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RIKEN Radioactive Isotope Beam Factory (RIBF)

1. Highest intensity RI beam 
• secondary beam intensity: < 1e7 cps

• mixture of multiple species of RIs


2. RI Identification 
• BigRIPS (RI fragment separator)


3. Physics measurement
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BigRIPS

Particle identification diagram

Each “island” 
corresponds to 
an individual RI

Beamline detectors for PID 
• Plastic scintillator (F3, F7)

• PPAC (F3, F5, F7)

• Ion chamber (F7)


Concept of the PID using BigRIPS 
• TOF between F3 Plastic and F7 Plastic → β

• Particle transfer from F3 PPAC to F5 PPAC → Bρ

• Energy loss in F7 IC + β → Z

• Bρ + β → A/Q


Extract desired RIs using the particle identification 
diagram for physics measurement (offline analysis)

RI beam Projectile-fragment Separator
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Real-time data processing in RIBF DAQ
Goal: Streaming “physical” quantities 

e.g., TOF, Position, ΔE (calibrated, analyzed), PID info 

1. Speed-up of data analysis

• Currently, the same procedure is performed individually by 

each experimental group (redundant) → standard PID without 
overheads


2. More “physical” triggers

• Currently, simple discriminator triggers are mostly used (low 

level) → trigger based on e.g., PID information


3. Easier simultaneous multiple experiments

• Currently, PID DAQ system can only be used exclusively 

(inefficient) → the official PID DAQ stream which can be 
subscribed by multiple experimental groups at the same time

What kind of hardware is suitable? 
• FPGA may be the choice for real-time analysis of streaming data

• Manually implementing a complicated task such as PID in FPGA with HDLs is nightmare …

→ AMD (Xilinx) Alveo series
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AMD (Xilinx) Alveo series
Alveo U50

“Adaptable Accelerator Cards for Data Center Workloads” 
• Enhancing the host server capability with FPGA through easily 

installable PCI Express interface


Alveo U50 (~$3500)

• Parallelly accessible 8GB (256MB x 32) HBM 


• High-bandwidth, large data can be stored close to FPGA

• Direct external connectivity with a QSFP28 port

 
Vitis Unified Software Platform 
• Covers most of the development flow of applications that 

invokes FPGA kernels from the host CPU (C++ simulation, HLS, 
RTL / C++ co-simulation)


1. Most of the application framework are provided

2. C++ codes are automatically converted to RTL by HLS


• Users can focus only on thinking how to exploit the FPGA 
power and writing C++ codes

5



Benchmark: Hardware acceleration of GZIP

Sample hardware-accelerated codes of major tasks/libraries 
are available 
• BLAS, Data science (random forest, SVM, K-means), 

compression, Matrix decomposition etc…


Example: GZIP compression 
• Powerful compression


• ~12 sec for 2.5 GB compression

• cf. ~75 sec with 3.7 GHz Core i9


• Decompression is slower than CPU…

• Data size limited by HBM (compressed + decompressed < 8 GB)


Confirmed the effect of hardware acceleration (although there 
are room for improvements…) → Practical application
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Formulation (TOF-Bρ-ΔE method) 
1. Input: raw data segment of PPAC3, PPAC5, PPAC7, PL3, PL7, IC7

2. Output: two double values corresponding to A/Q & Z


3. PPAC:  4 PPACs / FP (F3, F5, F7)

• Raw data → positions of interaction

• interaction positions + detector positions → position & direction of charged particles (least square) at each focal plane

• Particle transfer between two focal planes → Bρ


4. Plastic scintillator: 2 PMs / FP (F3, F7)

• passage time of RI (average of two PMs)

• passage time difference → TOF → β


5. Ion chamber: 6 ICs / FP (F7)

• ΔE (correct for pedestal + geometric mean + linear transformation)


6. PID

• β + Bρ → A/Q 

• ΔE + β + Bethe-Bloch formula → Z

RIBF PID using Alveo
Tentative goal: Reproducing PID results identical to those derived by anaroot

(standard software for the RIBF data analysis)
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High-level synthesis overview
Starting from C++ codes based on anaroot… 

Step 1: Refactoring of the C++ codes such that the codes conform to the 
specification of HLS toolkit

• ROOT dependency is removed

• Dynamic memory allocation is removed


Step 2: Tuning the C++ codes to assist the toolkit in inducing efficient RTL codes

• Adding compiler directives (e.g., HLS PIPELINE: making a for loop pipelined, 

HLS INLINE: making a function in-line)

• Dataflow — splitting a task into smaller sub-tasks and connect them using 

pipeline registers (assisting task-parallelization)


Step 3: Converting the codes into RTL codes using the Vitis HLS toolkit


RTL codes can be obtained 
• can be used as same as those generated from HDL codes
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Realized RTL dataflow Output from the official dataflow viewer

Successfully implemented

Independent task 
• each is implemented as an 

individual FPGA design

• every task runs parallelly

Pipeline register 
(FIFO)
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Achieved clock frequency: 220 MHz


Achieved latency

• ~1000 clks → ~4.3 us @ 220 MHz

• x10 slower compared to the latency 450 ns with CPU


 
Achieved pipeline processing


• II = 5 clks → throughput 44 MHz @ 220 MHz

• cf. CPU throughput: 2.2kHz → x20 throughput 

• ~40 MHz data acquisition is possible (cf. secondary beam intensity: << 1e7 cps) 
• PID (physical) trigger is possible if ~5 us delay is acceptable 
• Overheads (board init., data transfer etc.) should be removed, e.g. by data streaming, for practical use

Performance
Board initialization ~107ms

Host code data read ~40ms

Data transfer from 
host to Alveo ~14ms

Main loop ~13ms

(core i9-10900X, single thread)
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1. ~40 MHz data acquisition is possible

2. PID trigger is possible if ~5 us delay is acceptable

Huge speed-up (throughput) can be expected 

• cf. CPU: enhancing clock frequency

• cf. GPU: data-parallelization 


FPGA: task-parallelization 
• Rather complicated tasks can be realized as dedicated hardware

• Independent, multiple kind of tasks can be completely parallelized

• Pipelined with II~a few leads to huge gain in throughput

→ advantageous when the task consists of multiple, rather complex 
subtasks, which need to be executed in an organized manner


Streaming data can be analyzed with very little overheads 
• Direct external connectivity via QSFP28

• Pipeline buffering without register/memory read/write

Implications

Output from the official 
dataflow viewer

Task parallelization

Pipeline processing

Before pipelining
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Current status / Future plans

VCK5000

Communication using direct I/O 
• QSFP28 port + Xilinx Aurora 64B/66B kernel


• 100 Gbps achieved (loopback)

• Will try communication using two boards


Drift chamber data analysis 
• Variable-length data / loops, nested loops


• May not be suitable for hardware implementation

• Exploring smarter ways of implementation


• Currently CPU-only processing is still faster

• Machine learning / AI (using Versal?)


Versal VCK 5000 
• FPGA + AI Core (matrix computation engine; ~ GPU) + QSFP28 x 2

• “GPU that can accept 100 Gbps direct data stream (?)”
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Summary

Exploring the capability of Alveo in the RIBF DAQ data analysis 
• Achieved x20 throughput compared to CPU for PID

• Huge speed-up (throughput) can be expected if task-parallelization is possible

• Direct external connectivity may allow streaming data to be analyzed with very 

little overheads


Will continue to explore further possibilities 
• External communication

• For what kind of tasks does Alveo/Versal hardware acceleration is suitable?

• Versal AI core
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