Development of Radiation Hard Semiconductor Sensor Devices for Tracking Detectors in Future Collider Experiments

Thomas Koffas

Carleton University Department of Physics www.physics.carleton.ca

Beyond the HL-LHC: Future Colliders and Technology Challenges

- Radiation-hard semiconductor devices in the R&D forefront of sub-atomic physics community for 25 years
 - Led to construction of Si tracking detectors at the LHC and HL-LHC
- Focus shifting to meet the technology challenges for future colliders beyond the HL-LHC
 - ILC, CLIC, FCC-ee, CEPC, FCC-hh,...
- Extremely high radiation levels close to collision points
 - Will exceed $10^{17} n_{eq}/cm^2$.
- Poses major challenges on semi-conductor technology
 - Material quality (defects, doping, radiation effects,...)
 - New materials beyond Si (which may reach its limitations)
 - Understand physics of radiation damage
 - And develop microscopic physics models
 - Sensor design, detector layouts, readout ASICs, data handling,...

2020 Update of European Strategy:

"Need to maintain a strong focus on detector R&D to be able to prepare and eventually realize experimental research programs."

2020/07/16

detectors at the LHC and HL-LHC ogy challenges for future colliders

CERN-ESU-004 30 September 2019

Physics Briefing Book

Input for the European Strategy for Particle Physics Update 2020

Electroweak Physics: Richard Keith Ellis¹, Beate Heinemann^{2,3} (Conveners) Jorge de Blas^{4,5}, Maria Cepeda⁶, Christophe Grojean^{2,7}, Fabio Maltoni^{8,9}, Aleandro Nisati¹⁰, Elisabeth Petit¹¹, Riccardo Rattazzi¹², Wouter Verkerke¹³ (Contributors)

Strong Interactions: Jorgen D'Hondl¹⁴, Krzysztof Redlich¹⁵ (Conveners) Anton Andronic¹⁶, Freenc Siklér⁷, *Scientific Secretaries*) Nestor Armesto¹⁸, Daniël Boer¹⁹, David d'Enterria²⁰, Tetyana Galatyuk²¹, Thomas Gehrmann²², Klaus Kirch²³, Uta Klein⁴, Jean-Philippe Lansberg²⁷, Gavin P. Salan²⁸, Gunar Schnell²⁷, Johanna Stachel²⁸, Tanguy Pierog²⁹, Hartmut Wittig³⁰, Urs Wiedemann²⁰(Contributors)

Flavour Physics: Belen Gavela³¹, Antonio Zoccoli³² (Conveners) Sandra Malvezzi³³, Ana Teixeira⁴⁴, Jure Zupan³⁵ (Scientific Secretaries) Janiel Aloni³⁶, Augusto Caccucci²⁰, Avital Dery³⁶, Michael Dine³⁷, Svetlana Fajfer³⁸, Stefania Gori³⁷ Gudrun Hiller³⁹, Gino Isidor²², Yoshikata Kuno⁶⁰, Alberto Lusian¹¹, Yosef Nir²⁶, Marie-Helene Schune⁴², Marco Sozzi⁴³, Stephan Paul⁴⁴, Carlos Pena³¹ (Contributors)

Neutrino Physics & Cosmic Messengers: Stan Bentvelsen⁴⁵, Marco Zito^{46,47} (Conveners) Albert De Roeck³⁰, Thomas Schwetz²⁰ (Scientific Secretaries) Bonnie Fleming⁴⁸, Francis Halzen¹⁹, Andreas Haung²⁵⁰, Marek Kowalski¹, Susame Mertens⁴⁴, Mauro Mezzetto⁴, Silvia Pascoli⁴⁰, Bangalore Sathyaprakash⁵¹, Nicola Serra²² (Contributors)

Beyond the Standard Model: Gian F. Giudice²⁰, Paris Sphicas^{20,52} (Conveners) Juan Alcaraz Maestre⁶, Caterina Doglioni⁵³, Giai Lanfranchi^{20,54}, Monica D'Onofrio²⁴, Matthew McCullough²⁰, Gilad Pere³⁶, Philip Roloff²⁰, Veronica Sanz⁵⁴, Andreas Weiler⁴⁴, Andrea Wulzer^{4,12,20} (Contributors)

Dark Matter and Dark Sector: Shoji Asai⁵⁶, Marcela Carena⁵⁷ (Conveners) Babette Döbrich²⁰, Caterina Doglioni⁵³, Joerg Jaeckel²⁸, Gordan Krnjaic⁵⁷, Jocelyn Monroe⁵⁸, Konstantinos Petridis⁵⁹, Christoph Weniger⁶⁰ (Scientific Secretaries/Contributors)

Accelerator Science and Technology: Caterina Biscari⁶¹, Leonid Rivkin⁶² (Conveners) Philip Burrows⁵⁶, Frank Zimmermann²⁰ (Scientific Secretaries) Michael Benedikt²⁰, Pierluigi Campana⁵⁴, Edda Gschwendtner²⁰, Erk Jensen²⁰, Mike Lamont²⁰ Wim Leemans², Lucio Rossi²⁰, Daniel Schulte²⁰, Mike deld⁶², Vladimir Shiltsev⁶³, Steinar Stapnes²⁰, Akira Yamamoto^{20,64} (Contributors)

Instrumentation and Computing: Xinchou Lou⁶⁵, Brigitte Vachon⁶⁶ (Conveners) Roger Jones⁷⁰, Emilia Leogrande⁵⁰ (Scientific Secretaries) Ian Bird²⁰, Simon Campana²⁰, Ariella Cattai²⁰ Didier Contardo⁶⁵, Cinzia Da Via⁶⁹, Francesco Forti⁷⁰, Maria Girone²⁰, Mathias Kaseman², Lucic Linssen²⁰, Felix Sefkow², Graeme Stewart²⁰(Contributors,

Editors: Halina Abramowicz⁷¹, Roger Forty²⁰, and the Conveners

2020 UPDATE OF THE EUROPEAN STRATEGY FOR PARTICLE PHYSICS

by the European Strategy Group

R&D Aspects for Radiation-Hard Semiconductor Devices I

Theme 1: Radiation induced material defects, modelling, device characterization (Si)

- Calculate defect kinetics and the corresponding device parameters
 - Inform dedicated models for defect generation and evolution of clusters
- Assess the role of intentionally added impurities and identify optimal impurity concentrations
- Initiate and perform irradiation campaigns, short and longer-term annealing studies
 - Provide input to the models being developed
- Fabricate and test progressively more complex device structures using new defect engineered material
 - E.g., epitaxial wafers of various doping concentrations
- Develop a sustained program of macroscopic properties measurements
 - I-V characteristics, charge collection efficiencies,...
- Improve on the device characterization through the introduction of advanced experimental techniques
 - DLTS methods, Two-Photon Absorption (TPA), Edge-TCT techniques,...

R&D Aspects for Radiation-Hard Semiconductor Devices I

Theme 1: Radiation induced material defects, modelling, device characterization (Si)

- Calculate defect kinetics and the corresponding device parameters
 - Inform dedicated models for defect generation and evolution of clusters
- Assess the role of intentionally added impurities and identify optimal impurity concentrations
- Initiate and perform irradiation campaigns, short and longer-term annealing studies
 - Provide input to the models being developed
- Fabricate and test progressively more complex device structures using new defect engineered material
 - E.g., epitaxial wafers of various doping concentrations
- Develop a sustained program of macroscopic properties measurements
 - I-V characteristics, charge collection efficiencies,...
- Improve on the device characterization through the introduction of advanced experimental techniques
 - DLTS methods, Two-Photon Absorption (TPA), Edge-TCT techniques,...

Theme 1 builds on the extensive infrastructure developed in Canada for the ATLAS-ITk project

- Leverages on the very significant CFI, NSERC and TRIUMF investment
- Ensures the continuous use of the developed infrastructure/equipment beyond the timescale of the ITk project

R&D Aspects for Radiation-Hard S.I.I.K operational needs Semiconductor Devices !

Theme 1: Radiation induced material defects, modelling, d

- Calculate defect kinetics and the corresponding device parameter
 - Inform dedicated models for defect generation and evolution of
- Assess the role of intentionally added impurities and ider
- Initiate and perform irradiation campaigns, short and
 - Provide input to the models being developed
- Fabricate and test progressively more com-
 - E.g., epitaxial wafers of various dopⁱ⁻
- Develop a sustained program of r
 - I-V characteristics, charge
- Improve on the device *c*'
 - DLTS methods "

Theme 1 bu

- Leverages of
- Ensures the co
- nearce of the developed in frastructure developed in frastructure/or frastruct • Detector agings radiation damage, performance deterioration Detector agings radiation damage, performance deterioration significant overlap with the Allas

R&D Aspects for Radiation-Hard Semiconductor Devices II

Theme 2: New device structures and materials

- Evaluate slim edge sensor designs for homogeneous signal readout
- Participate in the design, modelling and prototyping of sensors with intrinsic gain
 - Low Gain Avalanche Detectors (LGAD)
 - Couple spatial to temporal resolution to improve performance under high pileup conditions
- Design, modelling and fabrication of HV-CMOS monolithic large area devices
 - Evaluate performance with integrated radiation dose, high occupancy, process speed
 - Fabricate HV-CMOS monolithic large area demonstrator
- Study the feasibility of new GaN-based radiation-hard devices
- Contribute to the deployment of the Timepix-3 detector in the ATLAS experiment
 - Measure luminosity and induced radioactivity
- Contribute to the development of the Timepix-4 chips
 - Eventually to be deployed/tested in the HL-LHC

Theme 2 R&D to be pursued in parallel with that outlined in Theme 1

- Leverages on new collaboration with NRC
- Could allow for exploration of commercial/industrial applications

R&D Examples – Material Defects

Radiation Damage of Epitaxial p-type Si

IPP Town Hall Meeting

R&D Examples – New Structures

LGAD Project, study radiation effect on Gail Layer (GL) charge amplification

R&D Examples – New Materials

Vbias 🖡

NRC GaN Fabrication Process Radiation Hardness

Modified GaN HEMT structure as rad-hard sensor for ionizing radiation

GEANT4 simulations of 500 keV normally incident β -particles on a GaN slab demonstrate sufficient energy deposition for detection

- TCAD simulations being performed on the modified GaN HEMT to investigate if gain can be achieved in a similar manner to that of LGADs
- Aim to irradiate some GaN HEMTs fabricated by NRC with 26MeV p up to fluences of 10¹⁵ [cm²] (TID around 230Mrad [GaN]) to compare with previously irradiated Panasonic GanFETs used in Strips ITK

PCB holding up to 40 NRC 1x2 mm2 GaN devices, divided into 4 blocks. Each block of 10 devices receives a different p fluence, up to 1e15 [cm-2]

NRC 1x2 mm2 GaN HEMT layout Each 1x2 mm2 chip contains 4 HEMTs, differing in gate length

2020/07/16

R&D Framework – CERN Collaborations

The RD50 Collaboration

An international collaboration that aims to provide radiation-hard semiconductor devices for future colliders

New!

63 institutes, 370 members

- **50 European institutes**
- **8 North American institutes**
- **2** Asian institutes
- **1** Middle East institute

technology

Knowledge Transfer Accelerating Innovation

CERN Technology Portfolio TIMEPIX 3/4

2020/07/16

Partners

International

2020/07/16

Researchers

Name	Institution	FTE
Nigel Hessey	TRIUMF	0.5
Fabrice Retiere	TRIUMF	0.05
Bernd Stelzer	SFU	0.1
Matthias Danninger	SFU	0.1
Alison Lister	UBC	0.05
Claude Leroy	UdeM	0.25
Richard Teuscher	UoT /IPP	0.1
Nikolina Ilic	UoT/IPP	0.2
Claire David	York	0.1
Thomas Koffas	Carleton	0.35
Razvan Gornea	Carleton	0.1
Dag Gillberg	Carleton	0.05
Ryan Griffin	Carleton/NRC	0.1
Garry Tarr	Carleton	0.1

- 14 researchers from 8 institutes, 2.15 FTE
- Strong overlap with the ATLAS-Canada ITk research teams
 - Inherit/share ITk infrastructure
 - Build on ITk expertise in Canada
- Strong research ties with ITk-Canada effort
 - Research also beneficial to ITk operations/performance
 - Large fraction of FTE shared with ITk-Canada effort
- Large number of younger physicists
 - Half of the people listed hired in the last 5 years
 - Not surprising given scope of proposed R&D
- Large number of physicists attracted from abroad
 - Some with strong ties to international partners
 - Enhanced ability to attract international HQP

HQP

Expected HQP training:

- 2 RA/post-doc FTEs
- 4-5 graduate students
 - Potentially shared projects with ATLAS-ITk
- MRS-funded technical personnel
- TRIUMF Science/Technology Dept. personnel

HQP (being) trained on radiation-hard technologies:

- 9 Ph.D. students; 7 M.Sc. students
- 7 RAs

Long list of valuable training skills:

- Semi-conductor device physics; material science
- Semi-conductor device layout design; TCAD modelling
- Semi-conductor device fabrication processes
- FPGA programming; DAQ techniques; ASIC logic verification/simulation

HQP will acquire high value-added skills valued by industry offering career options beyond the academia

IPP Town Hall Meeting

Outlook: FCC-ee/hh Program

- Particle physics community gradually shifting focus towards the post-LHC era
- Ample physics motivation:
 - Uniquely map properties of Higgs and EW gauge bosons
 - Improve discovery reach of new particles at highest mass
 - Improve sensitivity to elusive phenomena at low mass
 - Facilitate search for Dark Matter
 - Probe energy scales beyond direct kinematic reach
- Physics program implementation requires development of new technologies
 - Transition of radiation-hard R&D to new tracking detector development
- Focus R&D to specific experimental challenges:
 - Tracking detector layout
 - Sensor design, granularity, material budget
 - Optimize detector sensitive area
 - Optimize detector coverage
 - DAQ architecture to cope with high data rates
 - On-detector readout electronics
 - Performance tailored to physics program needs

Normal development/construction cycle of an approved particle physics experiment

fcc.office@cern.o FCC Office

CERN - CH121

A1 22 767 AC

Contact

Societal and Economic Impact

Numerous applications with potentially significant economic impact:

- Material fabrication technology, optoelectronics, deep space exploration, nuclear technology, medicine
- Established connection with Timepix/Medipix efforts, one of CERN's technology transfer vehicles

EXAMPLE: International Space Station

- Monitor radiation environment of space station
- **5 Timepix** sensors into laptop USB ports!

EXAMPLE: Ion Beam Radiotherapy Imaging

- Requires new methods of radiation dose measurement

Single-particle tracking, energy deposition, particle type sensitivity

EXAMPLE: NavCam System, JUICE

- Harsh radiation environment to survive for 11 years
- Fluences within 2 orders of magnitude of LHC!
- Total integrated dose could exceed 1MRad
- Knowledge transfer between CERN-ESA

Ganymede and lo Callisto Callisto Saturated Jupiter Actual size of Jupiter

System of Timepix detectors put together

Assembly very similar to ATLAS-ITk

Allows for high-contrast images

Measure deposition of single ion energy

Credit: Airbus Industries

IPP Town Hall Meeting

Summary

- International physics community gradually shifting its focus to the post-LHC era
 - Excellent opportunity for Canadian sub-atomic physics to join international detector R&D efforts from early on
 - Builds on infrastructure and knowledge gained during the ATLAS-ITk project
 - Ensures continuous use of >\$24M investment by Canadian funding agencies, universities and TRIUMF
- Ample scope to develop robust R&D efforts on radiation-hard semi-conductor devices
 - Theme 1 focuses on Si pushing its capabilities and understanding its limitations
 - Of major importance on ITk operations and for predicting its long-term performance
 - Theme 2 investigates new materials and device structures to overcome challenges of future colliders
 - Aim to reach fluences at $10^{17} n_{eq}/cm^2$ where Si may actually fail
- Enhance Canadian presence at CERN in international collaborations other than ATLAS
 - By participating in the RD50 collaboration and the Medipix/Timepix collaborations
- Allows for Canadian participation in major future CERN collider projects
 - FCC-ee and FCC-hh whose combined program will cover the next seven decades
- Provides for HQP to participate in R&D on cutting-edge technologies
 - New knowledge creation with wide range of economic and industrial applications
 - Skill development of immediate use in modern knowledge-based economy
- Unique example of basic science research with wider societal and economic impact