
24th IEEE Real Time Conference — ICISE, Quy Nhon, Vietnam
2024.4.23

High-speed data processing in the RIBF DAQ system
using the Alveo data-center accelerator card
Yuto Ichinohe (RIKEN Nishina Center)

Hidetada Baba (RIKEN Nishina Center), Shoko Takeshige (Rikkyo Univ.), Taku Gunji (CNS)

RIKEN Radioactive Isotope Beam Factory (RIBF)

1. Highest intensity RI beam
• secondary beam intensity: < 1e7 cps

• mixture of multiple species of RIs

2. RI Identification
• BigRIPS (RI fragment separator)

3. Physics measurement

2

BigRIPS

Particle identification diagram

Each “island”
corresponds to
an individual RI

Beamline detectors for PID
• Plastic scintillator (F3, F7)

• PPAC (F3, F5, F7)

• Ion chamber (F7)

Concept of the PID using BigRIPS
• TOF between F3 Plastic and F7 Plastic → β

• Particle transfer from F3 PPAC to F5 PPAC → Bρ

• Energy loss in F7 IC + β → Z

• Bρ + β → A/Q

Extract desired RIs using the particle identification
diagram for physics measurement (offline analysis)

RI beam Projectile-fragment Separator

3

Real-time data processing in RIBF DAQ
Goal: Streaming “physical” quantities

e.g., TOF, Position, ΔE (calibrated, analyzed), PID info

1. Speed-up of data analysis

• Currently, the same procedure is performed individually by

each experimental group (redundant) → standard PID without
overheads

2. More “physical” triggers

• Currently, simple discriminator triggers are mostly used (low

level) → trigger based on e.g., PID information

3. Easier simultaneous multiple experiments

• Currently, PID DAQ system can only be used exclusively

(inefficient) → the official PID DAQ stream which can be
subscribed by multiple experimental groups at the same time

What kind of hardware is suitable?
• FPGA may be the choice for real-time analysis of streaming data

• Manually implementing a complicated task such as PID in FPGA with HDLs is nightmare …

→ AMD (Xilinx) Alveo series

4

AMD (Xilinx) Alveo series
Alveo U50

“Adaptable Accelerator Cards for Data Center Workloads”
• Enhancing the host server capability with FPGA through easily

installable PCI Express interface

Alveo U50 (~$3500)

• Parallelly accessible 8GB (256MB x 32) HBM

• High-bandwidth, large data can be stored close to FPGA

• Direct external connectivity with a QSFP28 port

 
Vitis Unified Software Platform
• Covers most of the development flow of applications that

invokes FPGA kernels from the host CPU (C++ simulation, HLS,
RTL / C++ co-simulation)

1. Most of the application framework are provided

2. C++ codes are automatically converted to RTL by HLS

• Users can focus only on thinking how to exploit the FPGA
power and writing C++ codes

5

Benchmark: Hardware acceleration of GZIP

Sample hardware-accelerated codes of major tasks/libraries
are available
• BLAS, Data science (random forest, SVM, K-means),

compression, Matrix decomposition etc…

Example: GZIP compression
• Powerful compression

• ~12 sec for 2.5 GB compression

• cf. ~75 sec with 3.7 GHz Core i9

• Decompression is slower than CPU…

• Data size limited by HBM (compressed + decompressed < 8 GB)

Confirmed the effect of hardware acceleration (although there
are room for improvements…) → Practical application

6

Formulation (TOF-Bρ-ΔE method)
1. Input: raw data segment of PPAC3, PPAC5, PPAC7, PL3, PL7, IC7

2. Output: two double values corresponding to A/Q & Z

3. PPAC: 4 PPACs / FP (F3, F5, F7)

• Raw data → positions of interaction

• interaction positions + detector positions → position & direction of charged particles (least square) at each focal plane

• Particle transfer between two focal planes → Bρ

4. Plastic scintillator: 2 PMs / FP (F3, F7)

• passage time of RI (average of two PMs)

• passage time difference → TOF → β

5. Ion chamber: 6 ICs / FP (F7)

• ΔE (correct for pedestal + geometric mean + linear transformation)

6. PID

• β + Bρ → A/Q

• ΔE + β + Bethe-Bloch formula → Z

RIBF PID using Alveo
Tentative goal: Reproducing PID results identical to those derived by anaroot

(standard software for the RIBF data analysis)

7

High-level synthesis overview
Starting from C++ codes based on anaroot…

Step 1: Refactoring of the C++ codes such that the codes conform to the
specification of HLS toolkit

• ROOT dependency is removed

• Dynamic memory allocation is removed

Step 2: Tuning the C++ codes to assist the toolkit in inducing efficient RTL codes

• Adding compiler directives (e.g., HLS PIPELINE: making a for loop pipelined,

HLS INLINE: making a function in-line)

• Dataflow — splitting a task into smaller sub-tasks and connect them using

pipeline registers (assisting task-parallelization)

Step 3: Converting the codes into RTL codes using the Vitis HLS toolkit

RTL codes can be obtained
• can be used as same as those generated from HDL codes

8

Realized RTL dataflow Output from the official dataflow viewer

Successfully implemented

Independent task
• each is implemented as an

individual FPGA design

• every task runs parallelly

Pipeline register
(FIFO)

9

Achieved clock frequency: 220 MHz

Achieved latency

• ~1000 clks → ~4.3 us @ 220 MHz

• x10 slower compared to the latency 450 ns with CPU

 
Achieved pipeline processing

• II = 5 clks → throughput 44 MHz @ 220 MHz

• cf. CPU throughput: 2.2kHz → x20 throughput

• ~40 MHz data acquisition is possible (cf. secondary beam intensity: << 1e7 cps)
• PID (physical) trigger is possible if ~5 us delay is acceptable
• Overheads (board init., data transfer etc.) should be removed, e.g. by data streaming, for practical use

Performance
Board initialization ~107ms

Host code data read ~40ms

Data transfer from
host to Alveo ~14ms

Main loop ~13ms

(core i9-10900X, single thread)

10

1. ~40 MHz data acquisition is possible

2. PID trigger is possible if ~5 us delay is acceptable

Huge speed-up (throughput) can be expected

• cf. CPU: enhancing clock frequency

• cf. GPU: data-parallelization

FPGA: task-parallelization
• Rather complicated tasks can be realized as dedicated hardware

• Independent, multiple kind of tasks can be completely parallelized

• Pipelined with II~a few leads to huge gain in throughput

→ advantageous when the task consists of multiple, rather complex
subtasks, which need to be executed in an organized manner

Streaming data can be analyzed with very little overheads
• Direct external connectivity via QSFP28

• Pipeline buffering without register/memory read/write

Implications

Output from the official
dataflow viewer

Task parallelization

Pipeline processing

Before pipelining

11

Current status / Future plans

VCK5000

Communication using direct I/O
• QSFP28 port + Xilinx Aurora 64B/66B kernel

• 100 Gbps achieved (loopback)

• Will try communication using two boards

Drift chamber data analysis
• Variable-length data / loops, nested loops

• May not be suitable for hardware implementation

• Exploring smarter ways of implementation

• Currently CPU-only processing is still faster

• Machine learning / AI (using Versal?)

Versal VCK 5000
• FPGA + AI Core (matrix computation engine; ~ GPU) + QSFP28 x 2

• “GPU that can accept 100 Gbps direct data stream (?)”

12

Summary

Exploring the capability of Alveo in the RIBF DAQ data analysis
• Achieved x20 throughput compared to CPU for PID

• Huge speed-up (throughput) can be expected if task-parallelization is possible

• Direct external connectivity may allow streaming data to be analyzed with very

little overheads

Will continue to explore further possibilities
• External communication

• For what kind of tasks does Alveo/Versal hardware acceleration is suitable?

• Versal AI core

13

