cdots)}{|x-y|^{2\Delta}}$$

- Poincaré invariance
 - Spacetime translations and rotations \Rightarrow Factor $|x-y|^{-2\Delta}$
 - Dependence on mass scales $\{m, \cdots\} \Rightarrow$ Arbitrary function $f(m|x-y|, \cdots)$
- Computation of $f(m|x-y|,\cdots)$
 - Perturbative control \Rightarrow QFT at weak coupling (e.g. QED)

- Renormalization group (RG) (\sim 1970s)
 - Coupling constants \Rightarrow Functions of energy scale μ
 - Flow in the space of QFTs
 - QFT at weak coupling at energy scale $\mu_H \Rightarrow$ QFT at strong coupling at energy scale μ_L
- Computation of $f(m|x-y|,\cdots)$
 - Loss of perturbative control \Rightarrow QFT at strong coupling (e.g. QCD)

Conformal field theory

Why study CFT?

- RG flow limiting behaviors
 - Limit cycle ⇒ Scale invariance
 - Fixed point ⇒ Conformal invariance
- ⇒ QFTs = Relevant deformations of CFTs!
 - Classification of CFTs ⇒ Classification of QFTs (QFT phases)
 - 3d CFT in Euclidean time ⇒ Second-order phase transitions
 - CFT tractable at strong coupling!

$$\langle \mathcal{O}(x)\mathcal{O}(y)\rangle = \frac{c}{|x-y|^{2\Delta}}$$

- Poincaré invariance
 - Spacetime translations and rotations \Rightarrow Factor $|x-y|^{-2\Delta}$
- Conformal invariance
 - c = constant at arbitrary coupling!

N-point correlation functions

$$\langle \mathcal{O}_1(x_1)\mathcal{O}_2(x_2)\cdots \rangle$$

- Two- and three-point correlation functions
 - completely fixed by conformal invariance (up to overall constants)

- Four-point correlation functions
 - NOT completely fixed by conformal invariance
 - $\Delta = \sum_{1 \le i \le 4} \Delta_i$
 - u and v conformal cross-ratios

$$\langle \mathcal{O}_1(x_1)\cdots\mathcal{O}_4(x_4)\rangle = F(u,v)\prod_{1\leq i< j\leq 4} |x_i-x_j|^{-(\Delta_i+\Delta_j)+\Delta/3}$$

$$u = \frac{|x_1 - x_2|^2 |x_3 - x_4|^2}{|x_1 - x_3|^2 |x_2 - x_4|^2} \qquad v = \frac{|x_1 - x_4|^2 |x_2 - x_3|^2}{|x_1 - x_3|^2 |x_2 - x_4|^2}$$

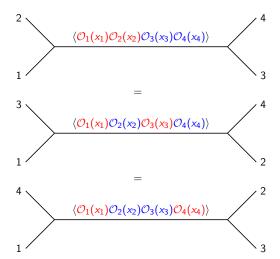
Operator product expansion

$$\mathcal{O}_1(x_1)\mathcal{O}_2(x_2) = \sum_{k} \sum_{a=1}^{N_{12k}} {}_a c_{12}{}^k{}_a \mathcal{D}_{12}{}^k(x_1, x_2) \mathcal{O}_k(x_2)$$

- Operator product expansion (OPE)
 - ac_{ij} OPE coefficients (different for each CFT)
 - ${}_{a}\mathcal{D}_{ij}^{\ \ k}(x_1,x_2)$ conformal differential operators completely fixed by conformal invariance
- \Rightarrow Unknown function F(u, v) expressible in terms of conformal blocks $G_k(u, v)$

$$F(u,v) = \sum_{k} \sum_{a=1}^{N_{12k}} \sum_{b=1}^{N_{34k}} {}_{a}c_{12}{}^{k}{}_{b}c_{34}{}^{k}G_{k}(u,v)$$

Four-point correlation functions constrained by crossing symmetry (conformal bootstrap)



Conformal bootstrap

- Consistency under associativity
 - Same F(u, v) expressed in terms of different conformal blocks and OPE coefficients
- ⇒ Constraints on OPE coefficients
 - Valid at arbitrary coupling!
 - No experimental observations needed, computation from first principle?!?

Conclusion

Why study CFT?

- Implications
 - Building blocks for QFT
 - Second-order phase transition in condensed matter systems
 - Quantum gravity through string theory and AdS/CFT
- Prospects
 - Non-perturbative control
 - Classifiable à la Lie algebra?!?
 - ⇒ Active area of research in Canada and abroad