
IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. XX, NO. XX, XXXX 2020 1

Particle Tracking on FPGAs using oneAPI
Karol Hennessy, Kurt Rinnert

Abstract—The next era of LHC experiments will provide
an unprecedented volume of data, aiming to achieve a tenfold
increase in integrated luminosity. Processing these data presents
formidable computing challenges. In the case of the LHCb
detector, a fully software based trigger has been employed in its
current design, which processes events at ∼30 MHz. Currently,
GPU-based compute acceleration is harnessed to manage the
high track densities within the detector. The computing challenge
intensifies with HL-LHC hit multiplicities, leading to extremely
large combinatorics in forming particle tracks from hits. To
tackle this challenge, a novel tracking algorithm, TrackNN,
employing machine learning, has been devised to generate track
stubs for early particle track reconstruction. This algorithm
is tailored for deployment on an FPGA, leveraging parallel
streams of pipelined neural nets to optimize bandwidth and
resource utilization. Central to this approach is the integration of
Intel’s oneAPI framework. OneAPI enables algorithm develop-
ment through high-level C++ coding whilst allowing integration
with conventional RTL designs. Early profiling tools identify
resource estimates and bottlenecks in minutes rather than the
hours typical of traditional FPGA development cycles. The
machine learning algorithm and oneAPI development cycle will
be presented, sharing some early performance measurements
using LHCb Vertex Locator data.

Index Terms—Firmware, DAQ, Readout, HLS, oneAPI, FPGA,
HL-LHC

I. INTRODUCTION

F IELD Programmable Gate Arrays (FPGA) are used ex-
tensively in High-Energy Particle Physics experiments.

They are particularly suited to data acquisition (DAQ) systems
where they can process vast amounts of serialised detector
data, and make real-time decisions on based on the data
content. However, to date, developing algorithms for these
devices has been time consuming and is typically the domain
of electronic engineers rather than software developers. Con-
ventional FPGA development flow requires the modelling a
synchronous digital circuit (known as a register-transfer level
model or RTL), using a hardware description language (HDL),
such as VHDL1 or Verilog. The process of converting FPGA
logic design into gates is known as synthesis. Several attempts
have been made to speed up FPGA development by using
higher level languages to accelerate the process by creating a
level of abstraction. This is commonly known as High Level
Synthesis (HLS).

This work was supported by the Science and Technology Facilities Council
of the UK. Karol Hennessy and Kurt Rinnert are with the Department of
Physics, University of Liverpool, L69 7ZE, UK.

Special thanks to FAE Christian Faerber from Intel®/Altera®for regular
expert assistance with the oneAPI framework

Corresponding author, Karol Hennessy (e-mail: karol.hennessy@cern.ch)
Corresponding author, Kurt Rinnert (e-mail: kurt.rinnert@cern.ch)
1VHSIC (Very High Speed Integrated Circuit) Hardware Description Lan-

guage

L M R

Fig. 1. Three detector planes: Left Middle and Right are shown. One “triplet”
combination is exactly one hit from each plane - an example is given by
the dashed line. All such combinations are made as input to the TrackNN
algorithm, which determines a probability for each.

A significant disadvantage of HLS was that most imple-
mentations were tied to a single hardware vendor. By con-
trast, conventional hardware description languages are open
specifications and, by now, standardised and transferable. A
new standard, SYCL2 [1], has been developed to address this
shortcoming. It has been designed for hardware accelerators
(currently GPUs and FPGAs), and is based on C++. We
have chosen the Intel® oneAPI implementation of SYCL. At
the time of writing, this was determined to the most mature
implementation for FPGAs.

The goal of the study described in the rest of this paper is
two-fold: (1) to deploy a particle detector tracking algorithm to
FPGA and (2) to evaluate the oneAPI in terms of productivity
and accessibility for developers.

II. THE TRACKNN ALGORITHM

The LHCb [2] Vertex Locator [3] was chosen as an test-case
for the development of a general particle tracking algorithm.
The algorithm assumes a series of detector planes with hits in
x, y, z coordinates. Three adjacent detector planes are chosen
and hit “triplets” are generated from all combinations of a
hit from each detector plane (see Fig. 1). A neural-network
algorithm, TrackNN, trained on LHCb VELO Monte-Carlo
data samples, is used to determine the best “triplet” from the
combinations. An earlier version of the algorithm is described
in more detail in [4]. Full tracks are made by stitching triplets
together to make full tracks. Tracking in LHC detectors is
particularly challenging on CPU architectures due to the high
number of particle hits generating large combinatorics. As
such, highly parallel processing on GPUs and FPGAs is
commonly employed to tackle this task. The final processing

2SYCL not an abbreviation



IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. XX, NO. XX, XXXX 2020 2

0.0 0.2 0.4 0.6 0.8 1.0
NN output

102

103

104

105

106
background

signal

0.0 0.2 0.4 0.6 0.8 1.0
NN output

0.0

0.2

0.4

0.6

0.8

1.0

P
u
ri

ty

RSE / error = 0.20

binomial error

0.0 0.2 0.4 0.6 0.8 1.0
False positive rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
u
e
 p

o
si

ti
v
e
 r

a
te

AUC = 0.9995

Triplet classification

(a)

(b)

(c)
Fig. 2. (a) Network shows clear separation between signal and background
samples (note the log scale). (b) Purity as a function of NN output. The NN
output can be treated as a probability between 0 and 1. (c) Network shows
very low false positive rate.

involving full tracking is considered more suitable for a
CPU implementation where highly optimised fitting routines
have been developed, and combinatorics have already been
significantly reduced. The current iteration of the algorithm
used in this study looks only at triplet generation.

TrackNN was developed using PyTorch [5]. It was trained
using LHCb Monte-Carlo Inclusive-b and Minimum Bias data
samples. The neural network consists of four fully connected
layers, with 8 inputs, 32 nodes in each hidden layer, and
one output. Fig. 2 shows some performance metrics for the
network. In terms of overall performance for the whole LHCb
VELO detector, an efficiency of 92%, and a purity of 97%
were obtained.

III. FPGA IMPLEMENTATION

The BittWare IA-840f PCIe FPGA card [6] was chosen as
the implementation target for the TrackNN algorithm. This
card has an Altera® Agilex-7 F-series AGF-027 FPGA [7] .
This card comes with a Board Support Package from BittWare
which is a necessary component for oneAPI functionality.
A recent generation processor is also required for oneAPI -
Intel® 3rd Gen. Xeon Scalable or above.

Fig. 3 shows a example of a basic SYCL code snippet. A
queue is used to define all of the actions to be submitted to a
device. In this case an FPGA is chosen (fpga selector). Several
memory blocks, in the form of float arrays are allocated on the
host and associated with the queue. A kernel named VectorAdd
is defined, and submitted to the queue. The code in yellow in
the figure is what runs on the device; all other code is running
on the host CPU. The same memory that was allocated on the
host can be accessed on the device via “host pointers”. A small
work function is defined to add two vectors of numbers. This
loop can be unrolled to speed up execution. Internally this is
done by exploiting the parallel architecture of the device. In
the case of the FPGA, more resources will be used, but the
latency of the loop can be reduced significantly (down to one
clock cycle in the ideal case). Finally, a “wait” call is used to
instruct the host to wait until the kernel has completed before
executing further code. In this way, we ensure the array sum
is not read prematurely, and the contents of the array will be
valid and stable.

Fig. 3. A SYCL code snippet. Using Unified Shared Memory (USM) declared
on the host can be accessed on the device.



IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. XX, NO. XX, XXXX 2020 3

PCA NN
NN

Fan Out
Triplet

Accumulator

Triplet
Collector

Triplet
Consumer

Left
Compressor

Right
Manager

Right
Compressor

NN
Funnel

Left
Manager

Cluster
Loader

Host

x2

x8 x8 x8 x8

Fig. 4. Data flow from the Host (centre top) through the kernel pipelines to the neural net kernels, PCA NN (purple), and back to the host. Several kernels
have 8 instances, and there are two parallel copies of the pipeline given in green.

The kernels developed for the TrackNN algorithm follow an
extended version of the formula given in Fig. 3. Communica-
tion with the host is achieved using Unified Shared Memory
(USM) which allows host memory to be easily accessed from
the FPGA3.

Fig. 4 shows the current design of the TrackNN software.
The host sends clusters into the device and receives triplets
back from the device (both via USM). Communication be-
tween kernels is done via SYCL “pipes”. In FPGA terms,
pipes are essentially FIFOs. Pipes can be blocking or non-
blocking depending on the user’s preference for flow control.
The principal “work” kernel with the neural network is shown
in purple marked PCA NN. Most of other the kernels shown
are organising the data into and out of this kernel. The Cluster
Loader takes the input cluster stream and divides it into the
left, middle and right detector planes, and send the data
onward. The Left and Right Managers are responsible for
creating the triplet combinations. It is important to note here
that O(N3) inflation happens to the data by the time they reach
the Right Compressor. This dominates the overall throughput
of the system.

They Left and Right kernels are split in order to improve
throughput. The Compressors assist with variable data sizes.
Note that the pipeline defined by the green section has two
instances, and several kernels have eight instances within that.
In each green pipeline, the NN Funnel combines eight data
streams into one feeding the PCA NN kernel, and conversely
the NN Fan Out does the opposite. The Triplet Collector takes
all the data streams from both pipelines and sends it to the
Triplet Consumer which finally streams the data back to the
host via USM.

In summary, most of this complex networking is to achieve
higher throughput. The choices driving this design were made
using feedback and profiling using oneAPI tools which will
be described in the next section.

3Alternatively, device memory can also be accessed on the host.

IV. ONEAPI TOOLS

Three tools have been used extensively in the development
of the TrackNN software with oneAPI. The are:

• The oneAPI FPGA Emulator
• The oneAPI Report Tool
• The Intel® VTuneTM Profiler

The FPGA Emulator runs on the CPU host and generates
a threads for the “on-device” kernels. The emulator is not
a perfect copy of the FPGA, and runs much slower. The
emulator allows us to check the correctness of our code
without launching a full compilation for the device. Full
compilation takes hours to complete even on a modern CPU,
whereas the compiling for the emulator takes mere seconds.
Consequently, development time spent checking for correct-
ness is significantly reduced.

The oneAPI Report Tool also executes quite quickly (about
30 s for simple designs, a few minutes for designs with many
kernels). The Report Tool provides a lot of useful information.
An early resource estimate provides detail on the estimated
number of logic and memory elements required for each
kernel. This feedback allows to focus effort on which kernels
to optimise for resource usage. Our experience is that the
estimates given very closely match those produced by the
Altera® Quartus compiler after synthesis.

The Report Tool also gives feedback on which kernels
have been well pipelined. A loop analysis report indicates
the Initiation Interval (II) for each loop used in the design.
Essentially, the II tells us how many clock cycles are required
for each iteration of the loop. Ideally this will have a value of
1. If the value is higher than 1 the analysis report gives the
origin of the slowdown (typically a memory dependency). One
can try to improve that part of the code in order to improve
the throughput.

The VTuneTM Profiler is used after a full compilation has
been performed. A compiler flag is used to include profiling
counters in the build of the FPGA firmware. This adds some
extra resource usage to the design (which scales with the
design size). Using the profiler, it is possible to see the



IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. XX, NO. XX, XXXX 2020 4

Fig. 5. Screenshot of Intel® VTuneTM Profiler. A channel write call is stalling
62% of the time. Fixing this one stall improved throughput by about a factor of
three. Note the unexpanded rows (e.g. NN Funnel) show average percentages
of several internal operations, and are not expected to sum to 100%.

input and output bandwidth of the running firmware. Profiling
metrics in the form of Stall, Occupancy and Idle are listed
for each loop and pipe operation. Stalls indicate a process
is waiting to execute due to some bottleneck (e.g., it’s not
possible to write to a pipe because it is full). Occupancy is
the fraction of time spent executing out of the total time. Idle
is the time spent neither stalled nor occupied. An example is
given in Fig. 5.

V. EXPERIENCE USING ONEAPI FOR FPGA
DEVELOPMENT

The authors had the following observations developing with
oneAPI for FPGAs: The tools mentioned in the previous
section were found to very powerful. One of the authors
had no experience with conventional RTL programming with
VHDL or Verilog. Yet, he managed to produce a first working
algorithm on the hardware, in a short period of time (less than
one month). The FPGA Emulator was found to be a significant
improvement over the conventional FPGA programming tools
which require a lot of effort devoted to test-benches and
simulation in order to prove correctness. The fast compilation
time makes this part of the development flow very similar to
CPU programming.

The Report Tool is also very useful. In particular, the Loop
Analysis report quickly points out inefficiencies in the code,
and points to the the part that requires improvement. That
said, exactly what causes the compiler to generate a large II,
is somewhat opaque. For example, replacing a switch block
with an if..else block can in some cases significantly reduce
the II. This should not be the case, as most of the time such
blocks are functionally equivalent. Some trial and error was
required to find the optimal solution for the compiler4

The VTuneTM Profiler is a multi-language and multi-device
capable profiling tool. As such, it has many features and
takes some time to become familiar with it, and many of the
results can seem confusing at first. However, as with all of the
tools mentioned in this paper, there is plentiful documentation
with manuals, tutorials and training videos available online.
VTuneTM provides essential feedback when running a program

4It should be noted that observations are for oneAPI version 2023.1.
Improvements to the compiler are expected with newer versions.

on the FPGA. It is key to getting performance out of the
design.

Lastly, it is worth mentioning that in order to efficiently
program an FPGA, it is necessary to know about the archi-
tecture itself. Pipelining is an essential concept that must be
understood to achieve reasonable results. This is a different
paradigm to GPU programming which relies on massive paral-
lelism. Pipelining allows many different tasks to be connected
together in a chain, much like an assembly line. Optimisation
is achieved by keeping all of the workers busy for as much
time as possible. Parallelism can be added by having multiple
pipelines. This is exemplified in the TrackNN architecture
given earlier in Fig. 4.

VI. FUTURE WORK

The next upgrade of the LHCb experiment plans to use
the PCIe400 DAQ readout board [8]. This will use an Agilex
M-series FPGA with approximately twice the performance
of the AGF-027 on the BittWare IA-840f card. Since LHCb
will purchase many of these cards, we wish to explore the
feasibility of deploying oneAPI algorithms to this card.

A board support package (BSP) would need to be devel-
oped for the PCIe400 to enable it to be used with oneAPI.
Alternatively, there exists a feature of oneAPI that does
not require a BSP, known as is “IP Flow”. This allows an
algorithm developed with oneAPI to be exported as an IP
block, and integrated into an existing RTL design. This offers
the potential to supercharge DAQ processing flows with high
level algorithms.

The next generation of particle detectors will have signif-
icantly higher luminosities (7× higher in the case of LHCb)
so it will be necessary to prove the TrackNN algorithm
at those scales. Comparison with GPU is also essential in
order to evaluate the FPGA as the right platform in terms
of performance and cost. This is another reason the oneAPI
framework has been chosen - it is possible to target GPUs
rather than FPGA using the same framework. The code will
require non-trivial changes in order to fairly compare the two
device types, but learning a completely new tool-set would not
be necessary.

VII. CONCLUDING REMARKS

The oneAPI framework has been evaluated for FPGA devel-
opment for High Energy Physics experiments. The TrackNN
neural network tracking algorithm was ported to oneAPI in ap-
proximately four months by two developers. A fully optimised
design has yet to be achieved, but the current implementation
produces consistently verifiable results from the Altera® AGF-
027 FPGA that was chosen. In what has traditionally been a
domain predominantly restricted to electronic engineers, the
authors see significant potential in this technology to make
FPGA hardware accessible to software developers, and thereby
further exploit them as compute accelerators.

REFERENCES

[1] The Khronos Group Inc. Khronos SYCL Registry [Online]. Available:
https://registry.khronos.org/SYCL/

https://registry.khronos.org/SYCL/


IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. XX, NO. XX, XXXX 2020 5

[2] The LHCb Collaboration, “The LHCb Detector at the LHC”, JINST,
vol. 3, Aug. 2008, S08005.

[3] The LHCb Collaboration, “LHCb VELO Upgrade Technical
Design Report”, CERN, Switzerland, 2013. [Online] Available:
https://cds.cern.ch/record/1624070.

[4] P. Marshall, “Developing a Hybrid Machine Learning Model
for VELO Upgrade Track Reconstruction”, Ph.D. thesis, Dept.
Physics, Univ. Liverpool, Liverpool, UK, 2022. p. 69. [Online]
https://cds.cern.ch/record/2838196

[5] The Linux Foundation PyTorch [Online]. Available: https://pytorch.org
[6] BittWare IA-840f Data Sheet 2024 [Online]. Available:

https://www.bittware.com/files/IA-840F datasheet r3v1.pdf
[7] Altera® Agilex 7 Product Brief 2024 [Online]. Available:

https://www.intel.com/content/www/us/en/content-details/762901/
agilex-7-fpgas-and-socs-product-brief.html

[8] J. Langouet et al. Future DAQ Boards:
PCIe400 2024 [Online]. Available:
https://indico.icc.ub.edu/event/163/contributions/1416/attachments/683/
1354/230330 future DAQ boards.pdf

https://cds.cern.ch/record/1624070
https://cds.cern.ch/record/2838196
https://pytorch.org
https://www.bittware.com/files/IA-840F_datasheet_r3v1.pdf
https://www.intel.com/content/www/us/en/content-details/762901/agilex-7-fpgas-and-socs-product-brief.html
https://www.intel.com/content/www/us/en/content-details/762901/agilex-7-fpgas-and-socs-product-brief.html
https://indico.icc.ub.edu/event/163/contributions/1416/attachments/683/1354/230330_future_DAQ_boards.pdf
https://indico.icc.ub.edu/event/163/contributions/1416/attachments/683/1354/230330_future_DAQ_boards.pdf

	Introduction
	The TrackNN algorithm
	FPGA Implementation
	oneAPI Tools
	Experience using oneAPI for FPGA development
	Future Work
	Concluding remarks
	References

