
OASIS: “Better” simulated events to allow for
fewer simulated events

Prasanth Shyamsundar
University of Florida

based on [arXiv:2006.16972]

“OASIS: Optimal Analysis-Specific Importance Sampling for event generation”
Konstantin T. Matchev, Prasanth Shyamsundar

LPC Physics Forum, Fermilab
July 30, 2020



Motivation
▶ Simulations in HEP are computationally expensive.

• Detector simulation is the most resource intensive part of the pipeline.
• Projected HL-LHC computational requirements may not be met.

“Billion dollar problem”
• Need to speed up the simulation pipeline.

Require fewer simulated events?

CMS ATLAS

J. Albrecht et al. [HEP Software Foundation], “A Roadmap for HEP Software and Computing R&D for the
2020s,” Comput. Softw. Big Sci. 3, no.1, 7 (2019) [arXiv:1712.06982 [physics.comp-ph]].
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Importance Sampling

▶ The simulation pipeline starts with the parton level
hard scattering.

▶ At the parton level, we can compute the probability
density of a given event.

(under a given theory/set of param values)

▶ Ingredients:
• Matrix element
• Parton distribution functions

▶ Given an oracle for a distribution, how do we sample
events as per the distribution?
Answer: Importance Sampling

Image from the Sherpa Team
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Importance Sampling
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▶ f = distribution to sample from
g = distribution we can sample from
(both unnormalized)

▶ Throw darts uniformly at random into the “box”.
Or sample events according to g.

▶ Option 1: Unweighting
• Accept the events that fall under f .

Or accept event i with probability f (xi)/g(xi).

▶ Option 2: Weighted events
• Accept all events, but weight them

wi = f (xi)/g(xi)

▶ The “box” g doesn’t have to be a rectangle. Just
needs to be something we can sample from.
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Importance Sampling
Current philosophy: Try to make g close to f
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Rationale 1:

Unweighting efficiency... circular argument

We want unweighted events
⇓

g → f /F reduces wastage (lesser fraction of
events thrown out)

g → f /F is ideal
⇓

We should unweight events at the parton level
before moving onto the rest of the

(computationally expensive) simulation pipeline
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Importance Sampling
Current philosophy: Try to make g close to f
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Rationale 2:

Cross-section estimation

F ≡
∫

dx f (x) =
∫

dx g(x)
f (x)
g(x)

= Eg[w] ( g is normalized )

⇒ F̂ =
1

Ns

Ns

∑
i=1

wi

var
[
F̂
]
=

var [w]

Ns
( g → f /F reduces variance )

Estimation of F is related to counting experiments

But... HEP analyses have come a long way
from counting experiments!
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Weighted events = Yet unexplored degree of freedom
OASIS abondons the notion that g → f /F is the best strategy

▶ Nature:
• Produces unweighted events
• Constrained to be distributed as per f /F

▶ Weighted simulations:
• Not constrained... Sampling distribution g can be whatever we want!
• OASIS exploits this freedom to an unprecedented degree

▶ Current usage examples of weighted events:
— Oversampling tails:

Extract the sensitivity from the tails without wasting resources on the bulk
— (Also reweighting events, combining different processes)

▶ Why would we want to deviate from f /F on purpose?
• Focus on the regions of phase space important to the analysis.
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An example: Top mass measurement

A. M. Sirunyan et al. [CMS], “Measurement of the top quark mass in the dileptonic tt̄ decay channel using the
mass observables Mbℓ, MT2, and Mbℓν in pp collisions at

√
s = 8 TeV,” Phys. Rev. D 96, no.3, 032002 (2017)

[arXiv:1704.06142 [hep-ex]].

▶ Different regions of the phase-space are sensitive to the value of a parameter
(or presence of a signal) to different extents.

▶ More simulated events→ smaller theory error bars
▶ Reducing the theory error bars everywhere (maintaining the same ratios

between error bars) is not the optimal strategy!
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OASIS elevator pitch
Optimal Analysis-Specific Importance Sampling

▶ Choose the sampling distribution optimally to maximize the sensitivity
of the analysis at hand, for a given computational budget.

▶ Reach the target sensitivity with fewer simulated events.
▶ Piggyback on existing importance sampling techniques.

(FOAM, VEGAS, machine-learning-based, etc)
▶ Save, in computational budget,

Hundreds of
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OASIS for parton level analysis
▶ To pick a good sampling distribution g, we need to understand the
relationship between the sampling distribution and the sensitivity of
the analysis.

▶ Let θ be a parameter we want to measure by analyzing the parton level
events {xi}. Let L be the integrated luminosity.

▶ Fisher Information:

I(θ) = L
∫

dx
1

f (x ; θ)

[
∂ f (x ; θ)

∂θ

]2

var
[
θ̂(Data) ; θ0

]
≥ 1

I(θ0)

▶ The lower bound is achievable in the asymptotic limit by the maximum
likelihood fit or minimum-χ2 fit (fine binning).
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Fisher Information for simulation based analyses

I(θ) = L
∫

dx
1

f (x ; θ)

[
∂ f (x ; θ)

∂θ

]2

▶ Note that there’s no g in the expression. This is for analyses based on
the functional form of f (x ; θ).

▶ What about analyses based on simulations?
(Ns events distributed as per g)

I(θ) =
∫

dx
1

L f (x ; θ)

[
L

∂ f (x ; θ)

∂θ

]2

compare to ∑
i∈x bins

s2
i

ni
or ∑

i∈x bins

s2
i

σ2
i, real stat

IMC(θ) =
∫

dx

[
L

∂ f (x ; θ)

∂θ

]2

L f (x ; θ) + Nsg(x)
[

L
Ns

w(x ; θ)

]2

σ2
i, real stat → σ2

i, real stat + σ2
i, sim stat

“s” ∼ difference between expected counts for θ and θ + δθ
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Fisher Information for simulation based analyses

IMC(θ) =
∫

dx

[
L

∂ f (x ; θ)

∂θ

]2

L f (x ; θ) + Nsg(x)
[

L
Ns

w(x)
]2

⇒ IMC(θ)

L
=

∫
dx

f (x ; θ)
[
∂θ [ln f (x ; θ)]

]2

1 +
L

Ns
w(x ; θ)

≡
∫

dx
f (x) u2(x)

1 +
L

Ns
w(x)

where u(x) ≡ ∂θ [ln f (x ; θ)] =
1
f

∂ f
∂θ

u(x) is a per-event score that captures the sensitivity of event to θ.
Can be computed using the matrix element oracle.
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Some intuition + toy example

Measuring the mean of a
normal dist
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IMC

L
=

∫
dx

f (x) u2(x)

1 +
L

Ns
w(x)

▶ LHS: to maximize by picking a good sampling dist g.
▶ L/Ns is a heuristic parameter specifying our

computational budget
L

Ns
= F−1 Nr

Ns
▶ g enters through w. Low w is good, but...

Eg[w] =
∫

dxg(x) f (x)/g(x) = F (fixed)
▶ Assign low weights w where u is high (makes sense).

▶ L
Ns

w(x) captures improvement from increasing sim.

▶ 1 captures the diminishing of returns.
(real data is finite)
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Training the sampling distribution
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Ideal case Importance Sampling (IS)
& Trained OASIS

▶ Parameterize g using φ⃗ as a piece-wise
constant distribution given by

g(x) =
pcell(x)

Volumecell(x)

pcell i =
eφi

∑
j

eφj
(softmax)

▶ Set L/Ns = 1 (Ns ≈ Nr)
▶ Use gradient ascent to maximize IMC

(using preliminary/preexisting simulations as

training data).

Konstantin T. Matchev, Prasanth Shyamsundar [arXiv:2006.16972] 12/27 [Go to the end]



Weights

The weights compensate for the difference between g and f /F

w(x) =
f (x)
g(x)
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Effect on histograms
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▶ Appropriately weighted histograms under
OASIS and IS (100,000 events).

▶ Plotted on a log scale (with a shift).
▶ Both are consistent with the true

distribution — importance sampling is a
robust technique.

▶ IS has smaller error bars near the center.
▶ OASIS has smaller error bars away from

the center.
▶ OASIS prioritizes based on utility to θ

measurement.

(Error bar ratios shown in previous slide)
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Effect on the measurement of θ
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▶ Set θtrue = 4.9
• Simulate “real events”, setting L = 10, 000.

F(θtrue) ≈ 0.9875
• 9887 events produced in this pseudo-expt.

▶ Set simulation θ0 = 5.0
(value at which OASIS is optimized)

• Simulate 10,000 “simulated events” each
under IS and OASIS.

• Reweight them for different values of θtrial.
▶ Perform simulation-based minimum-χ2

estimation (40 bins).
▶ Gray dotted line is the likelihood based
estimation (infinite simulation limit).
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Effect on the measurement of θ
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Effect on the measurement of θ

L 10,000 100,000

Ns 10,000 100,000

θtrue 4.9 4.9

Training L/Ns 1 1

Simulation θ0 5 5

Pseudo-expts. 2000 500

ave. θ̂ stdev θ̂ [IMC(θtrue)]
−1/2 ave. θ̂ stdev θ̂ [IMC(θtrue)]

−1/2

Likelihood-based 4.8997(5) 2.15(3)E−2 2.108(1)E−2 4.9001(3) 6.9(2)E−3 6.667(3)E−3
OASIS-based 4.9000(6) 2.64(4)E−2 2.611(2)E−2 4.8998(4) 8.5(3)E−3 8.258(5)E−3
IS-based 4.8999(7) 3.03(5)E−2 2.957(19)E−2 4.9004(4) 9.6(3)E−3 9.390(19)E−3

Simulation parameters and summary statistics of the results from the
simulated pseudo-experiments to measure θtrue.
Note: IMC is a good measure of sensitivity.
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Resource conservation

10−1 100 101

Ns /L

0.00

0.05

0.10

0.15

0.20

I M
C

L

84% more 23% more121% more

OASIS (training L/Ns = 1)

IS

Upper limit

Upper-limit achieved in infinite
statistics limit

▶ The L/Ns set at training is just a heuristic
parameter.

▶ The sampling distribution can be used to
produce any number of events.

▶ OASIS achieves target sensitivities with
fewer events than the ideal case IS.

▶ For a given number of simulated events,
OASIS offers better sensitivity than IS.

▶ We’re on a log scale...
These numbers are impressive!

▶ We can do better than 23% at Ns/L = 10 if
we train our sampling distribution there...
Let’s do that!
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Varying the training L/Ns and special cases
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▶ All OASIS distributions prioritize regions of

higher |u|.
▶ As training L/Ns decreases, the sampling

distribution is more lenient towards low |u|
regions.

▶ Rationale: In the small Ns limit, focus on the
regions of the highest |u|.

(like a delta function)

IMC

L
=

∫
dx

f (x) u2(x)

��1 +
L

Ns
w(x)

▶ As Ns increases, the utility of high |u| regions
saturates, so move towards lower |u| regions.

▶ In the Ns → ∞ limit, goptimal ∝ f |u|.
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More money plots
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OASIS at the analysis level
▶ Parton level events get mapped to analysis variables in a

probabilistic many-to-manymanner, via
• Parton showers and Initial State Radiation
• Hadronization
• Detector simulation
• Event reconstruction (+ some particles are invisible)
• Event selection/categorization
• High level variable calculation

▶ Also, analysis level datasets are composed of several subsamples.
▶ There are model uncertainties unrelated to simulation statistics

Q1) How is the sampling distribution related to sensitivity at the analysis
level? (How do our equations change?)

Q2) How do we implement OASIS at the parton level when the quantity we
are optimizing lives in the analysis realm?
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How do the equations change?
▶ Let v be the possibly-multi-dimensional analysis level variable.

(including categorization/event selection information)

▶ x is mapped to v via some transfer function.
▶ F (v ; θ) corresponds to f (x ; θ)

U (v ; θ) = ∂θ

[
ln[F (v ; θ)]

]
▶ Events with the same v value can have different weights. IMC becomes...

IMC

L
=

∫
selected events

dv
F (v) U 2(v)

1 +
L

Ns

Eg[w2 | v]
Eg[w | v]

▶ Multiple subsamples and systematics unrelated to simulation statistics...
IMC

L
=

∫
selected events

dv
F (v) U 2(v)

1 +
σ2

syst(v)
σ2

real stat(v)
+ ∑

k

F (k)(v)
F (v)

L

N(k)
s

Eg(k) [w
2 | v]

Eg(k) [w | v]
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Implementing OASIS at the analysis level

IMC

L
=

∫
selected events

dv
F (v) U 2(v)

1 +
σ2

syst(v)

σ2
real stat(v)

+ ∑
k

F (k)(v)
F (v)

L

N(k)
s

Eg(k) [w
2 | v]

Eg(k) [w | v]
▶ This expression lives at the analysis level. Importance sampling happens
at the parton level...

▶ Simplifying observation: It is always better to minimize the variance of
w in a given v bin. Eg[w2] = varg [w] + (Eg[w])2.

▶ Limit attention to sampling distributions under which the weights
(roughly) only depend on v.

IMC

L
=

∫
selected events

dv
F (v) U 2(v)

1 +
σ2

syst(v)

σ2
real stat(v)

+ ∑
k

F (k)(v)
F (v)

L

N(k)
s

w(k)(v)
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Stage 1: Taking stock at the analysis level

IMC

L
=

∫
selected events

dv
F (v) U 2(v)

1 +
σ2

syst(v)
σ2

real stat(v)
+ ∑

k

F (k)(v)
F (v)

L

N(k)
s

w(k)(v)

Learn the “target distribution” or “target weights” w(k)
target(v) (up to a mult. constant)

▶ In this stage, the analysis groups decide how they want their simulated data to
be distributed in the phase space of the analysis variable.

▶ This expression can be maximized using the same technique we saw earlier.
▶ Trained OASIS distribution optimizing too aggressively?

Make it less aggressive by hand.
▶ Signal search analysis? Replace U with s(v)/b(v).
▶ Want simulations in control regions that aren’t sensitive to θ?

Fix U in those regions (or the w(k)
target) by hand.

▶ Multiple analyses using the same dataset? Find a middle ground

:^)

Try it out!

“How would the sensitivity
change if we had more

events here and less events
there?”
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Stage 2: Translating the target weights to parton-level
▶ Importance sampling algorithms (FOAM, VEGAS, machine-learning-based) need an

oracle which can be queried for f (x) (unnormalized).
▶ They can train a sampling distribution g that mimics the oracle.
▶ Replace the oracle for f with the oracle for ftarget(x):

parton-level
event x

Showering, hadronization,
detector simulation,
event reconstruction,

event selection/categorization,
high-level variable construction

Query
f (x)

f /wtarget

Query
wtarget(v)

ftarget(x)

v

▶ Key idea: The map from x to v is approximately many-to-one.
Non-determinism in ftarget(x) is low.

▶ ftarget will have the same singularity structure as f ... Fast sims are good enough for
training... If v is rejected, return an appropriate low ftarget value...
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Outlook

Untapped and unexplored optimization
▶ The performance boost we see here is significant.
▶ This should not be surprising...

We’re not tweaking an existing approach to eke out
some more sensitivity.

▶ We’re opening an avenue of optimization that
hasn’t been explored yet.

▶ When working on the paper, a bug in the code led to a sampling
distribution far from optimal — not avoiding the middle of the
histogram as aggressively. Even that led to significant improvements.

(See bonus slide)

Complementary to approaches that seek to
speed-up the simulation pipeline

▶ Speed up using GPUs? GANs?
OASIS can play along.
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Outlook

Is OASIS just introducing a compromise, because
we cannot generate the amount of data we need?

▶ OASIS ∗improves the compromise.
▶ By not simulating infinite statistics, we are
already cutting corners.

▶ OASIS makes sure that what we are cutting
are, in fact, corners.

▶ It makes sense to use OASIS even if we have
“enough” computational resources.
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Outlook

▶ Lookin at these plots...
(notes on next slide)

▶ We are probably looking at savings of
the order of hundreds of millions of
dollars for HL-LHC alone.

▶ Implementation will likely be “simple”.

▶ Will require unprecedented level of
cooperation between
• MC theorists
• MC groups within experiments
• Physics analysis groups

Thank You! Questions?
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Notes for previous slide

Things to consider:
▶ The similarity of the “local shape sensitivity” plots in the top row...
▶ The improvements seen in the bottom-left panel...
▶ The improvements needed in the bottom-right panel...
▶ “Billion dollar problem”...
▶ One the one hand, OASIS may not be appropriate or possible for some
analyses...

▶ On the other hand, for events that don’t make it past the selection cuts,
OASIS will lead to much greater resource conservation, by aggressively
undersampling them...
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Bonus 1: Buggy code
Properly trained
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OASIS doesn’t have to be perfect to
make a difference
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Bonus 2: Special use cases...

▶ OASIS might be particularly useful for targeted analysis-specific QCD
background simulation.

▶ I mentioned that nature is constrained to produce unweighted events.
But maybe not...
We have binary (in/out) triggers and we have unbiased prescale triggers.
If there’s place for a hybrid, OASIS-like ideas can help optimize it.
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