

An FPGA-Based Emulator and Test System for the 3D-SOI chip CPV-4

<u>Chang Xu</u>, Weida Zheng, Yunpeng Lu, Jia Zhou, Hongyu Zhang, Sheng Dong, Yang Zhou, Jing Dong, Mingyi Dong, Qun Ouyang

Institute of High Energy Physics, Chinese Academy of Sciences

Outline

1. Introduction

CPV-4 design and 3D integration

2. Design and Implementation of CPV-4 Upper tier Emulator

- 2.1 Pixel Internal Circuit
- 2.2 Readout Circuit
- 2.3 Implementation on FPGA

3. Testing and Verification System Design

- 3.1 CPV-4 Interface Logic
- 3.2 IPBUS Implementation
- 3.3 DAQ Software Design

4. Joint debugging

- 4.1 Pixel Configuration
- 4.2 Electronic Pulse Tests
- 5. Summary

1 Introduction—CEPC proposal for particle physics

.

- Circular Electron-Positron Collider (90, 160, 250 GeV)
 - Higgs factory (10⁶ Higgs)
 - Precision study of Higgs (m_H, J^{PC}, couplings), Similar & complementary to ILC
 - Looking for hints of new physics
 - Z & W factory (10¹⁰ Z⁰)
 - Precision test of SM
 - Rare decays
 - Flavor factory: b, c and QCD studies
- Vertex Detector
 - High spatial resolution
 - Low power consumption
 - Low material

1 Introduction—Development of SOI Pixel Sensor

- Sandwich structure
 - Top: Independent signal processing circuit with pixels as the unit (Device Layer), inherits the advantages of SOI integrated circuits
 - Middle: **SiO₂ insulation layer** (metal via array for one-to-one electrical connection)
 - Bottom: Sensor diode array with pixels as the unit
- 200 nm FD-SOI CMOS process (Device Layer)
 - Low leakage low power applications
 - 1 Poly 5 Metal layers
 - MIM Capacitor (1.5 fF/um²), DMOS
 - Core voltage = 1.8 V, IO voltage = 1.8/3.3 V
 - PDK (Process Design Kit) customized for charged particle and X-ray detection
- Flip-chip: Increase integration by using flip-chip technology (3D-SOI)

Introduction—3D architecture of CPV(compact pixel for vertex)-4

- 3D Vertical Integration
 - Reduce pixel size to achieve high spatial resolution
 - Increase integration for a superior readout scheme (time stamp + low power consumption)
 - Provide superior detection performance
- CPV-4 is the first trial of 3D design
 - Upper Chip: Pixel logic and matrix readout logic
 - **Lower Chip:** PDD sensing diode + amplifier/comparator
 - Using gold micro bumps to achieve pixel-level array connections

Delivery of separate chips

an and a

Very complex design flow

Upper chip design

Lower chip design

• 3D-compatible DRC(Design Rule Check) and LVS rules

Upper Chip

High R.J

Lower Chip

1 Introduction—The validation of design and process

Challenges

- First trial of 3D design, high technical difficulty
- First time using 3D integration process, low yield
- Requirements for the testing and verification system
 - Basic function requirements: Chip configuration, data readout
 - Tests can be carried out on **upper chips**, **lower chips** and **3D chips** separately
 - Convenient debugging
 - Short development cycle
- CPV-4 upper tier chip Emulator
 - Debugging and verifying the functionality of the test system
 - Verifying the logical correctness of the CPV-4 upper chip

CPV-4

16384pixels (128 rows, 128 cols)

• ADDR[13:0]

· Data Readout

Simple Firmware

FPGA

<---IPbus→

DAQ Software

µHAL(Python) based

Data Processing

2 Design and Implementation of Emulator

- Architecture of the CPV-4 upper chip
 - Pixel array circuit:
 - 128(row)×128(col)
 - Receive and store hit signals

• Readout circuit:

- Arranged in double columns
- Read out the hit pixel addresses in order of priority
 - (AERD (Asynchronized Encoder Reset Decoder))

24th IEEE Real Time Conference – Quy Nhon, Vietnam, 22-26 April, 2024

2 **Design and Implementation of Emulator**—**Pixel Internal Logic**

Hit response:

- Working mode: Continuous mode, Trigger mode
- Input: Dout, Pulse d
- Pixel state output: State out
- Sync: Reset the pixel state
- Respond and store hit information

Register control

- Latch M
- Latch P

2 Design and Implementation of Emulator—Readout circuit

- Four inputs, read out the encoded address, receive sync reset signal
- Readout Circuit in CPV-4 upper-tier chip:
 - Readout method: Multi-level AERD readout, according to priority, sequentially read out the hit pixels and reset the state
 of the readout pixels
 - Readout structure: 4-level AERD inside the array, 3-level AERD outside the array
 - Readout result: Encoded address signal Addr[13:0], valid hit signal

24th IEEE Real Time Conference – Quy Nhon, Vietnam, 22-26 April, 2024

2 Design and Implementation of Emulator—Implementation on FPGAP

- Complete the implementation of the emulator on the FPGA board
- The readout module will also be implemented on the same FPGA board
- **Pixel array size:** 128(rows)×32(cols)
- Implementation method: Verilog
- FPGA model: XC7K325T
- **Readout data:** Addr[13:0], valid hit bit

Resource utilization of the emulator and readout firmware

Ideal implementation of upper-tier chip circuit

Behavioral Simulation Result of CPV-4 Upper Tier Emulator

3 Test system design—CPV-4 Interface Logic

- Upper-tier Chip provides the complete logic interface between the 3D chip and the readout firmware.
 - Operation mode selection (Strobe)
 - Pixel state configuration (Col_sel, Row_selp,Rpw_selm, Cnfg_data)
 - Data readout (Read(Sync))
- Can respond to various parameters provided by the readout firmware
- Pulse testing (Pulse/Pulse_a)
- Every pixel can be selected for state configuration
- Simulate different experimental environments to obtain different results
- The emulator can be fully compatible with the chip interface logic.

3 Test system design—IPBUS Implementation

- Using the IPbus protocol as the data transfer protocol
 - A simple, reliable, IP-based protocol for controlling hardware devices.
 - The data transfer capability is sufficient to meet the needs of small-scale detector test systems. (1Gbps)
- Three slave devices are developed according to controlling needs:
 - Slave 0: Used for system reset logic
 - Slave 1: Control the DAC70004(on the chip board)
 - Slave 2:
 - Sets the working mode and parameters of the CPV-4
 - Writes the configuration of each pixel (WFIFO)
 - Stores the hit pixel address information(RFIFO)

The IPbus slaves in Firmware

24th IEEE Real Time Conference – Quy Nhon, Vietnam, 22-26 April, 2024

9

DAQ Software

3 Test system design—DAQ Software

- Developed with Python API
- Data flow system
 - Data readout: Periodic query and read data from RFIFO.
 - Data storage: Save raw data in hexadecimal format to a file.
 - Data processing: Decode the data to get addresses, timestamp.
 - Configuration: Chip operating modes(FPGA), readout parameters(FPGA), pixel states(CPV-4)

Implement all the functions required during the chip testing process

- User Interface
 - command execution
 - Information interaction:
 - configuration information
 - hitmap display
 - operation status display

4 Joint debugging with Emulator

Pixel configuration(Pixel[0,0])

Pixel configuration successfully

4 Joint debugging with Emulator : Electronic Pulse Tests

Parameter Setting:

Parameters	Emulator	
Operation_mode	Continuous	
Pulse_Num	1	
Pulse_Width	3 µs	
Read_Period	4 µs	
Read_Delay	0.2 µs	
Read_Width	2.2 µs	

Readout Result:

Integrated Logic Analyzer Results:

Readout results of specific pixel for 100 pulses

4 Tests on CPV-4

- Tests on the upper chip
- Tests on 3D chip
 - Pixel configuration
 - Electronic pulse tests
 - Driving force is **insufficient**
 - CPV-4 functions properly

Full Array Readout Results of CPV-4 upper Chip

Parameter	Emulator	Upper chip	3D chip
Operation_mode	Trigger	Trigger	Trigger
Pulse_Num	1	1	1
Pulse_Width	3 µs	3 µs	3 µs
Strobe_Delay	2.5 µs	2.5 µs	2.5 µs
Strobe_Width	0.6 µs	0.6 µs	0.6 µs
Read_Period	0.4 µs	4 µs	8 µs
Read_Delay	0.5 µs	0.5 µs	0.5 µs
Read_Width	<mark>0.2</mark> μs	<mark>2.2 μs</mark>	<mark>6.3 μs</mark>

Comparison of timing parameters between emulator, upper chip, and 3D chip

5 Summary

Developed the CPV-4 upper chip emulator on the FPGA board

- Implemented all functions of the CPV-4 Upper Tier pixel array and readout logic
- Testing and verification system
 - Implemented parameter configuration and readout functions
- Through joint debugging with the CPV-4 upper chip emulator and the testing system, it is proven that:
 - Emulator works properly
 - The logic of the CPV-4 upper chip is correct
 - The testing and verification system is fully functional and runs correctly
- The fully functional test and verification system has been used for the testing and verification of the CPV-4 chip

Thank you!

24th IEEE Real Time Conference ICISE, Quy Nhon, Vietnam