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Machine Learning Based Extreme Data Reduction
for Prompt Supernova Pointing at DUNE
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Abstract—One of the goals of the Deep Underground Neutrino
Experiment (DUNE) is to use the massive underground liquid
argon time projection chamber (LArTPC) detectors at its far site
for multi-messenger astronomy (MMA), in the detection of neu-
trinos from core-collapse supernovae (SNe). Its current baseline
trigger strategy detects activity in the detector that is consistent
with SN neutrinos and saves the raw data for further offline
analysis but provides no prompt pointing information crucial
for optical follow-ups by other observatories. This approach is
based on the assumption that prompt pointing determination
using raw data is computationaly prohibitive. In this paper, we
demonstrate a proof-of-concept based on applying extreme data
reduction on the buffered SN data in the DUNE data acquistion
(DAQ) system’s front-end computers using a machine learning
(ML) workflow. This reduces the data by ∼5 orders of magnitude,
allowing a full track reconstruction to be carried out quickly on
a single server. The total time to perform the ML-based data
reduction and the full track reconstruction is less than the time
to transfer the SN data back to Fermilab or a High Performance
Computing (HPC) center. This shows that prompt processing
of raw SN data is possible and in fact trivial once the data
has been reduced to reject radiological backgrounds, paving the
way to a high-quality SN pointing trigger that is based on fully
reconstructed data instead of trigger primitives (TPs).

Index Terms—Supernova, Multi-messenger Astronomy, Trig-
ger, Data Acquisition, Machine Learning

I. INTRODUCTION

THE primary scientific goals of the Deep Underground
Neutrino Experiment’s (DUNE) [1] long baseline pysics

program include the determination of the neutrino mass hi-
erarchy, observation of charge-parity symmetry violation in
the lepton sector, and the measurement of neutrino oscillation
parameters. Beyond these goals, DUNE also intends to use its
massive liquid argon time projection chambers (LArTPCs) as a
neutrino observatory for studying solar neutrinos and neutrinos
from core-collapse supernovae (SNe). In this paper, we focus
on DUNE’s ability to detect and trigger on the latter [2]. We
begin with a description of the current DUNE SN trigger,
including a discussion of its shortcomings. We then follow
this up by proposing and describing in detail an approach that
addresses these shortcomings and by presenting results based
on fully simulated samples that demonstrate its effectiveness.
Our main focus in this paper is the machine learning (ML)
based data reduction workflow we have developed and to
demonstrate a proof-of-principle and show how this workflow
can be used to enable a high-quality SN pointing trigger for
DUNE based on fully-reconstructed quantities.
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II. BASELINE DUNE SN TRIGGER

The DUNE far detector will be located 1.5 km beneath the
surface of the earth, at the Sanford Underground Research
Facility (SURF). It consists of four 17-kton LArTPC detector
modules having a total fiducial volume of ≥40 ktons. For
simplicity, we assume all four detector modules are identical
and based on the horizontal drift technology, each consisting
of 150 anode plane assemblies (APAs) with 2,560 channels
per APA, for a total of 384,000 channels per module [3].
DUNE will employ a streaming readout architecture, where
all channels are digitized using 14-bit ADCs at a sampling
rate of 1.953125 MHz, and read out continuously from the
warm interface boards near the detector over ethernet links,
for an output rate of 1.05 TB/sec per module. The data for
each module are received by 75 DAQ readout units (RUs),
which each serve two APAs and store the data in a 10
second latency circular buffer. Each RU, which is based on
a commercial multicore server, executes a trigger primitve
(TP) generation algorithm that finds hits or signals in the
raw digitized waveforms in each channel. A second algorithm
then groups neighboring TPs close in space and time to find
trigger candidates (TCs) representing clusters or tracks. A
SN trigger is generated if a sufficient number of TCs are
found within 10 seconds, consistent with neutrinos from a
galactic core-collapse SN. This trigger causes all the data in
the 10 second latency buffer to be dumped into NVMe solid
state drives (SSDs) on the RUs. In addition, the subsequent
∼100 seconds worth of incoming data is also dumped into
the same SSDs. This data will be buffered on these SSDs
while they are transfered to the surface and back to Fermilab,
where additional processing will be performed to determine
quantities such as the position of the SN in the sky.

The size of 100 seconds worth of data is ∼119 TB, so
it will take at least 3 hours for data transfers to complete
for each detector module over the 100-Gbps links connecting
SURF to Fermilab. In the worst case, it could take up to
a day to transfer all the data, since DUNE’s requirement is
that the data needs to be transferred within 24 hours. The
time between the arrival of neutrinos and photons from a core
collapse SN is approximately equal to the shock propagation
time, which ranges from 1 minute to several days, depending
on the type of the progenitor [4]. This time window represents
the time available for DUNE to determine the direction of the
SN and send out notifications over an alert network, and for
other observatories to respond by performing optical follow-
ups. Unfortunately, the network transfer times between SURF
and Fermilab alone would rule out optical follow-ups for most
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Fig. 1. The two stage strategy described in the text for processing the SN data is shown in the figure above. The upper half shows the ML-based data
reduction pipeline used to reduce the raw data by 5 orders of magnitude. The reduced dataset is then transferred over the network to a server that executes
the second stage shown in the lower half consisting of a full track reconstruction pipeline followed by the pointing determination.

SNs, except for cases when the progenitors are red supergiants.

III. ML-BASED SOLUTION FOR SN POINTING AT SURF

The major shortcoming of the baseline DUNE SN trigger
is that it provides no pointing information prior to transferring
the SN data back to Fermilab. This is a consequence of
the sheer amount of data produced by continuously read
out LArTPC detectors, which can be very challenging to
manage and analyze without some form of compression [5] or
intelligent data reduction. In order to address this shortcoming,
we propose a strategy that consists of two major stages which
are depicted in Figure 1. The first stage involves a ML-based
data reduction workflow, implemented as early and as close to
the buffered SN data on the SSDs as possible. This stage will
be performed on the RUs, using co-processors like FPGAs
or GPUs with direct access to the data on the SSDs, saving
time by minimizing host CPU intervention and eliminating
redundant copies to and from host memory. The purpose of
this stage is to reduce the data to such a degree that it can be
transferred quickly across the network to a single server that
performs the next stage. This second stage involves a pipeline
consisting of track reconstruction followed by SN pointing
determination. The first stage will be executed on the 75 RUs
in parallel for the 150 APAs in each LArTPC detector module.
The reduced data from all 75 RUs of a detector module will
then be received over ethernet by the server that executes the
reconstruction and pointing analysis pipeline in the second
stage. In the discussion that follows, we focus only on the first
10 seconds of the triggered SN data stored in the SSDs, since
this information is sufficient for SN pointing determination.
This immediately provides a factor of 10 reduction in the data
to 12 TBs per module.

A. ML-based data reduction

As shown in the upper half of Figure 1, the ML-based
data reduction workflow implemented on the RUs consists
of three separate steps. In the first step, a two-dimensional
convolutional neural network (2DCNN) is used on the raw
wire plane data to identify 2D regions-of-interest (ROIs), in
the form of frames that likely contain SN neutrino interactions.
The architecture of this 2DCNN is shown in Figure 2. The
objective of this step is to reject majority of the raw data
which contain only radiological background. This is done
by subdividing the raw wire plane data into smaller, equally
spaced, and overlapping subframes spanning the 10 seconds
of data. These subframes serve as input images that are fed
to the 2DCNN, which performs inference on each separately.
Subframes identified by the 2DCNN as likely containing SN
interactions are then sent to the second step. In this step, a
one-dimensional convolutional neural network (1DCNN) [6] is
applied to each individual wire in the subframe to identify only
those wires that likely contain a signal in the raw waveform.
Wires identified as having signal are then sent to the third
step, which uses a one-dimensional autoencoder (1DAE) [7] to
denoise the raw wire waveforms. These denoised waveforms
on individual channels represent the reduced dataset that is
then transferred over the network to the server that executes the
second stage of processing described in the following section.
An example, using fully simulated data, illustrating the results
at each step in this workflow, is shown in Figure 3.

B. Track reconstruction and pointing determination pipeline

A diagram depicting the workflow in the second stage of
processing is shown in the lower half of Figure 1. It involves
a typical track reconstruction pipeline employed in LArTPC-
based neutrino experiments, followed by analysis to determine
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Fig. 2. The figure above shows the architecture of the 2DCNN used in the first step of the ML-based data reduction workflow to reject radiological backgrounds.
The architectures for the 1DCNN and 1DAE are not shown in this paper but can be found in references [6] and [7].

the SN direction. The track reconstruction begins with a signal
processing step that performs a fast fourier transform (FFT)
based deconvolution on the denoised waveforms from the
previous stage, to restore the original waveform, free from
shaping effects due to the field response and electronics.
This is followed by a step that fits a Gaussian function
to the deconvolved waveform, to extract hit parameters like
peak position and the area, which is necessary for estimating
the deposited charge [8]. After this, 3D space points are
determined from the 2D hits in each of the three wire plane
views, followed by a step that removes hit ambiguities due
to different wire segments that share the same channel. Next,
clusters and tracks are reconstructed. Finally, a likelihood fit
is performed to extract the direction of the SN.

IV. PERFORMANCE TESTS AND RESULTS

In this section, the results presented on algorithm per-
formance were all determined with fully simulated events.
SN neutrino interactions in liquid argon considered in these
studies included electron-neutrino charged-current absorption
interactions (νeCC) and neutrino-electron elastic scattering
(eES), both of which were generated using the MARLEY
event generator [9], with an input energy spectrum according
to the GVKM model [10]. Radiological backgrounds were
generated primarily using BxDecay0 [11]. Particle passage
through the detector volume was simulated using the GEANT4
simulation toolkit [12], [13], followed by a simulation of
detector electronics response.

A. Data reduction performance of ML-based workflow

As mentioned previously, for the purpose of pointing deter-
mination, we will limit ourselves to the first 10 seconds of data,
which correspond to ∼12 TB per LArTPC module. Using the
fully simulated events, our ML-based data reduction workflow
identifies an average of 124 ROIs for νeCC interactions, and

80 ROIs for eES interactions. The average number of ADC
samples in an ROI is 218 for νeCC interactions, and 212 for
eES interactions. With a 14-bit ADC, the average data size is
47,306 bytes for a νeCC interaction, and 29,680 bytes for an
eES interaction. From the GVKM model, we estimate there
will be 3,300 νeCC interactions and 326 eES interactions in all
four LArTPC detector modules, over a period of 10 seconds,
for a galactic core-collapse SN. To get a rough idea of the
size of the reduced data sample, we assume that the 2DCNN
rejects 100% of all radiological backgrounds and that all
neutrino interactions are retained. This is not an unreasonable
assumption since, based on simulated samples, the 2DCNN
rejects ≳99%. This results in a reduced data size of 158 MB
for the full detector, which represents a data reduction of five
orders of magnitude from the initial size of 48 TB.

B. Track reconstruction performance on the reduced dataset

The reduced dataset, resulting from running the ML-based
workflow described above on the fully simulated SN samples,
is then processed through the track reconstruction pipeline
shown in the lower half of Figure 1. The time it takes to
run this pipeline, from the FFT deconvolution up to the track
finding step, takes 61 ms for νeCC interactions, and 26 ms for
eES interactions. For the sake of simplicity, we assume, once
again, that the ML-based data reduction rejects all radiological
backgrounds and retains all neutrino interactions. Using these
per-interaction execution times, and the numbers of νeCC
and eES interactions produced in the full detector within 10
seconds from the GVKM model, we estimate it will take
3.5 minutes on a single CPU core, to execute the track
reconstruction pipeline on the reduced data set from the full
detector. Running this pipeline with multiple threads on a
multi-core server can easily reduce this execution time to less
than a minute.

To see if the ML-based data reduction step has any effect
on the quality of the results from the track reconstruction
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Fig. 3. The figure in (a) above represents a raw data subframe identified by the 2DCNN as likely containing a SN neutrino interaction. The yellow horizontal
lines in this subframe are the 7 wires that the 1DCNN identified as likely having signals. The raw waveforms containing these signals are shown in (b). These
raw waveforms are processed using the 1D Autoencoder, resulting in the denoised waveforms shown in (c).

pipeline, we also run the entire simulated sample, without
data reduction, through the same pipeline, and use that as
a reference for comparison. The two reconstruction pipelines
are identical, except that we use a simpler 1D deconvolution
in the signal processing step for the reduced dataset, while
we use the more sophisticated 2D deconvolution, which is
the default in offline analysis, for the same step in the case
of the entire data sample. The results of this comparison are
shown in Table I for the hit finding efficiency after the Gaushit
finder [8] step in the reconstruction pipeline. A comparison of
the reconstructed energy of the scattered electron in the eES
interactions is shown in Figure 4. In both cases, we see that
applying the ML-based data reduction step prior to the track
reconstruction pipeline has absolutely no negative effects.

In order to fully appreciate what it means to be able to run
the track reconstruction pipeline in 3.5 minutes using a single
CPU core, we must compare it with the time it takes to process
the full 10 seconds worth of SN data from the full detector,
without ML-based data reduction. This can be estimated from
the time it took to run the track reconstruction on the reference
set. If we allocate 600 CPU cores (one per APA in the full
detector) to this task, it would take 9 hours to complete the
reconstruction on 10 seconds worth of SN data. 3.5 minutes on
a single CPU core versus 9 hours on 600 CPU cores represents
a huge difference in terms of computing resource usage. Most
important of all is that we are able to achieve this significant
reduction in execution time, without compromising the quality
of the reconstructed results.

C. Processing time for the ML-based data reduction pipeline
While the results above show that the ML-based data

reduction is effective in picking out SN neutrino interactions
from the background, and speeds up the track reconstruc-
tion considerably, without any degradation in reconstruction

TABLE I
HIT FINDING EFFICIENCY

Reconstruction Primary track hits Daughter track hits

chain U V Z U V Z

ML-reduced 0.69 0.71 0.66 0.16 0.18 0.073
Std full dataset 0.68 0.67 0.62 0.14 0.17 0.062
The table above shows the hit finding efficiency after the Gaushit
finder stage for the ML-reduced reconstruction and the full dataset
reconstuction for the induction (U, V) and collection (Z) planes.

quality, all processing, including the data reduction, must be
performed within time constraints, in order to complete point-
ing determination and send out alerts early enough to permit
optical follow-ups. Ultimately, the ML-based data reduction
should be implemented on devices that achieve fast inference
with low power consumption, such as FPGAs. However, as
the main purpose of this work is to demonstrate a proof-of-
principle, we implemented the ML data reduction algorithms
on a GPU, to get a ballpark figure for what can realistically
be achieved in terms of total processing times. We performed
our timing estimates using half of an 80-GB Nvidia A100
GPU. Referring to Section III-A, since we use 200 tick-
wide subframes that overlap by 50 ticks, we need to perform
130,208 inferences with the 2DCNN to cover 10 seconds of
data.

We feed raw wire plane images that are 200 time ticks wide
as input to the 2DCNN described above. The time to perform
an inference on a single 480 × 200 (1148 × 200) collection
(induction) plane raw data subframe with the A100 is 524 µs
(785 µs). The total inference time on all 3 wire plane views
is therefore 2× 130, 208× (.000524+2× .000785) = 545.31
seconds = 9.1 minutes, where the first factor of 2 is due to the
two TPCs associated with each APA. There is an additional
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Fig. 4. The figure above compares the energy distributions of the scattered
electron in the eES interactions between the ML-reduced reconstruction and
the standard full dataset reconstruction described in the text.

4.8 minutes, mainly due to the task of constructing the input
images for the 2DCNN. The 1DCNN and 1D denoising
autoencoder contribute very little to the total execution time,
since they are only used to perform inference very rarely,
after the 2DCNN has rejected most of the data. The total
time to perform the ML-based data reduction is therefore
approximately 14 minutes, assuming this can be done in
parallel for all APAs in the full detector.

If we add the 3.5 minutes for the track reconstruction
pipeline, the total is less than 20 minutes. In other words,
we can perform a full track reconstruction on the SN sample
in less than the data transfer time back to Fermilab alone, of
65 minutes for 10 seconds of data over 100-Gbps links.

The likelihood fit to determine the SN direction takes ∼700
ms to perform and including it contributes little to the total
time.

V. CONCLUSION

The current baseline DUNE SN trigger can alert other
observatories that a SN neutrino burst has occurred, but,
beyond that, it provides no information about the direction
of the source of the burst. Unfortunately, this missing piece
of information is crucial for allowing optical follow-ups to
be performed in a timely fashion. The prevailing assumption
is that SN processing requires significant computational re-
sources, requiring the SN data to be sent back to Fermilab or
an HPC center for additional processing and analysis, before
a careful determination of the SN direction can be made. In
this paper, we demonstrated that the key to SN processing is
to reduce the raw data by rejecting as much of the background
and retaining as much of the signal as possible. We showed
that, after reducing the SN data by five orders of magnitude
through a ML-based workflow, the task of performing a full
track reconstruction, producing results as good as those from
a full offline reconstruction, becomes trivial, taking little time
with minimal CPU resources. By benchmarking on a readily
available GPU, we also showed that total time to reduce the

raw data and run the full track reconstruction was less than the
time to transfer the data back to Fermilab. These results dispell
previously held assumptions about computing requirements for
SN processing at DUNE, paving the way for prompt, high-
quality SN pointing to be completed on-site at SURF, so that
alerts can be sent out early enough to make optical follow-
ups by other observatories possible. Furthermore, performing
a high-quality SN pointing early in the chain at SURF will also
reduce the number of fake SNs, reducing network utilization
and storage requirements. With these goals in mind, we are
now implementing the ML-based data reduction workflow on
FPGA hardware, in order to achieve lower inference times and
lower power consumption.
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