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Lesson from FCC effort start
• We are going through starting phase similar to what the FCC ee & hh efforts went 

through a few years ago 

• As them, we start as a no-budget effort on Detector & Physics (the initial effort from 
CERN perspective is focused on machine, as it should be) 

• A few lessons 

• Produce best-case-scenario results to start with 

• Then care about how to get there (they still don’t have an end-to-end full simulation) 

• Capitalise on the large community of people at CERN to build a community through 
regular informal & unstructured meetings 

• My suggestion would be bi-weekly alternated & “factorized” meetings 

• Fastsim studies on best-case-scenario reach for PHYSICS CHANNELS 

• Fullsim studies finalised to OBJECT RECONSTRUCTION



Inhering Factorization Scheme for Future Colliders
• Local Reco —> Parameterized Performance 

• Running in Fullsim 

• Delivers performance  plots 

• energy/angular resolution 

• efficiency vs p(T) 

• … 

• Parameterized Performance —> Physics Reach 

• Use Fastsim based on performance plots (Delphes) 

• Allows analysis on high-level objects  

• Can be used to assess final physics goals

Figure 14. Left: Simulation of the impact parameter resolution for muon tracks with a transverse momentum
above 10 GeV. The impact parameter resolution is shown as a function of ⌘ for the Phase-1 and the Phase-2
detector [4]. Right: Simulation of the track finding e�ciency as a function of eta for two di�erent numbers
of simultaneous collisions per bunch crossing [4].

radiation environment, which together with the long operation time requires unequaled radiation
tolerance of the sensors and of the readout electronics.

Several novel techniques are exploited to address the challenges as well as to achieve a
lightweight and e�cient power distribution inside the detector. The presented results indicate
the progress made in the development and characterization of these novel features, as well as
advances towards the construction of realistic prototypes and system demonstrators. Most recent
results of first prototype modules have been reported and demonstrate no performance degradation
when the chips are operated on realistic pixel modules.

The design of all components as well as the layout is subject to steady improvements. Simula-
tions of the tracking performance have been done using the particle-detector interaction properties
with the foreseen material of the future tracker, and a model of the electrical performance of the
modules. The results indicate a robust tracking performance in the challenging environment inside
the CMS experiment during HL-LHC.
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Overview of (personal) contributions from CERN-EP people

• Fastsim effort with Delphes 

• Local reco at Fullsim with CLIC framework 

• Generation chain from FCC studies (gridpack+event generation & 

bookkeeping+ROOT Data Framework)  

• Key4Hep development 

• Graph4Reco within mPP  

• In the future: Establish Doctoral Student opportunities for MDI studies 

Michele Selvaggi (EP-CMG)

André Sailer (EP-SFT) & 
Philipp Roloff (EP-LBD)

Clement Helsens (EP-ADE-TK)

Many people in EP-SFT ++

Maurizio Pierini & Mary Touranakou(EP-CMG)



4 Validation of the DELPHES simulation
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Figure 1: Comparison of jet transverse momentum (left) and pseudorapidity (right) in Higgsstrahlung
events with hadronic Z decay for full simulation of CLICdet (blue) and DELPHES (red).
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Figure 2: Comparison of jet resolution thresholds y23 (left) and y34 (right) in Higgsstrahlung events with
hadronic Z decay for full simulation of CLICdet (blue) and DELPHES (red).

Jet resolution threshold observables obtained from the exclusive clustering mode are shown in Fig. 2.
The variable y23 (y34) is the distance measure associated with merging from 3 to 2 (4 to 3) jets [30, Sec.
3.3.2]. They are well-modelled apart from a slight shift to higher values for DELPHES.

The Higgsstrahlung process is further analysed by choosing the configuration of two jets with an
invariant mass closest to the mass of the Z boson, mZ, among the possible combinations obtained by
clustering the event with 2, 3, and 5 jets exclusively. Fig. 3 shows the good agreement of the di-jet invari-
ant mass for Z jets (left) and the recoil mass (right) between full simulation and DELPHES. Systematic
differences mostly below 10 % are seen in the low tail of the invariant mass distribution and in the slopes
of the recoil mass. Additional kinematic distributions can be found in Appendix B.1.

4.2. Semi-leptonic top-quark pairs associated with a Higgs boson at 1.4 TeV

The process e+e� ! ttH with semi-leptonic decay of the tt pair and Higgs decays to bb at 1.4 TeV
collision energy is simulated with the CLIC_SiD detector model [12], including the beam-induced back-
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Fast Simulation for Physics reach
• Present and Future experiments rely on Delphes to 

perform fast-simulation studies 
• FCCee & FCChh reach 
• CMS upgrade 
• … 

• These studies allow for best-case-scenario reach assessment 
• One cannot emulate all aspects (e.g., beam background for tracking) 
• But one can emulate some relevant one (e.g., in-time pileup at LHC) 

• Factorization approach 
• Assumes that beam-related issues are sorted out in local reconstruction 
• Parameterise resulting resolution in Fastsim 
• Meanwhile, work on local reconstruction with Fullsim to  

     assess & improve local reconstruction 
• Michele Selvaggi (EP-CMG) will assist us with assembling and updating a Muon 

Collider Delphes card 
• start with CLIC and evolve that 

https://arxiv.org/abs/1909.12728
https://arxiv.org/abs/1909.12728


Full Simulation for Local Reconstruction
• Future collider studies investing on Key4Hep 

• Long term, the common framework for all CERN future experiments 

• EP department investing on it (as part of the EP Software R&D program) 

• Same context of other projects (GEANT, ROOT, etc.) supporting community 

• We cannot plan Muon Collider effort @CERN without Key4Hep as long-term solution 

• But this might take a few years 

• Meanwhile, can rely on full simulation framework by CLIC 

• Studies advanced in this direction (Padua Group) 

• CLIC group will support framework while transitioning to Key4Hep 

• The effort is not starting NOW: this is the direction investigated by Donatella et al. since 
months and first results are there



Assessing Beam Background impact
Interested to investigate BB effect on: 

• inner-detector local reconstruction 

• displaced vertices resolution 

• stub reconstruction 

• calorimetry 

• generic electron reco performance 

• non-pointing photons
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Assessing Beam Background impact
Interested to investigate BB effect on: 

• inner-detector local reconstruction 

• displaced vertices resolution 

• stub reconstruction 

• calorimetry 

• non-pointing photons 

• generic electron reco performance 

•



Zhang et al.: Deep Learning for Calorimetry 13

Fig. 15. Regression bias (top) and resolution (bottom) as a function of true energy for energy predictions on the REC dataset
with variable-angle incident angle. From top to bottom: electrons, charged pions, photons, and neutral pions.

Assessing Beam Background impact
Interested to investigate BB effect on: 

• inner-detector local reconstruction 

• displaced vertices resolution 

• stub reconstruction 

• calorimetry 

• non-pointing photons 

• generic photon/electron reconstruction performance

Zhang et al.: Deep Learning for Calorimetry 11

and validation accuracy as a function of the batch number
for these extended trainings is shown in Figure 12.

Fig. 12. Training curves for best DNN (top), CNN (middle),
and GN (bottom) hyperparameters, trained on variable-angle
�/⇡0 samples. We see that the DNN over-trains quickly and
saturates at a relatively low accuracy, while the CNN takes
longer to over-train and reaches a higher accuracy, and GN
performs best of all. Each 400 batches corresponds to a single
epoch.

5.3 Results

We apply the best architectures described in the previous
section separately to our electron vs. charged pion and
photon vs. neutral pion reconstruction problems.

5.3.1 Classification Performance

Figure 13 shows ROC curve comparisons for the two clas-
sification tasks. As expected, the electron vs. charged pion
classification problem was found to be a simple task, re-
sulting in an area under the curve (AUC) close to 100%.
For a baseline comparison, the curve obtained for a BDT
(see Appendix C) is also shown. This BDT was optimized
using the scikit-optimize package [32], and was trained
using high-level features computed from the raw 3D arrays.
It represents the performance of current ML approaches
on these problems.

Fig. 13. ROC curve comparisons for � vs. ⇡0 (top) and e
vs. ⇡± (bottom) classification using different neural network
architectures. Samples include particle energies from 10 to 510
GeV, and an inclusive ⌘ range.

The ML models outperform the BDT, with the GN
reaching the best classification performance on both prob-
lems. Figure 14 shows the best-model performance as a

Calorimetry with Deep Learning: Particle Simulation and
Reconstruction for Collider Physics

Dawit Belayneh1, Federico Carminati2, Amir Farbin3, Benjamin Hooberman4, Gulrukh Khattak25, Miaoyuan Liu6,
Junze Liu4, Dominick Olivito7, Vitória Barin Pacela8, Maurizio Pierini2, Alexander Schwing4, Maria Spiropulu9, Sofia
Vallecorsa2, Jean-Roch Vlimant9, Wei Wei4, and Matt Zhanga4

1 Univ. of Chicago
2 European Organization for Nuclear Research (CERN)
3 Univ. of Texas Arlington
4 Univ. of Illinois at Urbana-Champaign
5 UET Peshawar
6 Fermi National Accelerator Laboratory
7 Univ. of California, San Diego
8 Univ. of Helsinki
9 California Institute of Technology

Abstract. Using detailed simulations of calorimeter showers as training data, we investigate the use of deep
learning algorithms for the simulation and reconstruction of particles produced in high-energy physics
collisions. We train neural networks on shower data at the calorimeter-cell level, and show significant
improvements for simulation and reconstruction when using these networks compared to methods which
rely on currently-used state-of-the-art algorithms. We define two models: an end-to-end reconstruction
network which performs simultaneous particle identification and energy regression of particles when given
calorimeter shower data, and a generative network which can provide reasonable modeling of calorimeter
showers for different particle types at specified angles and energies. We investigate the optimization of our
models with hyperparameter scans. Furthermore, we demonstrate the applicability of the reconstruction
model to shower inputs from other detector geometries, specifically ATLAS-like and CMS-like geometries.
These networks can serve as fast and computationally light methods for particle shower simulation and
reconstruction for current and future experiments at particle colliders.

1 Overview

In high energy physics (HEP) experiments, detectors act as
imaging devices, allowing physicists to take snapshots of de-
cay products from particle collision "events". Calorimeters
are key components of such detectors. When a high-energy
primary particle travels through dense calorimeter material,
it deposits its energy and produces a shower of secondary
particles. Detector "cells" within the calorimeter then cap-
ture these energy depositions, forming a set of voxelized
images which are characteristic of the type and energy of
the primary particle.

The starting point of any physics analysis is the iden-
tification of the types of particles produced in each colli-
sion and the measurement of the momentum carried by
each of these particles. These tasks have traditionally used
manually-designed algorithms, producing measurements of
physical features such as shower width and rate of energy
loss for particles traversing calorimeter layers. In the last

a corresponding author, mzhang60@illinois.edu

few years, researchers have started realizing that machine
learning (ML) techniques are well suited for such tasks, e.g.
using boosted decision trees (BDTs) on calculated features
for doing particle classification. Indeed, ML has long been
applied to various other tasks in HEP [1,2,3], including the
2012 discovery of the Higgs boson [4,5] at the ATLAS [6]
and CMS [7] experiments at the Large Hadron Collider
(LHC).

In the next decade, the planned High Luminosity Large
Hadron Collider (HL-LHC) upgrade [8] will enhance the
experimental sensitivity to rare phenomena by increasing
the number of collected proton-proton collisions by a factor
of ten. In addition, many next-generation detector compo-
nents, such as the sampling calorimeters proposed for the
ILC [9], CLIC [10], and CMS [11] detectors, will improve
physicists’ ability to identify and measure particles by using
much finer 3D arrays of voxels. These and future accelera-
tor upgrades will lead to higher data volumes and pose a
variety of technological and computational challenges in
tasks, such as real-time particle reconstruction.
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GraphReco for Muon Collider
• Interested to pursue Graph NNs for local 

reconstruction 

• Tracking 

• Calorimetry 

• Denoising with Autoencoders 

• The final goal is to define the input 
ingredients to PandoraPF 

• Longer term, interested to exploit PF linking 
with Graphs 

• Goal is to have same performance as 
PandoraPF  

• Advantage: would run on GPUs: faster & 
better integrated to HPC evolution scheme

Connecting the Dots. April 20-30, 2020

Figure 1: Subset of hits in one event shown in the xy plane with a single hit used to select its
corresponding neighborhood (left). Selected hits which fall within the seed hit’s ✏-ball radius are
shown in a 2d projection of the embedded space (center). Selected hits are shown projected back
into the original space, and the selected hits which belong to the same track as the seed are shown
in yellow (right).

2.2 Edge Refinement
Although graphs produced using the learned embeddings are sparse, further refinement can yield
still much sparser graphs. Within the embedding model, we are only able to consider features
derived from each point individually. Since we have now produced a relatively small set of edges,
represented as pairs of points, we can now consider models which take as input pairs of points, as
well as pairwise features derived from domain expertise.

We thus construct an edge refinement model  0, parameterized by ✓0, which operates on pairs of
points xi, xj and their pairwise features zij , and outputs the probability pij that the pair belongs
to the same cluster.

pij =  0(xi, xj , zij) 2 [0, 1] (8)

 0 is likewise parameterized as a multi-layer preceptron.
With our trained model, we compute pij for each eij 2 E produced during the embedding stage.

Then, choosing a threshold hyperparameter t 2 [0, 1], we are left with our final edge selection

E0 = {eij |pij > t}. (9)

2.3 Performance
To achieve competitive performance with traditional tracking algorithms, the graph construction
stage must run in approximately one second or less while maintaining a sufficiently high portion
of the graph’s true edges. Whereas the embedding model  must only consider Ni points, the
edge refinement model  0 must infer over |Ei| pairs of points and as such acts as a bottleneck. To
mediate this bottleneck,  0 is a relatively small network containing just 3 hidden layers with 512
hidden units each. Additionally,  0 uses half-precision parameters which is able to achieve a 2x
speedup over full precision when run on Nvidia’s GPU architectures.

We also note the adaptability of our architecture to differing edge recovery and graph size
requirements through the neighborhood and filtering hyperparameters, ✏ and t, respectively. In
our tests, we required 96% of the true edges to be recovered by the graph construction pipeline to
maintain a high TrackML score. Respecting the timing requirements for this stage, our architecture
was thus capable of graph construction where 30.3% of all edges were true edges. This result has
significant implications for downstream GNN training and inference, allowing for vastly reduced
computation in graph convolution, and a smaller memory footprint during training which eliminates
the need to divide the domain onto multiple GPUs.

3

https://arxiv.org/pdf/2007.00149.pdf

6 S.R. Qasim et al.: Distance-weighted graph networks for irregular particle-detector geometries

– GarNet model: The original vertex features are con-
catenated with the mean of the vertex features and
then passed on to one dense layer with 32 nodes and
tanh activation before entering 11 subsequent Gar-
Net layers. These layers contain S = 4 aggregators, to
which FLR = 20 features are passed, and FOUT = 32
output nodes. The output of each layer is passed to
the next and added to a vector containing the con-
catenated outputs of each GarNet layer. The latter
is finally passed to a dense layer with 48 nodes and
ReLU activation.

In all cases, each output vertex of these model building
blocks is fed through one dense layer with ReLU activation
and three nodes, followed by a dense layer with two output
nodes and softmax activation. This last processing step
determines the energy fraction belonging to each shower.
Batch normalisation [45] is applied in all models to the
input and after each block.

All models are trained on the full training data set us-
ing the Adam optimizer [46] and an initial learning rate of
about 3⇥ 10�4, the exact value depending on the model.
The learning rate is reduced exponentially in steps to the
minimum of 3⇥ 10�6 after 2 million iterations. Once the
learning rate has reached the minimum level, it is modu-
lated by 10% at a fixed frequency, following the method
proposed in Ref. [47].

7 Clustering performance

All approaches described in Section 6 perform well for
clustering purposes. An example is shown in Fig. 3, where
two charged pions with an energy of approximately 50GeV
enter the calorimeter. One pion loses a significant frac-
tion of energy in an electromagnetic shower in the first
calorimeter layers. The remaining energy is carried by a
single particle passing the central part of the calorimeter
before showering. The second pion passes the first layers
as a minimally ionizing particle and showers in the cen-
tral part of the calorimeter. Even though the two showers
largely overlap, the GravNet network (shown here as an
example) is able to identify and separate the two showers
very well. The track within the calorimeter is well identi-
fied and reconstructed and the energy fractions properly
assigned, even in the parts where the two showers heav-
ily overlap. Similar performance can be observed with the
other investigated methods.

Quantitatively, the models are compared with respect
to multiple performance metrics. The first two are the
mean and the variance of the loss function value (µL and
�L) computed according to Equation (2) over the test
events. The mean and the variance of the test shower
response (µR and �R), where the response is defined in
Equation (3), are also compared. While the test shower re-
sponse follows an approximately normal distribution over
majority of the test events, a small outlier population,
where the shower clustering fails, are seen to lead µR and
�R to misparametrize the core of the distribution. There-
fore, response kernel mean µ⇤

R and variance �⇤
R, restricted

(a) Truth

(b) Reconstructed

Fig. 3: Comparison of true energy fractions and energy
fractions reconstructed by the GravNet model for two
charged pions with an energy of approximately 50GeV
showering in di↵erent parts of the calorimeter. Colours in-
dicate the fraction belonging to each of the showers. The
size of the markers scales with the square root of the en-
ergy deposit in each sensor.

to test showers with response between 0.2 and 2.8, are
added to the set of evaluation metrics. In addition, we also
compare the clustering accuracy (A), defined as the frac-
tion of showers with response between 0.7 and 1.3. Finally,
the above set of metrics is duplicated, with the second set
using only the sensors with energy fractions between 0.2
and 0.8 in the computation of the loss function and the
response. The second set of metrics characterizes the per-
formance of the models in particularly challenging case of
reconstructing significantly overlapping clusters. The two
sets of metrics are called inclusive and overlap-specific in
the remainder of the discussion.

https://arxiv.org/pdf/1902.07987.pdf

https://arxiv.org/pdf/2007.00149.pdf
https://arxiv.org/pdf/2007.00149.pdf
https://arxiv.org/pdf/1902.07987.pdf
https://arxiv.org/pdf/1902.07987.pdf


GraphReco for Muon Collider
• Interested to pursue Graph NNs for local 

reconstruction 

• Tracking 

• Calorimetry 

• Denoising with Autoencoders 

• The final goal is to define the input ingredients to 
PandoraPF 

• Longer term, interested to exploit PF linking with 
Graphs 

• Goal is to have same performance as PandoraPF  

• Advantage: would run on GPUs: faster & better 
integrated to HPC evolution scheme 

• Advantage of GraphNN: generalise 3D —> 5D is 
conceptually straight forward

Jet clustering & prediction 
Input Data: Delphes ttbar 0PU  (AntiKT clustering)

https://arxiv.org/abs/2002.03605


Prediction

Clustering+Prediction

Clustering

x 383

GraphNet

…

η pT

Φ

Φ

η pT β xdx1x 383

Refining

Prediction

GraphNet

Output Candidates: ̝ NN candidates
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G. Grosso et al., in preparation



Person Power Needs & Opportunities
• Currently relying on mPP Consolidation Grant ERC (2018-2023) 

• MP + one student to work on track-related issues with GraphNetworks 

• Recruiting fellow 2021-2023 to (partially) work on Calorimetry 

• No help expected from EP 

• Focus on FCCee as main goal of ES implementation 

• Already invested resources on future collider common software infrastructure (ke4hep) 

• We should consider creating Doctoral student position(s) to assess common beam/
detector issues 

• MDI->Beam Background simulation chain -> local reconstruction is the only task 
relevant for this audience 

• Candidate from institutions working on Muon Collider, paid by CERN to stay 3 years at 
CERN during PhD studies


