TUCAN EDM

TRIUMF Ultra-Cold Advanced Neutron project

Jeff Martin

TUCAN Collaboration

IPP Townhall, July 16, 2020

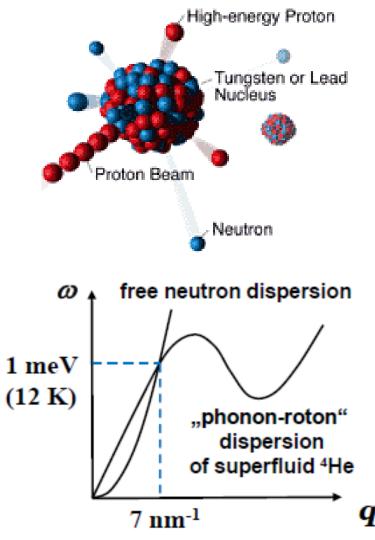
Physics of Neutron Electric Dipole Moment

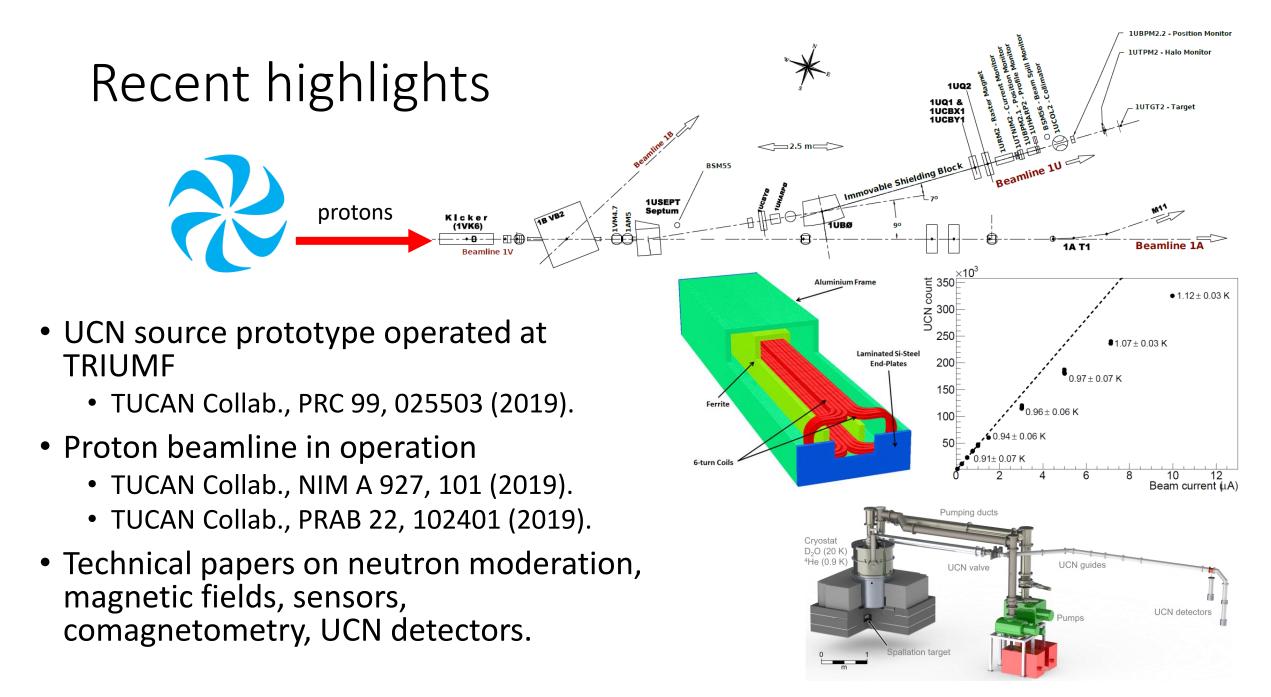
- Search for new sources of CP violation beyond the standard model.
- Motivated by:
 - SUSY CP problem / new TeV-scale physics
 - Baryogenesis scenarios, e.g. electroweak baryogenesis
 - Strong CP problem / Peccei-Quinn, axions
- Ancillary measurements:
 - Precision clock comparison (axionlike particles, Lorentz violation, background cosmic field, ...)
 - Time-dependent EDM's (axionlike dark matter)

Frequency measurement requiring lots of neutrons and stable magnetic field

 $\langle \phi \rangle \neq 0$

Sphaleron

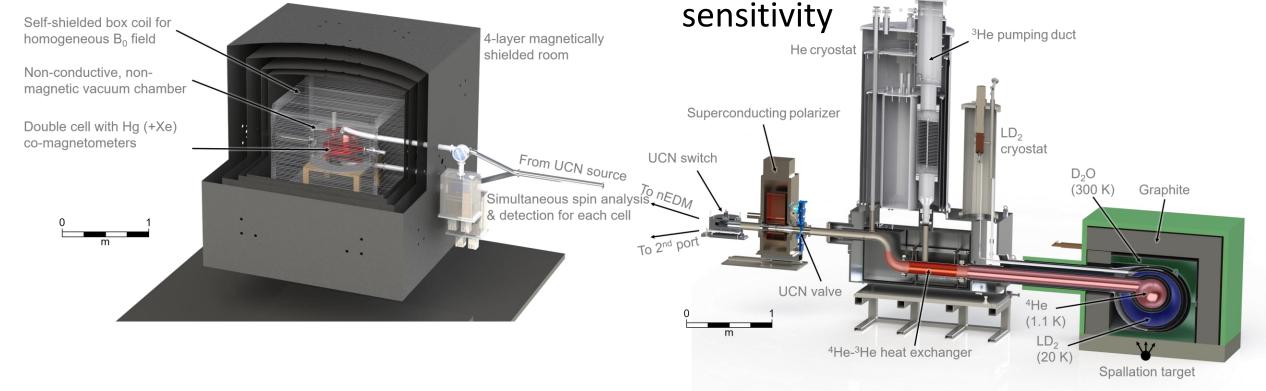

 $\langle \phi \rangle \neq 0$


Sphaleron

 $\langle \phi \rangle = 0$

Neutron EDM – experimental status and TUCAN goal

- New result for free neutrons: $d_n < 1.8 \ge 10^{-26} \text{ e-cm} (90\% \text{ c.l.})$
 - PSI nEDM experiment, C. Abel et al., Phys. Rev. Lett. 124, 081803 (2020).
- Many groups pursuing $\delta d_n \sim 10^{-27}$ e-cm measurement as next step (TUCAN goal). (See backup slides for list of EDM experiments and UCN sources.)
- Main unique features of TUCAN:
 - Spallation driven, superfluid helium source unique combination
 - Room-temperature EDM apparatus using dual measurement cell in MSR, unique ideas in magnetometry, coils, possible Xe comagnetometer, ...

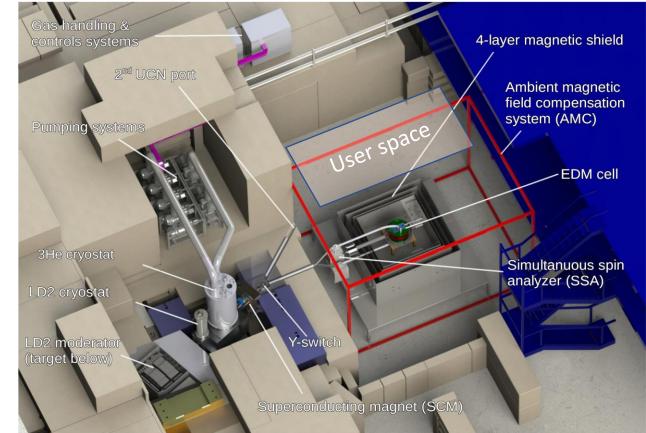


Plans for next five years

- 2021-22: UCN source installation and commissioning
- 2022: MSR installation, begin precision magnetometry in situ

- 2023: nEDM commissioning, thereafter data-taking
- Helium liquefaction upgrade in Meson Hall needed to reach full

Collaboration, budgetary, and HQP


- Japan-Canada collaboration
- Source upgrades and EDM experiment funded by CFI IF 2017 award and JSPS (and TRIUMF, provinces, industry in-kind)
- 14 NSERC cosignatories, 5.95 FTE
 - \$550k/yr from NSERC SAPES
 - \$101k/yr from CRC Tier 1 award (till 2025)
 - Supports 4 PDF and 8 grad students, constrained travel.
- Ideal support would allow 5 PDF and 14 grad students, and travel.

- Supportive environment for women, Indigenous students
- Examples:
 - B. Franke supervision/support of women students, TRIUMF role in promoting diversity and hiring women scientists.
 - Winnipeg supervision of Indigenous students, development of new Indigenous programs, university-wide priority of "Indigenization"

Plans for 2027-36

- EDM data analysis and possible additional data taking
- Upgrades to UCN source or EDM experiment
 - E.g. Xe comagnetometer
- UCN source designed as user facility with second port available for other experiments:
 - Neutron lifetime puzzle
 - Neutron gravity levels experiment
 - Exotic interactions
 - Bring your ideas!

Broader societal impacts

- Technology development and training in:
 - Beamline design, target design
 - neutron physics, neutron and radiation detectors, cryogenics
 - magnetometry, low-field NMR, laser physics
 - high-voltage design
 - data-acquisition systems, and computer simulation.

Opportunities for collaboration, and physical distancing

- Based on examples from R&D, there are many opportunities for university involvement:
 - UCN detector development and testing (Winnipeg, Manitoba)
 - UCN source cryogenics (Winnipeg, Manitoba)
 - UCN guide coating facility (Winnipeg)
 - CN experiment analysis (Winnipeg, KEK)
 - Hg comagnetometer development (UBC)
 - Cs magnetometer development and testing (Winnipeg, Manitoba)
 - Internal coil design (Winnipeg, Manitoba)
 - External coil design (RCNP Osaka)
 - Beam physics and magnetic mapping (UBC students)
- Each has students and/or universitybased PDF/RA involved.

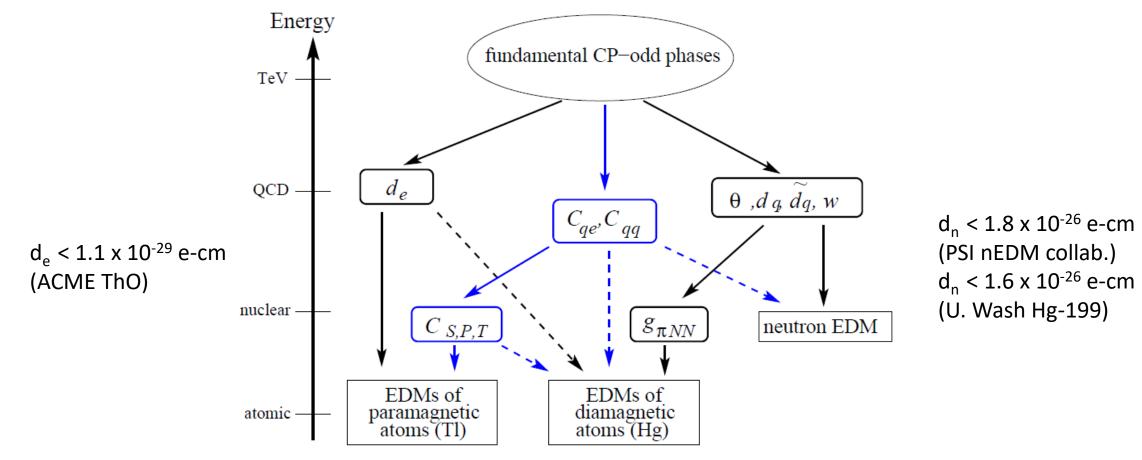
• Running at TRIUMF:

- Ran the prototype UCN source one month per year 2017-2019.
- Cryogenic testing of the UCN source upgrade at TRIUMF over the next two years. Expect two PhD's (UBC, Manitoba) focused on cryogenic aspects.
- UCN production from upgraded source 2022.
- Magnetically shielded room installed 2022 will serve as focal point for magnetic and sensor testing.
- EDM commissioning/running 2023 and beyond.
- Future projects.
- Good opportunity to get involved now in local particle physics project at TRIUMF.

Conclusions

- Strong physics interest with tight constraint placed on CP violation.
- Highly competitive field with many new ideas, technologies.
- Next generation of experiment aims at 10⁻²⁷ e-cm uncertainty, order of magnitude improvement on recent new limit from PSI.
- TUCAN has made good progress making first UCN at TRIUMF using unique superfluid helium UCN source
- TUCAN source upgrade and EDM experiment installation ongoing, commissioning, running, and analyzing data into the future.
- User facility for other projects (neutron lifetime, gravity levels, exotic interactions...), collaborators welcome!

Backups


TUCAN Collaboration

B. Bell^{1,2}, C. Bidinosti³, C. Davis², B. Franke^{2,4}, M. Gericke⁵, P. Giampa², S. Hansen-Romu⁵, K. Hatanaka⁶, T. Hayamizu⁷, T. Higuchi⁶, G. Ichikawa⁸, S. Imajo⁶, B. Jamieson³, S. Kawasaki⁸, M. Kitaguchi⁹, W. Klassen⁵, A. Konaka², E. Korkmaz¹⁰, F. Kuchler², M. Lang⁵, M. Lavvaf⁵, T. Lindner^{2,3}, K. Madison⁴, Y. Makida⁸, R. Mammei³, J. Mammei⁵, J. Martin³, R. Matsumiya², M. McCrea³, E. Miller⁴, K. Mishima⁸, T. Momose⁴, T. Okamura⁸, H. J. Ong⁶, R. Picker^{2,11}, W. D. Ramsay², W. Schreyer², H. Shimizu⁹, S. Sidhu^{11,2}, S. Stargardter⁵, I. Tanihata⁶, S. Vanbergen^{4,2}, W. van Oers^{2,5}, Y. Watanabe⁸, N. Yamamoto⁹

1. McGill, 2. TRIUMF, 3. Winnipeg, 4. UBC, 5. Manitoba, 6. RCNP Osaka, 7. RIKEN, 8. KEK, 9. Nagoya, 10. UNBC, 11. SFU

Spokespeople: K. Hatanaka (Japan), J. Martin (Canada)

Heritage of EDM's – how New Physics enters

- Figure: M. Pospelov & A. Ritz, Ann. Phys. 318, 119 (2005).
- See also: J. Engel, M. Ramsey-Musolf, U. van Kolck, Prog. in Part. and Nucl. Phys. 71, 21 (2013).
 T. Chupp, P. Fierlinger, M. Ramsey-Musolf, and J. Singh, Rev. Mod. Phys. 91, 015001 (2019).

Planned Neutron EDM Experiments around the World

• PSI	spallation so-D ₂ , magnetic fields	analysis/upgrading
 PanEDM (ILL/Munich) 	reactor He-II, 1 st MSR	commissioning
 ILL/PNPI/Gatchina 	dual cell, 2 nd best nEDM meas't	upgrading
• LANL	spallation so-D ₂ UCN source	2021-
 TUCAN (Japan/Canada) 	spallation He-II, MSR	upgrading, 2022-
TUCAN (Japan/Canada)SNS	spallation He-II, MSR fully cryogenic source/experiment	upgrading, 2022- 2023-

Survey of UCN Sources Worldwide

Place	Neutrons	UCN converter	Status	
ILL	Reactor, CN	Turbine	Running	
J-PARC	Spallation	Doppler shifter	Running	
ILL SUN-2	Reactor, CN	Superfluid He	Running	
ILL SuperSUN	Reactor, CN	Superfluid He	Future	
RCNP/KEK/TRIUMF	Spallation	Superfluid He	Running/Upgrading	
Gatchina WWR-M	Reactor	Superfluid He	Future	
LANL	Spallation	Solid D2	Running/Upgrading	
Mainz	Reactor	Solid D2	Running	
PSI	Spallation	Solid D2	Running/Upgrading	
NCSU Pulstar	Reactor	Solid D2	Installing	
FRM-II	Reactor	Solid D2	Future	
KEK-TRIUMF combination of spallation target and superfluid helium is unique. Upgrade schedule is competitive with other leading sources of UCN.				