

100 Gbit/s UDP Data Acquisition on Linux using AF_XDP The TRISTAN Detector

Jalal Mostafa, Denis Tcherniakhovski, Suren Chilingaryan, Matthias Balzer, Andreas Kopmann, and Juergen Becker 25 April 2024

www.kit.edu

KIT – The Research University in the Helmholtz Association

Motivation

- Scientific detectors utilize trigger systems to extract relevant scientific data using filtering algorithms
- Trigger Systems employ hardware accelerators to respect the low-latency requirements of the filtering algorithms
- Hardware accelerators have **limited logic elements and memory resources** that should run resource-demanding filtering algorithms
 - Machine Learning-based Trigger Systems
 - High Memory Requirements Trigger Systems (e.g. histograms)

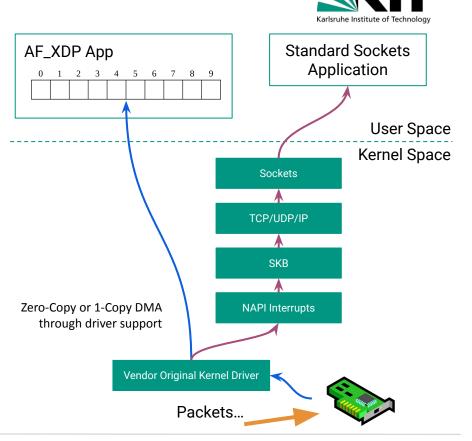
Data Acquisition with UDP

- Network-attached servers of abundant computing resources can augment the resource-demanding trigger systems
- UDP is usually used to connect the trigger system to a computer server
 - UDP is easy to implement and is resource-efficient
- UDP Networking on servers is inefficient
- We propose "DQDK" a novel 100+ Gbps UDP-based resource-efficient DAQ framework on Linux using AF_XDP to augment hardware accelerators in trigger systems
- We test our framework for the TRISTAN detector use case

Efficient Networking on Linux

	Standard Sockets	DPDK	RDMA
Resource Efficiency on FPGA	+++ (UDP)	+++ (UDP)	-
Networking Performance	-	+++	+++
Ease of Programming	+++	-	-
Ease of Configuration	+++	-	-
API Long Term Support	Standardized	2 Years	Standardized

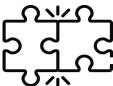
Efficient Networking on Linux


	Standard Sockets	DPDK	RDMA	AF_XDP Sockets
Resource Efficiency on FPGA	+++ (UDP)	+++ (UDP)	-	+++ (UDP)
Networking Performance	-	+++	+++	++
Ease of Programming	+++	-	-	++
Ease of Configuration	+++	-	-	+++
API Long Term Support	Standardized	2 Years	Standardized	Standardized

New Sockets type on Linux (> 4.18) for High Performance Networking

• Linux kernel 4.18

What is AF_XDP?

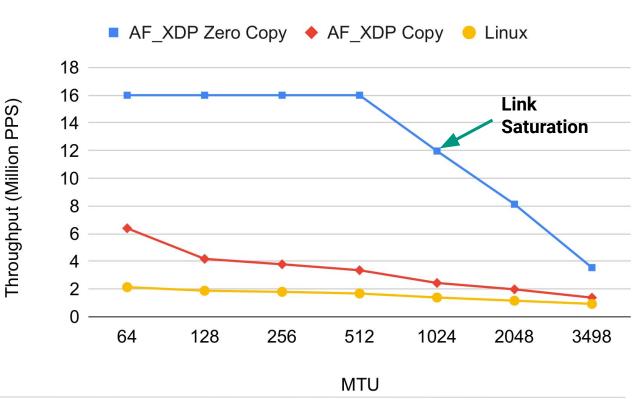

- Bypass Inefficient Kernel Networking
- Configure vendor's kernel driver to use user-space memory
- Bind a NIC queue to a user memory
- 3 Modes:
 - Zero-Copy: best performance, need major driver support
 - 1-Copy: good performance, need minor driver support
 - SKB: compatibility mode, no performance gain, no driver changes
- Better performance than standard sockets

The DQDK Data Acquisition Framework

- We propose the DQDK DAQ Framework for multiple hundreds Gbps readout ٠
- DQDK relies on AF_XDP to provide native high-performance networking on • Linux
- DQDK exploits the best programming methods to achieve the best possible • performance on multicore servers of modern and powerful NIC and hardware

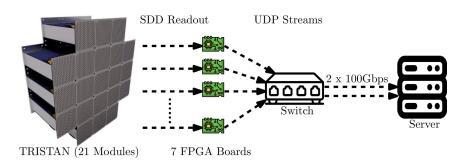
Universal **High Performance Resource-efficient** Using UDP/IPv4 Up to 16 MPPS ~1.5% FPGA resources

The DQDK Data Acquisition Framework

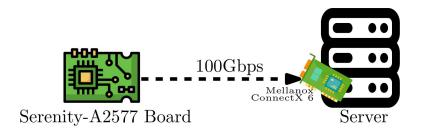

- CPU optimizations:
 - Lock-free Multi-threaded framework
 - Pin DQDK and interrupt handler threads to dedicated physical CPU cores
 - Cache coherence
 - Use inline keyword in the C language to inline heavily called functions
- Memory optimizations:
 - Prevent TLB Thrashing by using 2MB memory pages
 - Disable Swap memory to storage
 - Allocate memory on appropriate NUMA node
- Lightweight UDP/IPv4 Implementation

- Limitations
 - AF_XDP limitation: Jumbo frames no more than 4KB
 - No IPv6 yet
 - No IPv4 fragmentation

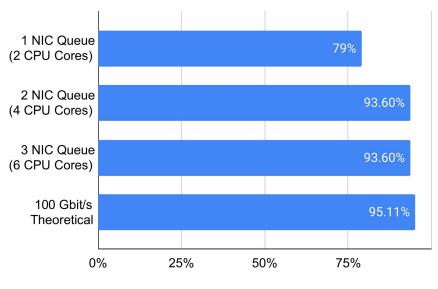
The DQDK Data Acquisition Framework


- 100 Gbps link
- Up to 8x better than Standard Sockets
- Up to 16 million packet per second
- Zero-copy performance is independent of packet size

The TRISTAN Detector Use case


- TRISTAN detector wants to confirm the existence of neutrinos
- 21 independent tiles each has 166 channels
- Notable Modes of operation:
 - Waveform mode: 200 Gbit/s raw data for a certain duration
 - Histogram mode: build 4-10 histograms from 16.6 million energy events per second
 - Both modes should buffer the data before storing them on storage
 - High memory usage which is not available on FPGAs

- 21 tiles managed by 7 FPGA-based boards
- Implement resource-efficient UDP on FPGA to transform raw data to UDP packets
- Aggregate all links in 2x 100 Gbit/s using a switch
- Use DQDK to handle 2x 100 Gbps on server


Proposed Setup & Experiments

UDP Stream Generator

DAQ AF_XDP Application

- Universal UDP/IPv4 protocol
- Resource-efficient UDP implementation on FPGA using only 1048 CLB (~1.5%)
- Targets:
 - Zero-loss data
 - Ability to process 16.6M energy events to construct the histograms for different trigger rates

UDP Payload Throughput

- Simulation of the waveform mode
- UDP payload throughput is calculated without calculating protocol headers

Proposed Setup & Experiments

- Simulation of the histogram mode
- A trigger simulator for 1 TRISTAN Tile (166 channels) generates random energy values
- FPGA sends 3392 B UDP packets (212 triggered 16 B energy events)
- Receive packets, process each event, increment the corresponding histogram bin

Conclusion

- We propose the DQDK framework for a universal, resource-efficient, high-performance DAQ
- DQDK works on standard network protocols i.e. UDP/IPv4
 - It provides a resource-efficient UDP implementation for FPGAs (~1.5%)
- It uses the best programming practices to optimize CPU and memory usage on multicore and NUMA systems
- Our results show that DQDK can handle 100 Gbps with zero-loss using only 4 CPU cores
- We plan to extend our evaluation for the 21 tiles in the TRISTAN detector

Thank you!

jalal.mostafa@kit.edu

100 Gbit/s UDP Data Acquisition on Linux using AF_XDP