RD50-MPW2 I-V Measurements on test matrices at IFIC

Ana Catalán Benavent Ricardo Marco Hernández IFIC (CSIC-UV)

RD50-MPW2 I-V measurements: setup

- Measured I-V on test matrices of MPW2.
- W7, W8, W10, W11, W13 and W14 devices measured.
- All test matrices measured.
- Matrix central pixel measured (pixel HV return pad and GND pad connected together at source GND, HV pad connected to source HV) (W7, W10, W13 $\rightarrow 1^{\text {st }}, 2^{\text {nd }}$ and $3^{\text {rd }}$ chips).
- Other configuration used: 8 surrounding pixels connected to GND (W7, W13 $\rightarrow 4^{\text {th }}$ chip and W8, W11, W14).
- Keithley 237 source meter used: different current compliance/measurement range used to be able to measure breakdown voltage.

RD50-MPW2 I-V measurements

- Measurements of the leakage current.
- W7_1 $\rightarrow 3$ needles set-up.
- W8_1 $\rightarrow 4$ needles set-up.

RD50 HV-CMOS Meeting

RD50-MPW2 I-V measurements

- First matrix: $3 \mu \mathrm{~m}$ spacing/round corners.
- W7, W8 ($0.5-1.1 \mathrm{k} \Omega \cdot \mathrm{cmcm}$), W10, W11 ($1.9 \mathrm{k} \Omega \cdot \mathrm{cmcm}$) and W13, W14 (> $2 \mathrm{k} \Omega \cdot \mathrm{cmcm}$) devices.
- Source current compliance 100 nA.
- Vertical lines pointing to $\mathrm{V}($ Icomp $), \mathrm{V}(\mathrm{kmax})$ and $\mathrm{V}($ ILDmin $>0)$ in each plot.

RD50-MPW2 I-V measurements

- Second matrix: $8 \mu \mathrm{~m}$ spacing/round corners.
- W7, W8 (0.5-1.1 k $\Omega \cdot \mathrm{cmcm}$), W10, W11 (1.9 k $\Omega \cdot \mathrm{cmcm}$) and W13, W14 (> $2 \mathrm{k} \Omega \cdot \mathrm{cmcm}$) devices.
- Source current compliance 10 nA .
- Vertical lines pointing to $\mathrm{V}(\mathrm{Icomp}), \mathrm{V}(\mathrm{kmax})$ and $\mathrm{V}($ ILDmin $>0)$ in each plot.

RD50-MPW2 I-V measurements

- Third matrix: $8 \mu \mathrm{~m}$ spacing/hexagonal corners.
- W7, W8 (0.5-1.1 k $\Omega \cdot \mathrm{cmcm}$), W10, W11 ($1.9 \mathrm{k} \Omega \cdot \mathrm{cmcm}$) and W13, W14 (> $2 \mathrm{k} \Omega \cdot \mathrm{cmcm}$) devices.
- Source current compliance 100 nA .
- Vertical lines pointing to $\mathrm{V}($ Icomp $), \mathrm{V}(\mathrm{kmax})$ and $\mathrm{V}($ ILDmin $>0)$ in each plot.

RD50-MPW2 I-V measurements

- Fourth matrix: $8 \mu \mathrm{~m}$ spacing/square corners.
- W7, W8 (0.5-1.1 k $\Omega \cdot \mathrm{cmcm}$), W10, W11 ($1.9 \mathrm{k} \Omega \cdot \mathrm{cmcm}$) and W13, W14 ($>2 \mathrm{k} \Omega \cdot \mathrm{cmcm}$) devices.
- Source current compliance $100 \mathrm{nA}, 1 \mu \mathrm{~A}$ and $10 \mu \mathrm{~A}$.
- Vertical lines pointing to $\mathrm{V}($ Icomp $), \mathrm{V}(\mathrm{kmax})$ and $\mathrm{V}($ ILDmin $>0)$ in each plot.

RD50-MPW2 I-V measurements: summary

	1st matrix (round $3 \mu \mathrm{~m}$)			2nd matrix (round $8 \mu \mathrm{~m}$)			3rd matrix (hexagonal $8 \mu \mathrm{~m}$)			4th matrix (square $8 \mu \mathrm{~m}$)		
	Vbd (Icomp)	Vbd (k)	$\begin{gathered} \text { Vbd } \\ \text { (ILD) } \end{gathered}$	Vbd (Icomp)	Vbd (k)	$\begin{gathered} \text { Vbd } \\ \text { (ILD) } \end{gathered}$	Vbd (Icomp)	Vbd (k)	$\begin{gathered} \text { Vbd } \\ \text { (ILD) } \end{gathered}$	$\begin{aligned} & \text { Vbd } \\ & \text { (Icomp) } \end{aligned}$	Vbd (k)	$\begin{gathered} \text { Vbd } \\ \text { (ILD) } \end{gathered}$
$0.5-1.1 \mathrm{k} \Omega \cdot \mathrm{cm}$	W7_1 (Icomp = 100nA)											
	62 V	60 V	60 V	128 V	126 V	126 V	126 V	124 V	124 V	122 V	120 V	120 V
	W7_2 (Icomp = 100nA)			W7_2 $(\operatorname{Icomp}=1 \mu \mathrm{~A})$			W7_2 $($ Icomp $=1 \mu \mathrm{~A})$			W7_2 $(\operatorname{Icomp}=1 \mu \mathrm{~A})$		
	60 V	56 V	56 V	126 V	124 V	124 V	126 V	124 V	124 V	128 V	126 V	126 V
	W7_3 (Icomp = 100nA)			W7_3 $($ Icomp $=1 \mu \mathrm{~A})$			W7_3 $($ Icomp $=1 \mu \mathrm{~A})$			W7_3 (Icomp = 1 $\mu \mathrm{A}$)		
	58 V	54 V	54 V	124 V	122 V	122 V	124 V	122 V	122 V	124 V	120 V	120 V
	W7_4 (Icomp = 100nA)			W7_4 $(\operatorname{Icomp}=10 \mathrm{nA})$			W7_4 (Icomp = 10nA)			W7_4 $($ Icomp $=10 \mathrm{nA})$		
	56 V	54 V	54 V	124 V	124 V	126 V	122 V	120 V	120 V	120 V	118 V	118 V
	W8_1 $(\operatorname{Icomp}=100 \mathrm{nA})$			W8_1 $($ Icomp $=100 \mathrm{nA})$			W8_1 $($ Icomp $=100 \mathrm{nA})$			W8_1 $($ Icomp = 100nA)		
	56 V	54 V	54 V	116 V	114 V	114 V	116 V	114 V				
	W8_2 (Icomp $=100 \mathrm{nA})$			W8_2 (Icomp = 100nA)			W8_2 (Icomp = 100nA)			W8_2 (Icomp $=100 \mathrm{nA})$		
	56 V	56 V	56 V	116 V	114 V	116 V	116 V	114 V	114 V	114 V	112 V	112 V
	W8_3 (Icomp = 100nA)			W8_3 (Icomp = 100nA)			W8_3 (Icomp = 100nA)			W8_3 (Icomp = 100nA)		
	56 V	54 V	54 V	116 V	114 V	112 V	116 V	116 V	116 V	112 V	112 V	112 V
	W8_4 (Icomp = 100nA)			W8_4 (Icomp = 100nA)			W8_4 $(\operatorname{Icomp}=100 \mathrm{nA})$			W8_4 (Icomp = 100nA)		
	56 V	54 V	54 V	116 V	114 V	114 V	116 V	114 V	114 V	114 V	112 V	112 V

RD50-MPW2 I-V measurements: summary

	1st matrix (round $3 \mu \mathrm{~m}$)			2nd matrix (round $8 \mu \mathrm{~m}$)			3rd matrix (hexagonal $8 \mu \mathrm{~m}$)			4th matrix (square $8 \mu \mathrm{~m}$)		
$1.9 \mathrm{k} \Omega \cdot \mathrm{cm}$	W10_1 (Icomp = 100nA)			W10_1 (Icomp = 100nA)			W10_1 $($ Icomp $=100 \mathrm{nA})$			W10_1 $($ Icomp $=100 \mathrm{nA})$		
	62 V	60 V	60 V	120 V	118 V	118 V	118 V	116 V	116 V	116 V	114 V	114 V
	W10_2 $($ Icomp $=100 \mathrm{nA})$			W10_2 $($ Icomp $=10 \mu \mathrm{~A})$			W10_2 $($ Icomp $=1 \mu \mathrm{~A})$			W10_2 $(\operatorname{Icomp}=1 \mu \mathrm{~A})$		
	58 V	54 V	54 V	124 V	122 V	122 V	126 V	124 V	124 V	122 V	118 V	118 V
	W10_3 (Icomp $=100 \mathrm{nA})$			W10_3 (Icomp = 1 $\mu \mathrm{A}$)			W10_3 $($ Icomp $=1 \mu \mathrm{~A})$			W10_3 $($ Icomp $=1 \mu \mathrm{~A})$		
	58 V	54 V	54 V	124 V	122 V	122 V	120 V	118 V	118 V	118 V	116 V	116 V
	W11_1 (Icomp = 100nA)			W11_1 (Icomp = 10nA)			W11_1 (Icomp = 10nA)			W11_1 (Icomp = 10nA)		
	56 V	54 V	54 V	112 V	110 V	110 V	122 V	122 V	120 V	112 V	112 V	110 V
	W11_2 (Icomp = 100nA)			W11_2 (Icomp = 10nA)			W11_2 (Icomp = 10nA)			W11_2 (Icomp = 10nA)		
	56 V	54 V	54 V	112 V	110 V	110 V	122 V	120 V	120 V	112 V	110 V	110 V
	W11_3 (Icomp = 100nA)			W11_3 (Icomp = 10nA)			W11_3 (Icomp = 10nA)			W11_3 (Icomp = 10nA)		
	56 V	54 V	54 V	112 V	110 V	110 V	122 V	120 V	120 V	112 V	110 V	110 V
	W11_4 (Icomp = 100nA)			W11_4 (Icomp = 10nA)			W11_4 (Icomp = 10nA)			W11_4 (Icomp = 10nA)		
	56 V	54 V	54 V	110 V	108 V	108 V	116 V	114 V	114 V	116 V	114 V	114 V
>2 $\mathbf{k \Omega} \cdot \mathrm{cm}$	W13_1 (Icomp = 100nA)			W13_1 (Icomp = 100nA)			W13_1 $($ Icomp $=100 \mathrm{nA})$			W13_1 $($ Icomp $=100 \mathrm{nA})$		
	58 V	54 V	54 V	118 V	116 V	116 V	120 V	118 V	118 V	120 V	118 V	118 V
	W13_2 (Icomp $=100 \mathrm{nA})$			W13_2 (Icomp $=10 \mu \mathrm{~A})$			W13_2 (Icomp = 10 HA)			W13_2 $($ Icomp $=10 \mu \mathrm{~A})$		
	56 V	54 V	54 V	124 V	122 V	122 V	122 V	120 V	120 V	120 V	118 V	118 V
	W13_3 (Icomp $=100 \mathrm{nA}$)			W13_3 $($ Icomp $=100 \mathrm{nA})$			W13_3 $($ Icomp $=100 \mathrm{nA})$			W13_3 (Icomp $=100 \mathrm{nA}$)		
	54 V	52 V	52 V	124 V	122 V	122 V	122 V	122 V	120 V	118 V	116 V	116 V

RD50-MPW2 I-V measurements: summary

Next Steps

- C-V measurements of different test matrices of MPW2 for three resistivities.
- I-V measurements of the irradiated test matrices.

