

Development of first level track trigger at Belle II using Deep Neural Network

Yuxin Liu(Speaker)^A, Taichiro Koga^B, Christian Kiesling^c, Felix Meggendorfer^c, Timo Forsthofer^c, Simon Hiesl^c, Kai Lukas Unger^D

Institution : Sokendai(KEK)^A, KEK^B, Max Planck Institute for Physics^C, Institute for Information^D Processing Technologies

25th April ,2024, 24th IEEE REAL TIME CONFERENCE

OUTLINE

- Introduction

- SuperKEKB and Belle II detectors
- Motivation for new track trigger development
- First level trigger and CDC track trigger system at Belle II

- Development of DNN track trigger

- DNN track trigger architecture
- Training and optimization
- Hardware implementation
- RTL simulation results

-Summary

SuperKEKB

- An asymmetric e⁻ e⁺ collider, Upgrade from KEKB.
 7.0 GeV e⁻ and 4.0 GeV e⁺ for Υ(4S)
- SuperKEKB aimed for a peak luminosity of $6 \times 10^{35} \text{ cm}^{-2} \text{s}^{-1}$, surpassing KEKB by 30 times and setting a world record; also with the integral luminosity as $50 ab^{-1}$; Belle II Online luminosity Exp: 7-30 All runs

• Achieved luminosity:

 $\mathcal{L}_{peak} = 4.65 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$, two time of KEKB record

Updated on 2024/04/15 10:39 JST

 $\mathcal{L}_{int} = 453 \, f b^{-1}$; till April 2024

۲

•

•

۲

EM calorimeter K_L and muon detector (ECL) (KLM) solenoid **Belle II including:** Tracking: Vertex detectors and CDC. particle identification: TOP and ARICH. Gev Silicon Vertex Detectors Calorimeter: ECL. KL and muon detector. e⁺4 GeV First level (L1) trigger, High level trigger (HLT) and DAQ. **Central Drift Chamber** (CDC) **Particle Identification:** Time of propagation counter (TOP); Aerogel Ring Imaging Cherenkov counter (ARICH)

Motivation for track trigger upgrading

Neural-network based 3D track reconstruction

- Use Axial wires reconstruct 2D track in x-y plane and Stereo wires for full track reconstruction
- Used information: location for CDC wires (ϕ and r), drift time (t_{drift}), and crossing angle (α)
- Use **neural-network** to handle complicated track fitting and reject possible background hits

First level CDC track trigger

Neural-network inputs and architecture upgrade

- Inputs: Drift time t_{drift} , wires relative location ϕ_{rel} , Crossing angle α for priority wires + Drift time for all other wires
- Introduce the self-attention architecture to "focus" on certain inputs
- Output track vertex z_0 , track θ and classifier output Q

Neural-network training, optimization, quantization

- Data: real physics run data with high background in late 2022.
- Using OPTORCH lib for model building and training, OPTUNA for parameters optimization

Parameter	#Attention value	#hidden nodes	#hidden layer	activate	precision	Total multiplier
Values	27	27	2	Leaky Relu	Float 16	4,185

Deep neural-network implementation

Requirements for implementation:

- Latency: ~300ns (3rd) and ~600ns (4th)
- DSP limitation: 864 (3rd) and 1560 (4th)
- More than 5 times logic gates, can be used for multiply

Belle II UT3

Xilinx Virtex-6 xc6vhx380t, xc6vhx565t 11.2 Gbps with 64B/66B Belle II UT4

Xilinx UltraScale XCVU080, XCVU160 25 Gbps with 64B/66B

DNN track trigger firmware architecture

- Input 2D track, track segments and event time pre-processing them to get scaled input for DNN.
- Pre-processing & interface using VIVADO^A, Core DNN logic using XILINX VITIS.

Firmware architecture for DNN TRG

- Using look up table with 18 bits precision for exp(x) & tanh(x), refer to the function in his 4 ml
- Directly use DSP for Leaky ReLU
- For Dense layer, using specific strategy to fit the requirements (next page)

Pipelined dense layer with Heterogenous resources

- Reuse each MAC twice.
- Pipeline dense layer with Interval as 4 clock
- Additional Pipelined register was added to cross SLR
- Floor-Planning each dense layer

MAC 2

Reuse every multiplier by twice

Floor planning and Implementation result

Resources consumption

- Floor planning the dense layers :
- Resource matched requirements, not timing violation
- Latency : 76 clock = 592.8 ns ;require: < 600ns
- Initial Interval = 4 clocks ;require: 4 clocks

Register-transfer level (RTL) simulation

• Performance RTL simulation and comparing performance with pytorch results

• $\sigma^{z_0} = 2.7 \ cm$, about $\frac{1}{2}$ as the baseline $\sigma^{z_0} = 4.9 \ cm$; and $\sigma^{\theta} = 14^{\circ}$ (baseline: $\sigma^{\theta} = 19^{\circ}$)

• RTL and software simulation matched. Reducing precision did not loss the resolution.

Register-transfer level (RTL) simulation

- *Q* output got consistent with software result
- AUC do not get large drop comparing RTL and software simulation
- At signal track efficiency at ~95% : Background rejection rate: NN track trigger (baseline): 39%; DNN track trigger: 85%

Summary

- The upgrade of Belle II first level track trigger is on-going
- We examined the performance for upgrade trigger with both software and RTL simulation, and achieved a 2.2 times background rejection rate improvement.
- We successfully implemented the DNN track trigger with UT4 module and fulfill the requirements with latency ~ 600ns and II ~ 4 clock.
- We are working on the commission work for the DNN track trigger

Thanks for your attention

Backup

First level trigger

- Provide First level (L1) trigger signal to DAQ using FPGA for real-time processing on detector raw data.
- Include four sub-detectors trigger and 2 global trigger logic
- Implemented with third (fourth) generation of universal trigger board (UT3 / UT4)

Belle II UT3

Xilinx Virtex-6 xc6vhx380t, xc6vhx565t 11.2 Gbps with 64B/66B

Xilinx UltraScale XCVU080, XCVU160 25 Gbps with 64B/66B

Belle II UT4

Workflow with HLS

General physics events shape

Depth is much more powerful than width

Contour Plot

n_hidden_layers

Optimization for Self-attention MLP

Rank (Objective Value)

24

Commission with Belle II physics

- We are working on the commission procedure for the DNN track trigger on Belle II with real 2024 physics run.
- Collecting DNN trigger output from physics events passing L1 trigger (mostly signal)
- A peak shifted is observed, detailed debugging study is on-going

Core Logic vivado simulation pass

? × SIMULATION - Behavioral Simulation - Functional - sim 1 - tb mlp tb_mlp_behav.wcfg ? & Ľ X Scope Q, . Ð, ¢ 4.381 ns ces Sourc Name Value 400.000 ns 150.000 ns 0.000 ns 50.000 ns 100.000 ns 200.000 ns |250.000 ns |300.000 ns |350.000 ns 450.000 ns 1500.000 ns 🔚 clk1 0 0 reset selected NN[2:0] 0 0 🛿 dval i Objects III nntRdy_int 0 U clk_period 7874 ps 7874 ps Protocol Instances 🛿 sim_time 3000000 ps 3000000 ps AttNN_o[2:0][19:0] UUU00,UUU00,UUU00 UUUOO, UUUOO, UUUOO 000... 288... (19a...) (240...) (000... fb0... Xff0... 16 c. . . Output: after > 😽 [2][19:0] 00000 00000 00000 00000 28800 fb000 ff000 $16 \, c00$ 19a0024000 ~600ns > 😽 [1][19:0] UUU00 c3400 00000 19a00c3400 b9a00 c8 c00 16800 18 ± 00 14c00> 😽 [0][19:0] UUU00 00000 13 c 0053a00 7aa00 07e00 7a600 X85a00 07e00 Sa400 Input: every 4 ₩ Input_buffer_0[350:0] 000000000202103ce283810001 00000... 13e... 06fa... 000... 000... 000... 0705... 05f... 7ac... 09d... 7dc32e1369fc05c02f3bf90ca0b33f3c800320800000000fde... clock a new input 18 ap_start 18 vld int2 0 🔓 en_nntp 谒 en_nntp 19:0] wout_z UUU00 28800 fb000 19 a 0024000 00000 00000 00000 ff000 16 c 00out theta[19:0] UUU00 00000 b9a00 18 a 0014c00c3400 19a00c3400 c8 c00 16800 tout_p[19:0] 00000 00000 07e00 Sa400 07e007a60085a00 13 c 00 53 ± 00 7aa00 2 mm > < 💷 >

26

Introduction CDC trigger - 3D reconstruction

Only θ_0 and z_0 remain unknown for 3D tracks.

With Crossing angle ϕ_{cross} for stereo wire we can get z_{cross} .

Using two or more z_{cross} with μ we can fit the linear track in μ – z plane and obtain θ_0 and z_0 .

Vusing drift time to correct the drift distance.

Parameters	Target
z_0 resolution at IP (σ_{95}^{IP})	<2 cm
Trigger efficiency	>95%
Extra background rejection rate	>50%

- Reduce the z_0 resolution for signal track to less 2 cm
- Keep same efficiency as before (>95%) and restrict cut to reject

further half of background events, which were kept by current trigger.

	CDC $B\overline{B}$ bits	CDC $ au$ & dark bits
Current CDC Background raw trigger rate	2.15 kHz	1.91 kHz
Required CDC Background raw trigger rate	1.07 kHz	0.9 kHz

 New NN algorithm can be implemented on new universal trigger board (called UT4), which has about 4 times more logic gates than previous one.

Performance evaluation – Training, validation and testing sample

Data sample generate from special physics run data taken without HLT trigger.

Target z_0 and θ_0 of Tracks are got from offline reconstruction and fed for training

Randomly separate full sample in training validation and test:

	#Signal Tracks	# Off-IP Tracks	#Fake Tracks
Training sample	935K	284K	0
Validation sample	282K	85K	0
Test sample	180k	53k	87k

Fake tracks are only included in test sample -- No target z_0 and θ_0

Performance evaluation – Attention based NN

		Cut	σ ^{IP} (cm)	signal track efficiency (%)	off-IP track reject rate(%)		
1	Veurotrigger	$ z_0^{NN} < 15$	5.53	93.5	52.0		
	DNN fitter	$ z_0^{NN} < 15$	2.34	97.5	56.7	>	6%1
At	tention fitter	$ z_0^{NN} < 15$	1.84	97.8	59.4 🥌		
D	NN classifier	<i>p</i> < 65	/	95.1	84.4		12%1
Atte	ention classifier	<i>p</i> < 65	/	96.6	86.2 🥢		12/01

Attention NN gain 0.5 cm IP resolution and ~12% reject rate improvement comparing with DNN

Check the efficiency and reject rate dependency of Transverse momentum (p_T)

Cut: $p < 65 \text{ OR } |z_0^{NN}| < 15$

- All new model have better efficiency & reject rate at any p_T
- Classifiers improve low p_T reject rate by 30%, while have lower efficiency comparing with fitters

Performance evaluation – Fake track

Classifiers can identify fake track well which mainly concentrate at $p \sim 100$

For **Fitters**, Fake track have a certain z_0^{NN} distribution **centering at** ~**0**.

With Cut: $p < 65 \text{ OR } |z_0^{NN}| < 15$

	Fake tracks reject rate
Original Neurotrigger	60.4%
DNN fitter	58.5%
Attention based fitter	59.8%
DNN classifier	68.5%
Attention based classifier	66.5%

