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Abstract—This paper presents an evaluation of SmartNIC devices
in the context of Trigger and Data AcQquisition (TDAQ) systems.
SmartNIC devices represent an emerging technology whose aim
is to offload network tasks and infrastructure control plane
software from the CPU. Such devices are particularly relevant
for TDAQ systems where high rates in the orders of TB/s are
produced in large detectors such as the DUNE experiment. In
this context, the potential use-case of SmartNICs is to perform
a quasi real-time reduction of the incoming data streams by
identifying only the interesting signals. The goal is to sustain a
number of ∼10 Gb data streams aggregated on 100 Gb interfaces,
and transmit the results to the host machine. An application
was developed to provide a testing environment, measuring the
achieved throughput in two cases. In the first case, only the total
throughput is considered, and the workload is evenly distributed
across the available hardware. In the second case, a constraint
of processing a number of discrete data streams is added. The
application was shown to handle up to ∼130 Gbps of incoming
data when distributing the workload evenly on the available
hardware resources of 8 CPU cores. In this contribution, we
show the testing results and optimisations and hardware tuning
of the technology when performing a workload suitable for TDAQ
applications.

Index Terms—Data Acquisition, DPDK, HPC, SmartNIC

I. INTRODUCTION

W ITH the growth of cloud computing, data centres
and cloud service providers, this industry has taken a

leading role in the development of integrated high performance
compute and network equipment. This role was previously
held by academia and high energy physics (HEP) experiments
like those conducted at CERN, for which custom, state-of-
the-art electronics are often developed for Trigger and Data
Acquisition (TDAQ) systems, and other specialised tasks. One
such device is the custom designed FELIX FPGA-based PCIe
card, which was developed within the HEP community, and
used by experiments like ATLAS and ProtoDUNE [1].
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Two areas where cloud industry and HEP are overlapping
are networking and high performance computing. Network
Interface Cards (NICs) have become very advanced, increas-
ingly offloading networking and infrastructure related tasks
from the host CPU. First, as commonly seen in consumer
NICs, already widely common tasks such as basic network
functions, virtualisation, compression and encryption, are of-
floaded to the NIC. Next, the term SmartNIC appears when
limited programmability is introduced [2]. Advancing further,
manufacturers such as both Intel and NVIDIA have started
putting increasingly complex processing power on the boards,
including FPGAs and general purpose CPUs, making the
advanced NIC itself a fully programmable machine. Intel and
NVIDIA are marketing this new generation of devices as IPU
and DPU, respectively.

The motivation for Intel’s Infrastructure Processing Unit (IPU)
and NVIDIA’s Data Processing Unit (DPU) comes from the
observation in cloud service providers that a lot of CPU
resources are being used on infrastructure tasks (load bal-
ancing, virtualisation, containerisation, etc.). By isolating the
infrastructure software to the IPU’s on-board processor (SoC),
the entire host machine can be leased to customers [3]. In this
work, the focus is mainly on testing IPUs from Intel, although
an NVIDIA® Bluefield®-2, running an 8 core Arm® Cortex®-
A72 processor, was also used to familiarise with the device
type. NVIDIA has since then also released the Bluefield®-3,
with increased processing and data transfer capabilities, and
a roadmap for the Bluefield®-4, both of which could be very
interesting devices to consider as well is the future.

FELIX is conceptually similar to a SmartNIC, but has unique
features such as the ability to handle a large number of
independent point-to-point “low-speed” (∼10 Gbps) links (up
to 48) [4]. This feature is necessary when connecting to
specialised radiation-hard ASICs with custom protocols. On
the other hand, for HEP detectors that can support standard
protocols, such as Ethernet, it is now possible to aggregate
many links through a switching layer and use multi-100G-
NICs for data reception.

At CERN, devices like the IPU, which have been developed for
cloud infrastructure and network offload, are being considered
for use for the processing workloads of TDAQ systems. An
important consideration, in order to best exploit the power of
the IPU, is to understand the similarities and the differences of
the use-cases – how the devices’ properties work as advantages
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and as weaknesses for this purpose.

The processor on an IPU is obviously not expected, nor
intended, to perform better than a host CPU in a server
environment [5]. Its main purpose in a data centre is to offload
networking tasks and infrastructure control plane software to
provide isolation, so the host CPU can be better utilised by
revenue-generating core applications. This means that data
processing capabilities when running a filtering application
might be the main limitation of the device for a DAQ use-
case. However, also for a DAQ application, the advantage of
the on-board processor is its location right on the datapath.
This allows moving parts of the processing of incoming data
out of the host, and can free up resources on the host for other
parts of DAQ, such as assembly of events from various links.
The on-board processor is also well located to work with the
FPGA on the task of transforming and processing a large data
stream.

The next section will introduce a potential use-case in the Deep
Underground Neutrino Experiment (DUNE) [6], and perform-
ance requirements that the testing is based on, followed by
an overview of hardware specifications in Section III, and the
test application in Section IV. Section V presents the tests with
results, together with a discussion of the optimisations carried
out to reach those results, and of possible avenues for further
improvements.

II. USE-CASE PERFORMANCE REQUIREMENTS

This work uses the DUNE DAQ readout system [7] as a case
study to demonstrate how an IPU may be used for reception
of, and feature extraction from data generated by a detector.
Features are extracted by processing the full complement of
data and identifying time windows and electronics channels
exhibiting activity not compatible with electronics noise: this
process is known as hit-finding and results in the forming
of trigger primitive information, TPG (Trigger Primitive Gen-
eration) [8]. Trigger Primitives (TP) are generated whenever
hits are detected, typically at 0.005% of the incoming data
frequency, and are then used to signal what data to transmit to
storage and higher level analysis. Data frames are buffered for
10 seconds whilst waiting for the result of TP generation and
analysis: this long time is not driven by processing constraints
but by the sparse arrival of the signals that must be evaluated
together in order to detect a Physics event that is worth being
captured. In a design with an IPU, the data buffer might be on
the host machine, and the TPs are generated from the processor
on the IPU and then sent from the IPU to the host when ready.

Each IPU is expected to process data from 2 detector units
of 3072 electronics channels each that are producing 14 bit
values at a rate of about 2 MHz. This results in an overall data
throughput requirement of 172 Gbps that could be injected into
an IPU with either 2×100 G or 1×200 G Ethernet links. The
electronics channels are handled by so-called Warm Interface
Boards (WIB) [7]. Each WIB manages 512 channels and
outputs data via two 10 Gbps ports over the Ethernet UDP
protocol. The modularity of the detector is such that 6 WIBs

are reading out one detector unit. There are 160 detector units
to form one of the DUNE far detector modules and there will
be in total 4 far detector modules. If the performance goal
of the IPU can be achieved, a total of 80×4 IPUs would be
needed to readout the full DUNE far detector.

The data used for testing comes in frames of a specific
format called WIB2, with a size of 472 B (24 B header added)
at a rate of 2 MHz. The frames are sent in chunks of 12,
called superchunks, making the payload size of the incoming
packets 472 B×12 = 5664 B, for a rate of 7.55 Gbps per WIB
output link. Including the WIB2’s header overhead, the actual
throughput requirement for handling 2 detector units then
becomes 2×12×7.55 = 182 Gbps, rather than the 172 Gbps
of data. This is the format used to readout the detector using
the FELIX card and point-to-point links. In order to be handled
by the TPG algorithm, the first step after receiving a WIB2
frame is to unpack it. The impact of the unpack stage is
discussed in Section V-C. After then running the TPG, any
TPs generated, at an expected rate of ∼ 100 Hz per channel,
need to be transmitted to the down stream TDAQ components.

Figure 1: Dataflow diagram for the data processing when
executed on IPU compared to full processing performed on the
host. Red ellipses are software processes, and bold rectangles
are data buffers. Subfigure a shows a simplified schematic of
the baseline design. Subfigure b shows the modified design
where the TPG filtering task has been relocated to the IPU’s
on-board processor, and the raw data stream is duplicated on
the on-board FPGA.

Figure 1 presents a simplified view of the baseline design
of the DUNE TDAQ system, where the entire workload is
contained on a conventional server, compared to a solution
employing an Intel IPU for offloading the TPG function. In
this scenario, the IPU’s task is to perform packet processing
on a network level, routing the incoming data both to the on-
board processor for processing, and to the host for buffering.

Recent developments have been carried out to change the
WIB data transmission to use the Ethernet UDP protocol.
For this the format has been optimised to send larger data
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packets at lower rates. In particular each data stream now
groups 64 channels over 64 time samples, resulting into data
packets of 7.2 kB sent at 30.5 kHz. One WIB sends 8 such
data streams in parallel over two 10 G links. However, for the
measurements described in this report new data samples were
not yet available.

The version of the TPG algorithm used for this study is heavily
simplified, and though it forms a valid proof of concept, it
represents only a subset of the required workload for a real-
world scenario. This should be taken into consideration when
analysing results. Sufficient headroom would be required for
considering an IPU for the engineering of the DUNE TDAQ
system.

III. HARDWARE SPECIFICATION

Multiple devices were made available during this project. Early
tests were carried out on an Intel® IPU C5000X-PL [9],
provided by Silicom. The card has two 25 Gbps interfaces,
an FPGA for packet routing and other optional functions,
and an on-board processor featuring a 4 core Xeon® D-1612
CPU. Development on this card provided a learning ground
for gaining experience with DPDK and the IPU device family.
Different methods were tested for receiving and handling the
incoming data. When moving to the following devices, the test
application was entirely rewritten, improving modularity and
readability. The application developed on this platform was
built differently and most of the work went into exploring solu-
tions and learning from the experience. Later, an Intel® IPU
F2000X-PL Application Development Platform (ADP), the
next generation IPU from Intel, was made available. A 6-core
ADP provided a head-start whilst waiting for the 8-core ADP,
the main target of the testing. Lastly, similar benchmarks were
conducted on a server from CERN. Specifications of these two
systems are given below.

A. Server: 56-core Intel® Xeon® Platinum 8280L with Intel
E810 NIC

The alternative to using a SmartNIC or IPU is to run the
TPG on servers. For baseline performance benchmark, a server
at CERN was also used to run the same application. Its
specifications are given in Table I.

Table I: Overview of the machine used from the CERN lab

CPU

Intel® Xeon® Platinum 8280L @ 2.70 GHz (4.0 GHz turbo),
56-core dual socket
32 K L1d, 32 K L1i
1024 K L2
39424 K L3

DRAM DDR4 16 GB, 2666 MT/s

NIC Mellanox® ConnectX®-5 MT27800

OS CentOS 8, Linux kernel 4.18

B. Intel® IPU F2000X-PL - 8 core

The F2000X-PL is current generation IPU from Intel. An
ADP was made available, featuring an 8 core Xeon® pro-
cessor (Table II). Power supply can provide the SoC

with 50 W at most [10]. Production cards are now avail-
able through OEMs/ODMs (Original Equipment Manufac-
turer/Original Design Manufacturer).

Table II: Overview of the F2000X-PL 8-core ADP [10]

CPU

Intel® Xeon® D-1736 @ 2.30 GHz (3.40 GHz turbo),
8-core single socket
48 K L1d, 32 K L1i
1280 K L2
15360 K L3

DRAM DDR4 16 GB, 3200 MT/s

Power 50W external supply
or 40W PCIe edge power

OS CentOS 7, Linux kernel 5.4

Figure 2: F2000X-PL ADP w/8-core processor [10]

IV. TEST APPLICATION

The test application used for evaluating the IPU relies on
DPDK[11] for network functions. The Dataplane Development
Kit (DPDK) is an open-source framework initiated at Intel,
and managed by the Linux Foundation. DPDK works with
drivers to provide user-space access to network devices, giving
developers full control of the network handling, and enabling
application with strict network bandwidth and latency require-
ments to bypass the kernel. DPDK is developing fast, and
its Application Programmable Interfaces (APIs) are frequently
subject to changes.

The testing requires two clients, a transmitter and a receiver.
One transmitter, a simple packet generator to send frames at
the desired rate and with a configurable range of source IPs,
emulates data coming from the detectors. The receiver, the
actual benchmarking client, runs on the device under testing,
captures the incoming traffic, and processes the packets as fast
as possible.

A. Transmitter

The transmitter is kept as close as possible to a minimal
example of sending data with DPDK. A number of cores
are used to evenly send packets with a range of source IPs,
interpreted by the receiver as independent data sources.

On the Intel IPU setups, the external Tx line is another NIC
(Intel® E810) on the host, providing 2 100G ports. Only one of
these ports were used from the start, but whilst developing the
test application on the F2000X-PL ADP, performances beyond
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Figure 3: High-level presentation of the network. Packets from
a source Tx are duplicated on the FPGA and delivered to host
Rx and IPU SoC. Rx would keep a buffer, and route filtered
data to further storage or analysis, but in this case simply
counts the incoming packets. The SoC receives the packets
and processes them as fast as possible, forwarding resulting
TPs to Rx.

100 Gbps were eventually reached, and there was a need to add
the E810’s second 100G port for an input rate of 200 Gbps.
As the current card was from a revision with support for only
1×100G, another E810 NIC was sourced in order to keep
increasing the rate.

B. Receiver

On the receiving side, a flexible application was created to
allow quick switching between testcases. An interface to the
DPDK framework was mostly reused from work carried out on
the DAQ farm software of the NA62 experiment at CERN [12].
At a first attempt, reception was done in an independent thread,
keeping a Single Producer Single Consumer (SPSC) queue
for incoming packets and leveraging the available memory
to allow a large packet buffer. This however adds a large
memory overhead, as packets are copied out of the buffer
objects returned by the hardware rings. The less memory
heavy solution was to use the hardware ring itself as the only
buffer, working directly on the data in buffer objects in bulk,
and freeing them when done. Instead of having a reception
loop, the processing thread pulls frames when it’s ready.
This reduces the memory footprint to being almost limited to
the scale of the incoming bandwidth. The disadvantages are
that the ring size sets a hard limit on the buffer size, and
that packets are dropped silently if there is back pressure.
Reporting packet drop then becomes difficult in the case of
a dynamic environment, if the incoming rate is not static and
well known.

The TPG algorithm is implemented based on Intel®AVX2, of
which one engine usually exists per physical core, for vec-
torisation. The workload, being highly homogenous, has also
been tuned to minimise memory latency (see Section VI-A)
and maximise CPU utilisation. Since the power of Simul-
taneous Multi-Threading (SMT), known as Hyper-threading
in Intel products, mostly comes from intertwining threads
that require different parts of the available hardware, there
was expectedly little performance gain, observed from pla-
cing multiple processing threads on the same physical cores.

Keeping SMT enabled was rather observed to be a liability
in this case. The application is therefore limited to using
the number of physical cores for processing. The remaining
logical cores are then available for smaller tasks like control
and monitoring, which should be possible to add without a
significant performance hit. Meanwhile, the available on-board
FPGA can provide capabilities for efficient unpacking of data
coming in unaligned structures, saving the SoC some work.
For the scope of this study however, the FPGA will be mainly
used for packet routing, splitting the path and delivering copies
of the incoming data to both the SoC and the host. This
splitting allows the host to buffer an unmodified copy of
the data, while the SoC might get the pre-processed data,
e.g. reformatted or after application of basic noise filtering
techniques

C. Machine configurations

Much effort was put into finding and using well-performing
settings. On all targets, the governor has been set to perform-
ance mode, security features like SELinux have been disabled.
On the F2000X-PL ADP, the BIOS was consulted and the
“energy efficient turbo” setting disabled in hopes of allowing
even more power.

It was noted that the F2000X-PL ADP used distinctively
less power than advertised, at only around 37W. This also
became apparent in temperature reading being far below the
high threshold. BIOS modifications unlocked the full 55W
by increasing power limit in socket configurations, finally
allowing full core utilisation without throttling the clock rate,
with a significant performance improvement.

For most of the time, a pre-installed DPDK 18.11 was used.
Later, on the newer F2000X-PL ADP, DPDK was updated to
22.11, yielding a slight performance gain from aggregated API
upgrades.

V. RESULTS

For all different configurations used, measurements were done
in the range of one single core, up to full processor utilisation
at 8 threads running on 8 physical cores. Through monitoring
the scaling, potential memory or power related issues could be
found. A few different variants of handling data were tested,
in order to focus on various aspects of the TPG pipeline. The
first test, Section V-A “pure processing”, was meant to find
the processing limits of the machine. Second test, Section V-B
“over network”, runs a more realistic pipeline of receiving
data on the network port, processing it, and sending out a
response. Lastly, Section V-C, an attempt was made to send
data in an unpacked format, in order to investigate the impact
of the unpack stage.

All the tests performed and presented are shown as four
graphs. The first plot show the throughput per core as well as
the clock rate of active cores. The plotted rate is counted at the
scale of WIB2 frames (lower-level network headers ignored).
Where applicable, the incoming data rate has been plotted to
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help interpret the result. Top right graph plots show the tem-
perature of the CPU package, measured using lm_sensors.
The thresholds for high temperature, and critical temperature
are marked in yellow and orange dashed lines. The temperature
readings provided a clue to issues regarding power supply. The
third plots show the total throughput, and, when presented, the
fourth plot shows system memory usage, both read and write,
measured using pcm-memory.

A. Pure processing

The TPG algorithm was tested in an as clean environment as
possible, to get an idea of the CPU’s processing power and
theoretic maximal performance. The process is run repeatedly
on a small, static dataset, which should be as ideal for cache
as possible. These results give an upper cap to the range of
performance when adding more features.

Figure 4 shows the static processing on the F2000X-PL ADP.
The clock rate stays more or less constant while operation
temperature converges towards 75°C. The throughput per core
does still gradually decrease somewhat. Figure 5 shows the
same run where the unpacking stage is skipped. The impact
of unpacking is discussed in Section V-C.

Figure 4: IPU performance scaling in the pure processing
scenario.

Figure 5: IPU performance scaling in the pure processing
scenario, when skipping the unpacking stage.

The alternative of offloading to SmartNICs or IPUs is to
continue running on conventional servers. The test application
was also run on one of the servers of the CERN lab, described
in Section III-A, first up to 8 cores, then in up to full utilisation,
with TPG running on all 56 cores divided on 2 sockets. The
per-core throughput and clock rate is shown in Figure 6. As
expected, the throughput starts at just slightly higher than on
the embedded CPU of the IPU, and a similar scaling is seen
in the per-core throughput.

B. Over network

The most realistic case is when receiving data over network,
and sending a response afterwards. The incoming data satur-
ates the link, and distributes over the number of active cores
(grey line t.l.). Instead of using a software queue as buffer,
memory usage has here been cut in half by instead reading
directly from the hardware ring. The disadvantage being that
the extent of buffering is limited to the ring’s capacity (32k
packets, meaning 0.2 seconds in this case), and that packets
are dropped silently if back pressure is too high, due to not
having been read before being overwritten.

Figure 7 shows the full DPDK and TPG on the F2000X-
PL ADP. Similarly to the previous test, there is now almost
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Figure 6: Offline TPG on the server from the CERN lab. The
average clock rate and scaling decrease as the cores of one
socket are being filled past halfway, then rises for a moment
when cores on the next socket are included.

no throttling of clock rate. Note that a no memory usage is
reported below 5 active threads. Section VI-A describes DDIO,
a technology that allows incoming data to be passed straight to
last-level cache (LLC). As the number of processing threads,
and receiving rings, increase, memory usage starts increasing,
as the effect of DDIO is reduced if the cache capacity is ex-
ceeded. Various BIOS settings increased available power and
overall performance, as mentioned in Section IV-C. At very
high rates, fine-tuning of burst parameters becomes crucial.
Lack of synchronisation was observed to limit performance,
as a large burst would be dropped even if only a few packets
from it would be missed. This tuning restricts the sending
rate, but targets the threshold where traffic flows smoothly, and
missed packets don’t further affect performance. The jumps in
incoming rate are due to the traffic being sent on two distinct
lines, each with a limit of 100Gbps, as well as the sending
burst size being reduced from 256 to 64 starting from 6 cores.

After seeing these results, it is also interesting to approach
the real scenario even further. Some aspects presented in
Section II have not been respected in the tests above. The
data from one module comes from 12 distinct links which need
to be processed sequentially. Second, the transmission of the
produced TPs to where a buffer is allocated in order to signal
what data to keep. Beginning with the distinct links, when
the number of threads does not map cleanly to the number of
physical cores, 3 threads were created for each 2 cores.By
tuning packet burst sizes, ring sizes and burst intervals, a
rate of 8.3 Gbps was achieved on each thread, with the single
loaded cores running at about 60% utilisation, and the double
loaded cores running at about 85% utilisation.

The impact of TP sending was measured by sending packets
with a fixed size at a given rate. The expected TP rate is for
each channel to produce a hit at a frequency of 100 Hz. With
data coming in at 2 MHz per channel, that means 1 in 20000
values (0.005%) produce a hit. Figure 8 shows the incoming
data rate as a function of the fraction of ADC inducing TPs.
With an incoming WIB throughput of 7.9 Gbps (corresponding
to a rate of 2.1 MHz, slightly above requirement), the figure
shows that a fall of the data rate occurs starting from a fraction
of 4% (90 kHz). Note for this case that the implementation of

Figure 7: IPU performance scaling in the realistic scenario.
The incoming data, marked as a grey line in the first plot,
drops as the total data is divided on multiple data streams.

sending is not optimal; one packet is sent at the time, with
a fixed rate. In a practical scenario, TPs will be generated at
a more dynamic rate, and there will also be an occasion to
implement a burst sending, to the extent memory limitations
will allow it.

C. Impact of the unpack stage

The TPG algorithm in itself is not very memory intensive,
it will just use as much as it is allocated. However, the
unpack stage does an explicit copy when rearranging the data,
leaving a larger memory footprint. This stage is also identified
as computationally rather simple, stable, and highly parallel,
as well as working on unaligned data formats. It has been
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Figure 8: Performance as the hit rate of TPG is increased
beyond the expected value. Incoming data rate was set slightly
above the nominal rate of 2 MHz (7.55 Gbps). The dashed
horizontal line show nominal rate. The black, dashed, vertical
line shows the expected TP rate of 100 Hz (0.005%) per
channel, the yellow, dashed vertical line shows the intersection
of the TP rate that could be sustained at nominal TPG rate, at
90 kHz (4%), 900× expected rate.

suggested to consider moving this stage to FPGA, as the
function should be well suited for it. Although this was outside
the scope of this work, it is interesting to investigate the
potential performance impact of offloading the unpack stage
to hardware.

To simulate an environment where the unpacking is done in
hardware, on the data stream, as it arrives to the NIC, a test
was done with sending the data already unpacked. On the
transmitter side, a set of WIB2 frames are created as before,
and then stored in the unpacked format. These unpacked
frames are then sent instead, needing a higher data rate to
send the same number of frames. On the receiver side, since
the data is already in the unpacked format, the unpacking stage
is skipped and only TPG is run.

Figure 9 shows the scaling when using two lines to achieve
close to 200Gbps input. Figure 5 shows the same run on
a static dataset, as with the testing in Section V-A, for
a comparison with the TPG processing in Figure 4. Note
that the temperature and clock development does not change
significantly. This can suggest that the comparison is fair,
as the device is equally stressed in both cases. Meanwhile,
the memory throughput in this case is growing faster than
previously, suggesting that there is still some potential of
improvement by tuning the cache hits for the unpacked frame
size. This could regain the advantages of DDIO seen earlier.

Figure 10 compares the three configurations tested on IPU.
Not surprisingly, skipping unpacking gains throughput for data
over network, with performance in the two configurations cor-
relating well. The fact that it also gains throughput compared
to the static set at low core utilisation, but reaches a cross-over
at full utilisation, seems consistent with earlier discussion on
cache utilisation and DDIO, and could suggest that processing
capacity is initially the limiting factor.

Figure 9: DPDK + TPG with data sent as unpacked frames.
A grey line in the top left plot marks the incoming data rate.

Figure 10: Comparison of throughput rate as the number
of cores is scaled, for the pure processing, normal DPDK
implementation, and simulated offload of unpack.

VI. NOTABLE TECHNOLOGIES AND FURTHER WORK

Much time was spent exploring various OS and BIOS config-
urations to tune the device for the specified workload. Starting
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tests at a single core, it can be observed what the device is
capable of at best. Then, one also needs to take into account the
scaling penalty on memory consumption, power, temperature
and clock rate.

The need to rely on the hardware rings as buffers leave little
room for jitter, so a sufficient margin in performance will be
needed in order to be a reliable solution. It should nevertheless
be noted that in the studied use case data arrive with a fixed
size and at fixed rate, thus having naturally very little jitter.

A. DDIO: Data Direct IO

Data Direct I/O (DDIO), introduced with the Intel® Xeon® E5
processor family, makes a direct connection between IO and
processor cache, rather than having all IO reads and writes
go through main memory [13]. This technology has become
possible with the improvements in IO speed and increase of
last level cache sizes. With the memory consumption of the
TPG algorithm, the size of the incoming packets, and the
requirement of high throughput, this should be able to increase
the performance by a lot.

Extensive testing showed that network packets were consist-
ently missing L3 despite DDIO available on this CPU. This
issue caused excessive memory traffic limiting application
performance. Tuning IO-dedicated LLC and reducing ring
buffer sizes allowed to land about 80% of network data in
L3 cache even at the highest rate, and gave a significant
performance boost.

B. Programmable hardware datapath via FPGA

Throughout this work the FPGA IPU has been programmed
with Intel provided NIC and packet processor functionality.
This configuration has been used as if it is a fixed function with
the FPGA performing the packet forwarding, duplication and
assignment of queues within the virtio DMA that provides
the interface between host and FPGA and SoC and FPGA. The
packet processor is software programmable via a management
tool that runs on the SoC to configure match-action packet
processing, traffic shaping, QoS and miscellaneous functions.
This functionality takes a fraction of the FPGA resources,
leaving plenty of room for value-add customisation to the data
path.

The unpacking of 14 bit data into a more CPU friendly, 16
bit aligned format has already been identified as a notably
heavy task within the software running on the SoC on the
IPU. This functionality is both a fixed and trivial function to
implement in hardware, making it a prime target for FPGA
acceleration. By offloading this processing to the FPGA, the
SoC will have more capacity to execute the TPG algorithm,
leading to performance benefits like suggested from the results
presented in Section V-C. This gives algorithm developers the
benefit of FPGA acceleration as well as the flexibility and
convenience of software development on a standard CPU.

C. Format and size: WIBEthernet

As briefly mentioned in Section II, the WIB2 format used
for this report has in the meantime been replaced with a new
format named WIBEthernet. This new format packs more data
into one frame, thus changing the units of transfer. In the future
it would be interesting to adapt the current test to the new
format, experiment with how other parameters will have to be
adjusted, and to see if the new format can improve the capacity
further. The WIBEthernet frame will be 25% larger than a
superchunk, still with the same network headers, which could
reduce the overhead workload needed for handling packets.

D. Further work

The work done for this report has provided good experience
with IPUs, and sparks a number of questions going forward.
In relation to the use-case of DUNE, the testing in this report
has been in many aspects somewhat disconnected from the
real system. The focus has been on the on-board workload,
whilst the surrounding task, that of sensor readouts and data
transmission on host, have been ignored or simulated. In the
future, it could be interesting to build on this to set up a proto-
type of the entire pipeline of receiving real data, handling the
buffers and forwarding of data of the host machine. It would
also be interesting to step-wise add more of the features to
the TPG, to measure each feature’s weight, and find the limits
of the current IPU’s capacity. The DUNE detector prototypes
installed at CERN and scheduled for realistic operation in 2024
would be a perfect playground to fully validate the potential
use of IPUs in HEP.

VII. CONCLUSIONS

The work summarised in this report has built experience
with DPDK as a platform, and with the usage of advanced
SmartNICs through Intel® IPUs, mainly with the F2000X-
PL application development platform. These devices merge
processing and network handling in a new way, originally
intended for data centre infrastructure and network functions.
By testing IPUs in a different environment, an attempt was
made to uncover another market for these devices in the
TDAQ design for HEP experiments. The WIB2 frame format
and the TPG algorithm from the specifications of the DUNE
experiment were used as practical examples, and for evaluating
the idea of using IPUs in the TDAQ system of DUNE.

Measurements presented here indicate that the F2000X-PL
shows a potential, being able to handle the minimal require-
ment of one electronics board comprising 12 incoming links at
7.55 Gbps (2 MHz) of WIB2, running TPG, and transmitting
trigger primitives at two orders of magnitude higher than
the expected 235 Mbps (100 Hz), still with some margin that
should allow a more slightly more complex application to
handle one electronics board per IPU. Looking at the max-
imum acquired throughput, without considering constraints
of sequential tasks, the test application achieved a 130 Gbps
throughput, 70% of the throughput needed to support 2 elec-
tronics boards of 3072 channels each. Further optimisations
could help reach this target with the current generation device,
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however with a performance margin that won’t allow adding
much more complexity to the workload.

Throughout the project, it has repeatedly become clear that
memory consumption is the biggest challenge in the tested
use-case. All major improvements in throughput have come
from memory optimisations, such as avoiding software buffers,
using small packet bursts on the network link, and minimising
the ring size of the network port. Memory also showed to be
a limiting factor when attempting to factorise the 130 Gbps
throughput to 12 links rather than 8, which required the
available memory to be divided over an increasing number of
data streams. In addition, the mismatch between the number
of processing threads and the number of physical cores were
adding a context switching overhead, and making an even load
distribution difficult. The available processing power could be
better used if those numbers were properly aligned. While a
working example of processing on 12 links of 8 Gbps each,
the load of one electronics board, has been presented, it is
still important to remember that the tests have been using a
minimal workload, a highly simplified version of the TPG.
More complexity, as well as more advanced control and
monitoring, will have to be added on top to make a useful
application.

The FPGA available on the F2000X-PL and other IPUs has
so far only been used for packet routing, but some of the
measurements presented should argue for the potential that it
provides. Offloading stable functions to the FPGA frees up
SoC bandwidth to be used on other tasks improving overall
system efficiency. The path splitting, which already saves a
good amount of work spent on copying data, would allow
preparing of data, like unpacking, reorganising, noise filtering,
to be done at low cost, and with efficiencies that would not be
possible if the original data could not in parallel be transmitted
to the host.
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