
IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. XX, NO. XX, XXXX 2024 1

BORA: A Personalized Data Display for
Large-scale Experiments

Nicholas Tan Jerome, Suren Chilingaryan, Timo Dritschler and Andreas Kopmann

Abstract—Given the rapid improvement of the detectors at
high-energy physics experiments, the need for real-time data
monitoring systems has become imperative. The significance
of these systems lies in their ability to display experiment
status, steer software and hardware instrumentation, and provide
alarms, thus enabling researchers to manage their experiments
better. However, researchers typically build most data monitoring
systems as standalone in-house solutions that cannot be reused for
other experiments or future upgrades. We present BORA (per-
sonalized collaBORAtive data display), a lightweight browser-
based monitoring system that supports diverse protocols and is
built specifically for customizable visualization of complex data,
which we standardize via video streaming. We show how absolute
positioning layout and visual overlay background can address
the diverse data display design requirements. Using the client-
server architecture, we enable support for diverse communication
protocols, with the server component responsible for parsing the
incoming data. We integrate the Jupyter Notebook as part of our
ecosystem to address the limitations of the web-based framework,
providing a foundation to leverage scripting capabilities and
integrate popular AI frameworks. Since video streaming is a core
component of our framework, we evaluate viable approaches to
streaming protocols like HLS, WebRTC, and MPEG-Websocket.
The study explores the implications for our use case, highlighting
its potential to transform data visualization and decision-making
processes.

Index Terms—data monitoring, video encoding, high-speed
data, web display

I. INTRODUCTION

REAL-TIME data monitoring plays a crucial role in
modern research to ensure the integrity and quality of ex-

periments. Through constant monitoring and prompt detection,
issues like equipment malfunctions, excessive signal noise, and
data corruption can be detected and addressed at runtime. This
is highlighted by experiments like the discovery of the Higgs
boson [1], which required long measurement and observation
times due to the low statistical likelihood of relevant events
occurring. Such experiments and similar endeavors requiring
large statistic sample sizes [2]–[4] lead to the generation
of petabytes or even exabytes of data, thereby presenting
challenges to their respective data monitoring systems.

With the increase in data rates from modern detector hard-
ware, the traditional approach of ”store-first-analyze-later” is
no longer feasible. In particular, scientists need to adjust instru-
mentation parameters and make real-time decisions regarding

Manuscript received June XX, 20XX; revised November XX, 20XX;
accepted December XX, 20XX. Date of publication January XX, 20XX; date
of current version July XX, 20XX.

N. Tan Jerome, S. Chilingaryan, T. Dritschler, and A. Kopmann are with
the Institute for Data Processing and Electronics, Karlsruhe Institute of
Technology, 76131 Karlsruhe, Germany (e-mail: nicholas.tanjerome@kit.edu).

the recorded data’s relevance. Ideally, we want to observe and
interact even with large data streams. In response, experiments
adopt distributed computing technologies to manage complex
systems with multiple components, with the data monitoring
component built as a standalone view-only user displays [5].

Most existing monitoring systems use static views to visual-
ize the system status, incorporating knowledge about specific
instrumentation [6], [7]. Although there are established proto-
cols for exchanging parameters and slow-control information,
there is currently no standard approach for presenting detector
data to the operator, thereby separating data acquisition from
the monitoring system.

In this paper, we present techniques to facilitate data access
for web displays, following the principle that emphasizes small
upfront investment (development effort) and enables rapid
deployment. We realize our techniques in BORA (personalize
collaborative data display), a browser-based monitoring system
that supports diverse protocols and is specifically for customiz-
able visualization of complex data, which we standardize as
video streaming. Additionally, we use Jupyter notebooks to
interact with data and make dynamic changes to web views.
These notebooks allow users to manipulate data and update
web view settings through scripting. With this feature, the
operator can script functions that are not natively supported
by the monitoring system.

II. RELATED WORK

Many real-time monitoring systems have been developed
for high-energy physics experiments to ensure data quality,
real-time analysis, and resource optimization. These systems
constantly evaluate data integrity, facilitating prompt detection
of anomalies and adaptation of data collection strategies.
While real-time monitoring systems are integral to scientific
experiments, there is a lack of consensus on their design,
resulting in the need for individualized in-house solutions for
each experiment. In this section, we explore the approaches
taken by other experiments in implementing their data moni-
toring systems.

The management of large-scale data in high-energy physics
is exemplified by the Large Hadron Collider (LHC) [8],
which deploys the Data Quality Monitoring (DQM) software
as a core component of the CMS experiment. The DQM
enables real-time detector monitoring, provides prompt offline
feedback for data quality analysis and certification, validates
all reconstruction software, and validates Monte Carlo produc-
tions. Data status is shown in multiple web views (DQMGUI).
Each DQMGUI comprises a web server hosting a static web-
based user interface [9].



IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. XX, NO. XX, XXXX 2024 2

(a) (b)

Fig. 1: (a) A BORA status monitoring display for the Cryogenic Pumping Section segment of the KATRIN experiment and
(b) the corresponding background image.

The Belle II experiment [10] uses the DQM system to create
and update histograms by analyzing online event samples and
to visualize the histograms on live browser GUIs and update
them at the interval of ten seconds. The analytical part of the
DQM system is based on the BASF2 [11], implemented as
ROOT [12] based C++ applications and operated from Python
scripts, while the visualization part is based on C++ and Java.

The DAQ monitoring system for the vertex detector proto-
type [13] at Circular Electron Positron Collider (CEPC) [14]
uses a modular design approach to monitor experiment sta-
tus, configure file generation, manage message logging, and
display online hit maps.

The LEPS2 experiment [15] integrates its monitoring system
using the middleware-based architecture, where the client GUI
is served by the DAQ Operator through an HTTP server. The
client GUI feeds the data from the DAQ-middleware to display
histogram plots and experiment data.

The Jiangmen Underground Neutrino Observatory
(JUNO) [16] implemented three standalone web displays
for instrumentation data monitoring, a control panel, and an
alarm system. Utilizing client-server and publish-subscribe
technologies, the data monitoring system effectively moves
data from the EPICS system to a MySQL database, which
is subsequently pushed to the web-based clients [17]. The
JUNO device control is based on the Vue3 framework written
in TypeScript, using HTTP and Websocket for data exchange
with the server. The JUNO alarm is based on the Kafka
framework.

This highlights how disjunct and diverse the technologies
and standards of contemporary monitoring systems have be-
come. However, regardless of the different technologies or
frameworks in these monitoring systems, they share similar-
ities wherein all of these systems have status, control, and
alarm displays. Also, these displays are deployed as modular
components fitted to a distributed computing ecosystem. The
modular approach is necessary to maintain a complex system.

While these in-house solutions can have functionalities

tailored precisely to the needs of their experiment, newer
monitoring systems look into open-source solutions to provide
status, control, and alarm displays. The Deep underground
neutrino experiment (DUNE) [18] and ATLAS [19] experi-
ments have chosen Grafana [20] as their monitoring systems;
the monitoring system most similar to BORA.

Grafana provides a flexible and customizable platform for
visualizing data from diverse sources, offering interactive
dashboards tailored to specific needs. Its unified monitor-
ing capabilities aggregate data from multiple sources into
a single interface, enabling comprehensive monitoring and
visualization of system performance. However, the ATLAS
computing team reported a limited set of visualizations, which
does not complement the display requirements of their exper-
iments [21].

Existing data monitoring systems based on static views
present system status, enable limited device control and pro-
vide alarm features. These systems necessitate knowledge
about particular instrumentation, making them a one-time-
off in-house solution. Our work extends and integrates these
approaches. Our system assumes a client-server architecture,
wherein the server is tasked with data reduction processes that
require significant computational resources. Our framework
arranges data to match the user’s envisioned displays, unham-
pered by the visual limitations imposed by the framework.

III. DESIGN CONCEPTS

Our approach to designing an effective experiment mon-
itoring system follows an overarching principle that scien-
tists should not be limited by the capability of the software
framework. Here, we present our rationale for designing a
multi-purpose data quality monitoring system and discuss
our idea of encoding large-scale data into video streams.
Given the uniqueness of each experiment, we include Jupyter
notebooks [22] that can provide user-space data manipulation
and extend BORA setups with scripting capabilities. This
empowers the operator to script anything that BORA does



IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. XX, NO. XX, XXXX 2024 3

not support natively. The BORA ecosystem also provides the
foundation to include artificial intelligence, such as utilizing
large language models with Jupyter notebooks [22], [23], and
performing machine learning techniques in data correlation
and forecasting [24]–[26].

A. Absolute Positioning

In web design, there are widely accepted guidelines on how
to present information effectively without overwhelming users.
This consensus of best practices in web design leads to a
fixed layout approach, where visual graphs are represented as
boxes stacked together in a dynamic layout. This is the path
that Grafana took, which requires a high upfront investment
(development effort). Users must familiarize themselves with
the framework and are restricted to its provided functionali-
ties. We adopt a contrasting design philosophy that aims to
minimize the initial upfront investment, thereby reducing the
development effort. Therefore, we simplify the complexity by
sacrificing certain functionalities, like the stacked dynamic
layout approach.

We adopt absolute positioning for the front-end layout to
emphasize simplicity in the design. A fixed x-y coordinate
determines the placement of each widget. However, this sim-
plicity also poses the disadvantage of less adaptive screen
layouts. Adjusting the display to a specific display resolution
is contingent upon using the native browser zoom capability.

Another notable design decision is incorporating a back-
ground image to address the difficulties of maintaining a
no-code user interface design page. Rather than displaying
visually intricate elements to users, the framework employs
a background image as an overlay in response to user input.
Including this feature enables the BORA framework to adapt to
various experiments with different specifications. The BORA
display depicted in Figure 1 uses a background image and
employs absolute positioning to place each visual widget
according to x-y coordinates.

B. Jupyter Notebook for Data Interaction and Web Views

Interaction is essential to control the extraction of informa-
tion from the data displays. Still, the continuous development
of an experiment demands constant changes and updates,
thus leading to many customized solutions. While modular
standalone architecture may cope with continuous updates,
we propose the integration of Jupyter notebooks as part of
the web-based display’s ecosystem. The usage of notebooks
has gained increasing attention in the scientific community,
where scientists mainly use notebooks as ”scratchpads,” from
which code is later extracted to scripts. These notebooks can
be shared, simplifying the transfer and exchange of results,
algorithms, and code. [27], [28].

Users have traditionally been able to configure the data
display parameters through setup files, for example, in the
XML format [15]. A limitation is associated with this, as
updating the setup parameters necessitates a system restart,
which is inconvenient when conducting an active experiment.
Instead, we suggest employing Jupyter Notebooks to provide
supplementary techniques for modifying the display settings at

Fig. 2: Jupyter integration with BORA. (a) Define the data
polling interval of BORA (2 seconds). (b) Add a list of sensors
to the BORA widget with the identifier ”container 1”. (c)
Generate a heatmap using a user-defined function, which pulls
the data from a Redis database. Then, attach the output image
to the BORA widget with the identifier ”container 2”. (d)
Add a video URL to the BORA widget with the identifier
”container 3”.

runtime and interactively updating the data visualization. Ad-
ditionally, users can manipulate data and assign the resulting
output of the customized function to a visual block. Figure 2
shows the Jupyter notebook integration that updates the BORA
settings and corresponding widgets. We follow the approach
shown by Clarke et al. [29], where we turn Jupyter notebooks
into fully functional web-based data inspection applications.
By inspecting the data in our database, we can perform
correlation, forecasting, pattern detection, and much more. We
can also create reusable workflows, including applications to
build customized machine learning pipelines, analyze recent
data, and produce publishable figures.

C. Encode Large Data into Video Streams

We provide the option to encode large data within video
streams, a highly relevant capability in high-speed imaging
applications. High-speed imaging plays a critical role in a wide
range of scientific and industrial fields because of its ability
to capture events that are otherwise impossible to observe
with the naked eye or standard imaging techniques [30],
[31]. As commercial high frame rate cameras are becoming
affordable, more and more researchers seize the opportunity
to explore new knowledge using these devices. However, these
cameras deliver high frame rates that are challenging to make
sense of without appropriate tools. Typically, commercial CCD
(Charge-Coupled Device) and CMOS (Complementary Metal-
Oxide-Semiconductor) systems could deliver a frame rate that
exceeds 10 kfps (frames-per-second) [32].



IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. XX, NO. XX, XXXX 2024 4

These high-speed cameras can continuously stream data
over 10 GB per second, complicating data storage. There is a
lack of studies and solutions regarding managing such large
data streams in process monitoring and quality control. Many
researchers have resolved to the conventional data warehouse
store-first-analyze-later approach, where high data rates can
quickly exhaust memory bandwidth and become performance
bottlenecks [33].

To deal with such a high frame rate, the system can
process the incoming frames in high-performance computation
pipelines such as gStreamer [34], [35]. A practical solution
is to implement a shared memory ring buffer framework to
handle the high volume of incoming frames. This framework
can then distribute the frames to other subsystems for addi-
tional processing [36]. The client system could then visualize
the processed data at a more user-friendly frame rate, such as
60 Hz [37]. The computation in the pipeline mainly focuses
on reducing data and extracting features. We propose to use
video streaming to integrate various types of complex data
and look to enable supporting video-streaming protocols in
our framework.

Our primary interest lies in existing real-time video stream-
ing protocols that web browsers can support. We explore three
methods for real-time video streaming that prioritize low-
latency communication: HLS (HTTP Live Streaming) [38],
MPEG-Websocket [39], and WebRTC (Web Real-Time Com-
munication) [40]. HLS is a streaming protocol that splits
media content into smaller segments and sends them through
HTTP. The HLS streaming protocol is receiving significant
attention in the scientific community for its fast streaming
capabilities [41], [42]. HLS enables dynamic quality level
switching and adaptive bitrate streaming based on network
conditions. The output file, which is an M3U8 playlist, is
used to supply clients with metadata and segment URLs. The
second approach involves integrating WebSocket with MPEG.
WebSocket is valued for its ability to create low-latency video
streaming systems. We leverage WebSocket channels for trans-
mitting MPEG-encoded content, which will then be decoded
in the client browser [39]. This combination is frequently used
in applications requiring rapid, bidirectional communication,
such as live streaming, video conferencing, and interactive web
experiences. WebRTC offers a method of directly connecting
the streaming source and the client browser. To establish
a low-latency connection, it uses WebSocket for signaling
and gathering information required to tunnel from source to
destination [43].

IV. EVALUATION OF VIDEO STREAMING APPROACHES

Since BORA is built to support video streaming, we evaluate
different video streaming technologies to better select the right
technology. To this end, we created a C++ prototype RTSP
source using the GST template library. The prototype generates
a video stream showing a sphere circling within a space. The
RTSP source is accessible through an endpoint and can be
utilized for various streaming techniques.

For the case of HLS, we use FFMPEG to transcode the
RTSP protocol to a M3U8 playlist. The following command
is used to generate the playlist file:

HLS WebRTC MPEG-WS

0

1

2

Start-up delay
Transmission Latency

Fig. 3: Comparison of the start-up delay and transmission
latency between the HLS approach, the MPEG-Websocket
approach, and the WebRTC approach.

ffmpeg -i "rtsp://127.0.0.1:8554/test" \
-hls_time 3 \
-hls_wrap 10 \
"stream/streaming.m3u8"

where rtsp://127.0.0.1:8554/test is the endpoint
of the RTSP source, and stream/streaming.m3u8 is the
playlist output file. This command doesn’t specify the trans-
port protocol (-rtsp_transport). By default, FFMPEG
uses UDP for RTSP streams. It sets HLS segment duration
(-hls_time) to 3 seconds and the number of segments
per playlist (-hls_wrap) to 10. The final M3U8 file could
be served in the web browser directly within the <video>
HTML tag. The M3U8 acts as a playlist that tells the browser
which segment file to playback. The segment file is an MPEG
Transport Stream (MPEG-TS) file that can be decoded in the
web browser.

Our evaluation of the second approach is based on the
combination of MPEG and WebSockets. It uses the similar
FFMPEG command with different attributes -f mpegts
and -codec:v mpeg1video with the output relayed to
the Websocket stream, which will be later decoded in the
client browser (within the <canvas> HTML tag). The
-f mpegts option specifies the output format as MPEG-
TS. This format is commonly used for streaming multime-
dia data, especially over UDP or multicast networks. The
-codec:v mpeg1video sets the video codec to MPEG-1.
This codec was chosen for compatibility reasons and remains
a widely supported industry standard.

The third approach explores WebRTC, which allows real-
time communication between web browsers and applications.
It achieves this by enabling peer-to-peer connections, han-
dling NAT and firewall traversal, and offering secure media
streaming capabilities, all through standardized protocols and
JavaScript APIs. We use a media server to facilitate this
capability by transcoding the RTSP source and serving the
client browser. The signaling mechanism is done by using
Websockets, while the video is served using the <video>



IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. XX, NO. XX, XXXX 2024 5

Fig. 4: Data flow of the BORA framework.

HTML tag.
We are interested in the performance of video streaming;

hence, we investigated their latency and start-up delays. The
results, which are the average of 10 measurements, are shown
in Figure 3. As the video stream reference, we use the
VLC media player. We measure the start-up delay when we
launch the RTSP source with the VLC media player until
the video stream appears on the web browser. To measure
the transmission latency, we track the timestamp difference
between the video stream of the VLC media player and the
video stream on the web browser.

The zero start-up delay for the HLS method should not be
interpreted as a good performance indicator, mainly because
this approach’s transcoding latency is not captured in this
performance test. During start-up, the browser serves the
readily transcoded M3U8 playlist data without additional data
processing. The MPEG-WS has the highest start-up delay
as the video stream is transcoded upon starting the client
browser. The start-up delay for the WebRTC is relatively small
as the signaling mechanism to prepare for the peer-to-peer
connection has a lower computation cost than the on-the-fly
FFMPEG transcoding.

The transmission latency is the core performance metric
related to the client browser’s real-time performance. The HLS
and MPEG-WS approaches have similar latency because they
decode the same file format in the client browser, i.e., MPEG-
TS. The WebRTC approach decodes the file format directly
from the source. In our case, we use VP8 as our source for-
mat. Decoding VP8 typically involves decoding a compressed
video stream using the VP8 video codec, which may require
less computational resources than decoding MPEG-TS [44].
Decoding MPEG-TS involves not only parsing the container
format but also decoding the compressed video streams within
it. WebRTC is the top choice in the assessment because of its
minimal transmission latency and start-up delay.

V. IMPLEMENTATION AND EXAMPLE APPLICATIONS

We implement our concepts in BORA, a browser-based
system for data quality monitoring of experiment data. BORA
is a lightweight framework emphasizing low development
effort and supporting video streaming. The framework is based

Fig. 5: Components of the BORA architecture.

on a client-server architecture, with the server component
mainly parsing the different incoming protocols. Figure 4
shows the general data flow of the BORA framework, where
BORA caches the sensors’ recent data from a variety of
sources and will be used by Jupiter notebooks for near real-
time analysis and trend visualization or prediction. We use the
Redis database to store these recent data.

Figure 5 depicts the components of the BORA archi-
tecture, which comprises two separate design spaces: the
user space and the BORA space. In the user space, the
Runtime Manager handles the sub-components files and
backup, while in the BORA space, the Page Manager
handles the sub-components representation, interaction, and
background processes. The BORA space operates as the
central entity tasked with managing the layout representation
and the logic integration for the final deployment. Within this
context, we define every entity as a widget. For example, a
data widget only displays data, while an input box widget
can both display and manipulate data. Hence, a visual rep-
resentation and interaction form the foundation of a widget.
The widget’s appearance is denoted by the components of
Data Representation and Page Representation,
while the logical interaction is regulated by the components
of Page Interaction and Background Process. In
terms of visual aspects, the Data Representation es-
tablishes the widget attributes to be loaded on the designer
page, while the Page Representation governs the visual
representation of each widget on the HTML page. The user
space is a layer that encompasses the data display’s specific
information. The Runtime Manager component will load
the information from the settings, data file, and visual file
components and then convert this information into front-end
static files.

Over the course of development, we have built many data
displays with BORA in real-world experiments. We now
describe several examples of applications that convey the
representative usage and unique capabilities of BORA. The
full source code is available online at https://github.com/
kit-ipe/bora.



IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. XX, NO. XX, XXXX 2024 6

Fig. 6: The KATRIN experiment comprises multiple systems. Grey boxes depict some of the BORA data displays deployed
for the experiment. [45]. Currently, 22 active BORA data displays are being installed to monitor the health of the experiment.

A. Status Display for the KATRIN experiment

The KATRIN experiment [45] encompasses several sys-
tems, each responsible for handling hundreds of parameters
(Figure 6). The operator must monitor a few specific system
parameters to ensure the experiment’s operational health. The
parameters are not limited solely to a single system, but
cross-system parameters should be accessible as well. Since
the KATRIN experiment data is stored in the ADEI [46]
system, we created BORA displays that query data from the
ADEI’s getdata.php interface. The data is polled at regular
intervals, and the data is refreshed on the final page.

Figure 6 also shows BORA displays with different back-
ground images, accommodating the different visual require-
ments of the subsystems. In this example, we use an ADEI
parser in the BORA server. However, this parser could be
replaced by other communication protocols, depending on
the experiment. There are currently 22 active BORA status
displays that report the health of the different subsystems.

B. Interactive Data Display for High-speed Imaging Camera

BORA is not limited to read-only displays. In the ini-
tial stages of BORA development, it became evident that a
data display with read-only mode has significant limitations.
Consequently, scientists aspire to manage the data acquisition
parameters and concurrently process the data stream in real-
time. To support this feature, the functionality of widgets can
be enhanced by implementing AJAX calls.

In material science, the proximity effect in excitonic materi-
als is quickly gaining prominence as an influential tool for cus-
tomizing unique quantum behaviors and functions. Yet, there
is a notable absence of real-time observation and thorough
mechanistic understanding of these effects at the nanoscale.

Our proposed monitoring system design will rely on a small
set of straightforward concepts to optimize data flow. The
illustration in Figure 7 represents the data flow. The system
allocates a significant memory region during boot-up to form
a ring buffer. The camera Software Development Kit (SDK)
is set to stream frames directly into this buffer. The recorded
data remains stationary within the software components, as
each component directly accesses the corresponding location
in the ring buffer. The data processing software eliminates
noise, performs online data reduction, and extracts relevant
information about the studied process. The information con-
sists of numerical values shared with other system components
using a fast in-memory database (Redis [47]) and multiple
video streams delivered to the operator monitoring experiment
via the Real Time Streaming Protocol (RTSP) [48]. We convert
the online monitoring into a web application to enable remote
operation. The web application includes multiple views that
integrate video streams, relevant parameters from the in-
memory database, and a set of control set-points for adjusting
all system parameters.

The interface overview of a BORA data display is shown in
Figure 8. In this image, a display showcases the high frame-
rate data and other plugins. Figure 8-A contains the plugin
that sends data to the server for updating device parameters.
Figure 8-B shows a time-series graph of a parameter given by
the server’s processing pipeline. Figure 8-C on the selection
panel allows users to select the plugin they want. Figure 8-
D represents the video stream generated by processing the
high frame-rate images. Figure 8-E provides video stream
information and permits the selection of video segments to
be recorded.



IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. XX, NO. XX, XXXX 2024 7

Fig. 7: Data flow of the system.

Fig. 8: Interface overview: We created a BORA display
showing high frame-rate data and other plugins.

C. Status Monitoring of Embedded System Applications

Until this point, we have implicitly assumed that the BORA
software stack is deployed on full-scale data centers and PC
systems. However, fully autonomous measurement systems in
the form of embedded systems and Systems on Chip (SoC)
have grown in relevance for many scientific applications.

Such examples include the DTS-100G DAQ platform, used
for cryogenic sensor readout [49], or the HighFlex2 DAQ
platform as shown in [50]. Both systems feature a modern
Zynq MPSoC-based system combining a powerful FPGA
and ARM-based processor. Thanks to this combination, these
platforms can operate independently of a host computer. The
presence of an ARM processor on those systems allows the
deployment of (mostly) regular operating systems capable of
running conventional software applications.

Due to their standalone nature, systems like these also
require independent monitoring and control capabilities. We
envision BORA as a self-contained integrated status monitor-
ing system for such systems, in the form of a containerized
application, that can be deployed on the ARM SoC of these
platforms. Both the BORA server components and a small
web server that serves the status monitor web view can

simultaneously be deployed on the SoC in these environments.
Live measurement data is accessible to these SoCs through
inter-fabric communication with the FPGA (such as the AXI
Protocol) and can be processed by the BORA server locally
before being provided as a remote monitoring web view over
the Ethernet interfaces of these SoCs. Integrating BORA into
such standalone systems thus increases their feasibility as fully
self-contained measurement devices without additional exter-
nal software support for operation and status monitoring. The
feasibility of this approach is currently under investigation.

VI. CONCLUSION

In this paper, we contribute design concepts and also provide
an implementation for large-scale experiments. First, we give
an overview of the existing data monitoring systems developed
by other experiments and summarize the similarities between
these systems. We focus on simplicity and lightweight deploy-
ment while providing a scalable system that can accommodate
experiments with different requirements. As our framework
supports complex data encoding via video streaming, this
study thoroughly examines real-time video streaming methods
for monitoring high frame rates through web browsers as the
client medium. The evaluation assessed the start-up delay and
transmission latency of HLS, MPEG-Websocket, and WebRTC
methods, concluding that WebRTC is optimal for a low-latency
system.

REFERENCES

[1] The CMS Collaboration, “A portrait of the higgs boson by the cms
experiment ten years after the discovery,” Nature, vol. 607, no. 7917,
pp. 60–68, 2022.

[2] P. Krizan, “The belle ii upgrade program,” arXiv preprint
arXiv:2211.13634, 2022.

[3] M. Cepeda, S. Gori, P. Ilten, M. Kado, F. Riva, R. A. Khalek,
A. Aboubrahim, J. Alimena, S. Alioli, A. Alves, et al., “Higgs physics
at the hl-lhc and he-lhc,” arXiv preprint arXiv:1902.00134, 2019.

[4] T. Houdy, A. Alborini, K. Altenmüller, M. Biassoni, L. Bombelli,
T. Brunst, M. Carminati, M. Descher, D. Fink, C. Fiorini, M. Gugiatti,
A. Huber, P. King, M. Korzeczek, M. Lebert, P. Lechner, S. Mertens,
M. Pavan, S. Pozzi, D. C. Radford, A. Sedlak, D. Siegmann, K. Urban,
and J. Wolf, “Hunting kev sterile neutrinos with katrin: building the
first tristan module,” Journal of Physics: Conference Series, vol. 1468,
p. 012177, feb 2020.

[5] G. Chen and Y. Cheng, “Scientific data management and application
in high energy physics,” in Big Scientific Data Management: First
International Conference, BigSDM 2018, Beijing, China, November 30–
December 1, 2018, Revised Selected Papers 1, pp. 92–104, Springer,
2019.

[6] C. Allan, J.-M. Burel, J. Moore, C. Blackburn, M. Linkert, S. Loynton,
D. MacDonald, W. J. Moore, C. Neves, A. Patterson, et al., “Omero:
flexible, model-driven data management for experimental biology,” Na-
ture methods, vol. 9, no. 3, pp. 245–253, 2012.

[7] M. Taghizadeh-Popp, J. W. Kim, G. Lemson, D. Medvedev, M. J.
Raddick, A. S. Szalay, A. R. Thakar, J. Booker, C. Chhetri, L. Dobos,
et al., “Sciserver: A science platform for astronomy and beyond,”
Astronomy and Computing, vol. 33, p. 100412, 2020.

[8] M. Barisits, T. Beermann, F. Berghaus, B. Bockelman, J. Bogado,
D. Cameron, D. Christidis, D. Ciangottini, G. Dimitrov, M. Elsing, et al.,
“Rucio: Scientific data management,” Computing and Software for Big
Science, vol. 3, pp. 1–19, 2019.

[9] V. Azzolini, D. Bugelskis, T. Hreus, K. Maeshima, M. J. Fernandez,
A. Norkus, P. J. Fraser, M. Rovere, M. A. Schneider, et al., “The data
quality monitoring software for the cms experiment at the lhc: past,
present and future,” in EPJ Web of Conferences, vol. 214, p. 02003,
EDP Sciences, 2019.



IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. XX, NO. XX, XXXX 2024 8

[10] T. Konno, R. Itoh, M. Nakao, S. Y. Suzuki, and S. Yamada, “The slow
control and data quality monitoring system for the belle ii experiment,”
IEEE Transactions on Nuclear Science, vol. 62, no. 3, pp. 897–902,
2015.

[11] A. Moll, “The software framework of the belle ii experiment,” in Journal
of Physics: Conference Series, vol. 331, p. 032024, IOP Publishing,
2011.

[12] I. Antcheva, M. Ballintijn, B. Bellenot, M. Biskup, R. Brun, N. Buncic,
P. Canal, D. Casadei, O. Couet, V. Fine, et al., “Root—a c++ frame-
work for petabyte data storage, statistical analysis and visualization,”
Computer Physics Communications, vol. 180, no. 12, pp. 2499–2512,
2009.

[13] S. Li, T. Wu, X. Huang, J. Zhou, Z. Yan, W. Wang, H. Zeng, X. Jia,
Y. Hu, X. Zhang, et al., “Beam test of a baseline vertex detector
prototype for cepc,” IEEE Transactions on Nuclear Science, 2024.

[14] C. S. Group et al., “Cepc conceptual design report: Volume 1-
accelerator,” arXiv preprint arXiv:1809.00285, 2018.

[15] S. Y. Ryu, L. Collaboration, et al., “Current status of the leps2
experiment and commissioning of the solenoid spectrometer,” in AIP
Conference Proceedings, vol. 2249, AIP Publishing, 2020.

[16] A. Abusleme, T. Adam, S. Ahmad, R. Ahmed, S. Aiello, M. Akram,
F. An, G. An, Q. An, G. Andronico, et al., “Juno physics and detector,”
arXiv preprint arXiv:2104.02565, 2021.

[17] Y. Mei and Z. Han, “Framework upgrade of the detector control system
for juno,” in 2016 IEEE-NPSS Real Time Conference (RT), pp. 1–3,
IEEE, 2016.

[18] A. Falcone, D. Collaboration, et al., “Deep underground neutrino
experiment: Dune,” Nuclear Instruments and Methods in Physics Re-
search Section A: Accelerators, Spectrometers, Detectors and Associated
Equipment, vol. 1041, p. 167217, 2022.

[19] G. Aad, X. S. Anduaga, S. Antonelli, M. Bendel, B. Breiler, F. Castro-
villari, J. Civera, T. Del Prete, M. T. Dova, S. Duffin, et al., “The atlas
experiment at the cern large hadron collider,” Journal of Instrumentation,
2008.

[20] M. Chakraborty and A. P. Kundan, “Grafana,” in Monitoring cloud-
native applications: Lead agile operations confidently using open source
software, pp. 187–240, Springer, 2021.

[21] T. Beermann, A. Alekseev, D. Baberis, S. Crépé-Renaudin,
J. Elmsheuser, I. Glushkov, M. Svatos, A. Vartapetian, P. Vokac,
and H. Wolters, “Implementation of atlas distributed computing
monitoring dashboards using influxdb and grafana,” in EPJ Web of
Conferences, vol. 245, p. 03031, EDP Sciences, 2020.

[22] B. M. Randles, I. V. Pasquetto, M. S. Golshan, and C. L. Borgman,
“Using the jupyter notebook as a tool for open science: An empirical
study,” in 2017 ACM/IEEE Joint Conference on Digital Libraries
(JCDL), pp. 1–2, IEEE, 2017.

[23] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell, et al., “Language mod-
els are few-shot learners,” Advances in neural information processing
systems, vol. 33, pp. 1877–1901, 2020.

[24] F. Yang, S. L. Shah, D. Xiao, and T. Chen, “Improved correlation
analysis and visualization of industrial alarm data,” ISA transactions,
vol. 51, no. 4, pp. 499–506, 2012.

[25] G. Gao, Q. Gao, X. Yang, M. Pajic, and M. Chi, “A reinforcement
learning-informed pattern mining framework for multivariate time se-
ries classification,” in 31st International Joint Conference on Artificial
Intelligence (IJCAI), 2022.

[26] Y. Yu, D. Kruyff, J. Jiao, T. Becker, and M. Behrisch, “Pseudo: Inter-
active pattern search in multivariate time series with locality-sensitive
hashing and relevance feedback,” IEEE Transactions on Visualization
and Computer Graphics, vol. 29, no. 1, pp. 33–42, 2022.

[27] M. B. Kery, M. Radensky, M. Arya, B. E. John, and B. A. Myers,
“The story in the notebook: Exploratory data science using a literate
programming tool,” in Proceedings of the 2018 CHI conference on
human factors in computing systems, pp. 1–11, 2018.

[28] J. F. Pimentel, L. Murta, V. Braganholo, and J. Freire, “A large-
scale study about quality and reproducibility of jupyter notebooks,”
in 2019 IEEE/ACM 16th international conference on mining software
repositories (MSR), pp. 507–517, IEEE, 2019.

[29] D. J. Clarke, M. Jeon, D. J. Stein, N. Moiseyev, E. Kropiwnicki, C. Dai,
Z. Xie, M. L. Wojciechowicz, S. Litz, J. Hom, et al., “Appyters: Turning
jupyter notebooks into data-driven web apps,” Patterns, vol. 2, no. 3,
2021.

[30] T. Suzuki, R. Hida, Y. Yamaguchi, K. Nakagawa, T. Saiki, and F. Kan-
nari, “Single-shot 25-frame burst imaging of ultrafast phase transition of
ge2sb2te5 with a sub-picosecond resolution,” Applied Physics Express,
vol. 10, no. 9, p. 092502, 2017.

[31] A. Velten, T. Willwacher, O. Gupta, A. Veeraraghavan, M. G. Bawendi,
and R. Raskar, “Recovering three-dimensional shape around a corner
using ultrafast time-of-flight imaging,” Nature communications, vol. 3,
no. 1, p. 745, 2012.

[32] M. Versluis, “High-speed imaging in fluids,” Experiments in fluids,
vol. 54, pp. 1–35, 2013.

[33] T. Kraska, “Finding the needle in the big data systems haystack,” IEEE
internet Computing, vol. 17, no. 1, pp. 84–86, 2013.

[34] W. Taymans, S. Baker, A. Wingo, R. S. Bultje, and S. Kost, “Gstreamer
application development manual (1.2. 3),” Publicado en la Web, vol. 72,
2013.

[35] C. Angsuchotmetee, R. Chbeir, Y. Cardinale, and S. Yokoyama, “A
pipelining-based framework for processing events in multimedia sensor
networks,” in Proceedings of the 33rd Annual ACM Symposium on
Applied Computing, pp. 247–250, 2018.

[36] R. Inglés, M. Orlikowski, and A. Napieralski, “A c++ shared-memory
ring-buffer framework for large-scale data acquisition systems,” in 2017
MIXDES-24th International Conference” Mixed Design of Integrated
Circuits and Systems, pp. 161–166, IEEE, 2017.

[37] L. Jiang, W. Pei, and Y. Wang, “A user-friendly ssvep-based bci using
imperceptible phase-coded flickers at 60hz,” China Communications,
vol. 19, no. 2, pp. 1–14, 2022.

[38] R. Pantos and W. May, “Http live streaming,” tech. rep., RFC 8216,
2017.

[39] X. Wu, C. Zhao, R. Xie, and L. Song, “Low latency mpeg-dash system
over http 2.0 and websocket,” in International Forum on Digital TV and
Wireless Multimedia Communications, pp. 357–367, Springer, 2017.

[40] J. K. Nurminen, A. J. Meyn, E. Jalonen, Y. Raivio, and R. G. Marrero,
“P2p media streaming with html5 and webrtc,” in 2013 IEEE Confer-
ence on Computer Communications Workshops (INFOCOM WKSHPS),
pp. 63–64, IEEE, 2013.

[41] K. Durak, M. N. Akcay, Y. K. Erinc, B. Pekel, and A. C. Begen,
“Evaluating the performance of apple’s low-latency hls,” in 2020 IEEE
22nd International Workshop on Multimedia Signal Processing (MMSP),
pp. 1–6, IEEE, 2020.

[42] B. Zhang, T. Teixeira, and Y. Reznik, “Performance of low-latency http-
based streaming players,” in Proceedings of the 12th ACM Multimedia
Systems Conference, pp. 356–362, 2021.

[43] N. Blum, S. Lachapelle, and H. Alvestrand, “Webrtc: Real-time com-
munication for the open web platform,” Communications of the ACM,
vol. 64, no. 8, pp. 50–54, 2021.

[44] J. Tideström, “Investigation into low latency live video streaming
performance of webrtc,” 2019.

[45] M. Aker, K. Altenmüller, J. Amsbaugh, M. Arenz, M. Babutzka, J. Bast,
S. Bauer, H. Bechtler, M. Beck, A. Beglarian, et al., “The design,
construction, and commissioning of the katrin experiment,” Journal of
Instrumentation, vol. 16, no. 08, p. T08015, 2021.

[46] S. Chilingaryan, A. Beglarian, A. Kopmann, and S. Vöcking, “Advanced
data extraction infrastructure: Web based system for management of
time series data,” in Journal of Physics: Conference Series, vol. 219-4,
p. 042034, IOP Publishing, 2010.

[47] J. Carlson, Redis in action. Simon and Schuster, 2013.
[48] H. Schulzrinne, A. Rao, and R. Lanphier, “Real time streaming protocol

(rtsp),” tech. rep., RFC 7826, 1998.
[49] T. Muscheid, A. Boebel, N. Karcher, T. Vanat, L. Ardila-Perez, I. Chevi-

akov, M. Schleicher, M. Zimmer, M. Balzer, and O. Sander, “Dts-100g
— a versatile heterogeneous mpsoc board for cryogenic sensor readout,”
Journal of Instrumentation, vol. 18, p. C02067, feb 2023.

[50] W. Wang, M. Caselle, T. Boltz, E. Blomley, M. Brosi, T. Dritschler,
A. Ebersoldt, A. Kopmann, A. Santamaria Garcia, P. Schreiber,
E. Bründermann, M. Weber, A.-S. Müller, and Y. Fang, “Accelerated
deep reinforcement learning for fast feedback of beam dynamics at kara,”
IEEE Transactions on Nuclear Science, vol. 68, no. 8, pp. 1794–1800,
2021.


