
IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. XX, NO. XX, XXXX 2024 1

AMBER Experiment’s Online Filter System for
Virtualised IT Infrastructure

Martin Zemko, Dominik Ecker, Vladimir Frolov, Stephan Huber, Vladimı́r Jarý, Igor Konorov, Josef Nový,
Benjamin Moritz Veit, Miroslav Virius

Abstract—High-energy physics experiments require significant
computing resources to operate their high-level trigger systems.
Typically, these systems are constructed as extensive computing
farms with cutting-edge expensive hardware to provide suffi-
cient computing power. Usually located on-site, these systems
process detector data in real-time and minimize their latency.
In this paper, we present an alternative high-level filter system
specifically designed for the AMBER experiment at CERN.
The novelty of our approach lies in its high efficiency, which
eliminates the need for a dedicated on-site computer farm.
Instead, it makes use of existing shared resources housed in the
CERN data center. The proposed system efficiently handles the
data generated by the medium-sized experiment and performs
numerous parallel filtering tasks in an online fashion. All system
components operate within a shared, fully virtualized environ-
ment, including databases, storage, and processing units. This
flexible environment scales effectively, allowing adjustments to
allocated resources based on agreements with service managers.
We present the architectural design and the implementation of
such a system. To demonstrate its capabilities, we have conducted
various measurements assessing its performance, latencies, and
stability under maximum (expected) loads. These results demon-
strate the resilience and reliability of the filtering system while
optimizing overall costs to a minimum.

Index Terms—Data acquisition, Data handling, High energy
physics computing, Software performance, Readout systems,
Parallel processing

I. INTRODUCTION

THIS paper introduces a high-throughput filtering system
for the AMBER experiment at CERN. The experiment’s

primary goal is to study strong interactions across a broad
spectrum of four-momentum transfers and includes various
research objectives. Initially, it focuses on measuring the
cross-section of antiproton production, which is relevant for
dark matter search. Subsequently, the experiment will study
the proton radius by using elastic muon-proton scattering.
Additionally, in its initial phase, the experiment will explore
Drell-Yan and charmonium production utilizing conventional
hadron beams. The following section compares our filtering

Manuscript submitted for review May 20, 2024.
This work was supported by the Ministry of Education, Youth and

Sports of the Czech Republic (grant LM2023040), Charles University (grant
PRIMUS/22/SCI/017), and the Grant Agency of the Czech Technical Univer-
sity in Prague (grant SGS23/190/OHK4/3T/14).

M. Zemko, V. Jarý, J. Nový, and M. Virius are with the Faculty of Nuclear
Sciences and Physical Engineering, Czech Technical University in Prague

D. Ecker, S. Huber, and I. Konorov are with Technische Universität
München.

B. Veit is with the Johannes Gutenberg-Universität Mainz.
V. Frolov is with JINR.

system with other state-of-the-art systems utilized in different
experiments.

II. STREAMING ACQUISITION SYSTEM

In recent years, the progress in detector and acquisition
technologies allowed us to read and process digitized data
without any prior data reduction based on conventional L1
triggers. This progress led to the expansion of streaming
acquisition systems in high-energy physics and allowed more
efficient data selection. Major experiments such as ATLAS
[1], CMS [2], LHCb [3], DUNE [4], and others already de-
veloped their own free-running acquisition schemes. However,
the benefits of the streaming acquisition systems are usually
traded off for increased data rates and higher demands for
computing resources. The usual way to deal with this problem
is to collect as much data as possible, then send them to
computers and filter them using software tools. Such systems
typically comprise at minimum two layers: the acquisition
and selection layer. In addition, fast network infrastructures
are also incorporated, serving as a medium for excessive data
transfers.

The AMBER acquisition system operates on similar prin-
ciples. It employs fast FPGA electronics in the acquisition
layer, completely taking the task of sorting and merging data,
followed by high-performance computing for data reduction.
This hybrid scheme consisting of hardware and software
processing, as depicted in Fig. 1, combines the advantages
of both worlds.

We leverage the full potential of FPGA technology for data
multiplexing and event building. The compact nature of FPGA
modules reduces space requirements and costs. Furthermore,
hardware-based acquisition offers rapid recovery and high
reliability, as FPGA modules only require a quick reset signal
to return to their initial state.

On the other hand, advanced software frameworks allow the
employing of more elaborate and parametrized filtering algo-
rithms. These systems are also more flexible and accessible by
non-expert users, allowing them to participate and contribute
to the development process without extensive knowledge of
the underlying machinery and to achieve the ultimate goal of
data reduction by about 100.

III. DATA PROTOCOL

The new streaming architecture of the AMBER experi-
ment builds upon the triggered COMPASS iFDAQ acquisition
system [5]. In the triggered scheme, a subset of detectors



IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. XX, NO. XX, XXXX 2024 2

Fig. 1. Flattened structure of streaming acquisition system, relying on hardware processing in FPGAs followed by readout and filtering procedures implemented
in software.

51
3

75
7

99
3

99
5

82
4

1
20

0

42
1

82
1

41
5

60
6

78
1

77
8

76
7

1
10

0

41
0

74
7

0

200

400

600

800

1000

1200

1400

R
A

ID
 1

0
(2

x2
 d

is
ks

)

R
A

ID
 1

0
(3

x2
 d

is
ks

)

R
A

ID
 1

0
(2

x4
 d

is
ks

)

R
A

ID
 1

0
(4

x2
 d

is
ks

)

R
A

ID
 5

0
(2

x3
 d

is
ks

)

R
A

ID
 5

0
(2

x4
 d

is
ks

)

R
A

ID
 6

0
(2

x3
 d

is
ks

)

R
A

ID
 6

0
(2

x4
 d

is
ks

)

D
at

a 
ra

te
 [

M
B

/s
]

Average read rate Average write rate

Fig. 2. Data throughput of various nested RAID configurations consisting of
8 or less disks.

generates triggers to initiate data readout. However, in the
triggerless scheme, triggers are replaced with a clock signal,
enabling each detector to operate at its own frequency. This
approach allows fast and slow detectors to be installed in the
same setup without a negative impact on each other.

We developed a multi-layered streaming protocol to unify
the data format, focusing on reliability and efficiency while
minimizing overhead. Its hierarchical structure can be ob-
served in Fig. 3. This protocol is designed to include only
essential data fields, reducing overall bandwidth usage. Ad-
ditionally, we employ multiple levels of CRC-32 checksums
to guarantee data integrity. To synchronize the data, we insert
precise timestamps into each data packet. The frequencies at
which detectors read out data are chosen carefully to align
perfectly with time slice edges, using integer divisors of the
global time slice signal.

The basic data units of this protocol are called time slices.
They capture fixed periods of collected data, fully covering the
entire time domain with data tiles – time slices. Since each
detector has different time precision, time slices are further
subdivided into finer units called images. The time slice length
remains constant for the entire detector setup, in the order of
hundreds of microseconds. However, the image length varies

based on detector type, reflecting detector response times. To
address any misaligned data at slice edges, the last image from
the previous slice is always duplicated to the next slice. Later,
during data filtering, time slices are treated as independent
processing units.

IV. STREAMING ACQUISITION

The data path begins with the frontend electronics for-
matting digitized values into this streaming protocol. Out-
going formatted data traverse through several layers of data
multiplexers. These devices consolidate multiple links into
fewer ones, optimizing the link bandwidth usage. Moreover,
multiplexers contain large DDR3 buffers to distribute spill data
peaks lasting 4.8 seconds [20] across the entire duty cycle
of the SPS accelerator (at least 14.4 seconds), suppressing
spikes on downstream devices. Eventually, the data stream
reaches the timeslice builder, the device responsible for an
event-building equivalent in streaming systems. It reorganizes
data in such a way that related incoming time slices are
serialized into a single output link. Both input and output links
employ the 8b/10b Aurora protocol with native flow control
to signalize backpressure to upstream multiplexers. With a
maximum throughput of 5 GB/s, the builder’s processing rate
can be doubled by adding another parallel unit. [6]

The builder forwards data directly to readout cards known
as spillbuffers, serving as the interface between hardware
and software processing. These FPGA-based modules are
commercially available Nereid Kintex 7 XC7K160T PCIe
boards equipped with 4 GB DDR3 memory for buffering. Each
spillbuffer card ensures a stable throughput of 1.6 GB/s via
PCIe-2.1 interface to readout computers [6]. As for readout
hosts, we utilize cost-effective Supermicro A+ 1014S-WTRT
servers featuring AMD Epyc 7313 CPU and 64 GB DDR4
memory, capable of handling over 1 GB/s data rate per host
according to our measurements [9].

Each readout host is connected to Promise VTrak J5800S
external disk storage via Broadcom MegaRAID® SAS 9580-
8i8e RAID controller. The storage chassis accommodates 24
Toshiba MG07ACA14TE hard drives, each offering a transfer
speed of 248 MiB/s [7]. We observed that parallel access
to spinning disks degrades their performance; therefore, we
divided disks into three virtual drives – one for reading, one
for writing, and one for idling. This approach avoids parallel
access and ensures a smooth transition between volumes. The
operations are rotated every 30 minutes to ensure equal disk
wear.



IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. XX, NO. XX, XXXX 2024 3

Fig. 3. Fundamental concept of data reduction in streaming DAQ is based on preserving images containing possible event candidates. We store two consecutive
images for each event candidate. The remaining images are removed. [6]

After thorough benchmarking of various RAID configura-
tions as illustrated in Fig. 2, we opted for the RAID 50 setup
consisting of 2 spans per 4 disks. Our measurements show the
average read rate of 1.2 GB/s and write rate of 1.1 GB/s for this
particular configuration. Overall, these on-site buffers provide
the capacity of more than 1 PB, sufficient to store up to three
days of data-taking, seamlessly bridging weekend periods with
limited support.

For further data processing, we rely on the virtualized
infrastructure provided by the CERN laboratory, which is
the primary goal of this paper. Data from local buffers are
transmitted via 2× 100 Gbps links to the data centre to the
generic Exabyte-scale Open Storage (EOS) instance operated
by CERN. We allocated 500 TB of the EOS storage to serve
as our remote buffers. Due to its distributed design, EOS
limits the ingestion rate of a single data stream to 1 Gbps,
resulting in an effective throughput of approximately 100 MB/s
per connection. This rate is not sufficient to comply with our
requirements; therefore, we use 24 parallel streams to achieve
the minimum threshold of 1 GB/s. To effectively manage large
data transfers, we utilize a custom transfer service called
AMBER Data Recording (ADR) tool, which is based on the
XRootD transfer protocol [21] and incorporates other control
mechanisms such as checksums and data validation.

Simultaneously, as the data are transferred to the EOS
storage, ADR inserts metadata into the MySQL database
hosted on the CERN Database-on-demand (DBOD) platform.
This service offers virtualized databases running in Kubernetes
clusters. In addition, users may benefit from many useful
features such as remote monitoring, automatic backups, and
replication [8]. In our acquisition system, we use these features
to enhance the stability and reliability of the database. Fur-
thermore, we adopted a clustered database design comprising
three instances – primary database and two replicas – with
automatic failover to replicas if the primary database crashes.

Fig. 4. Structure of the database cluster running on DBOD service providing
traffic load-balancing, automatic backups, and recovery.

The deployed database cluster is depicted in Fig. 4.

V. HIGH-LEVEL FILTER

Once the data files are transferred to the EOS remote buffers
and logged into the database, we begin the filtering process.
In our streaming acquisition system, we reduce the amount
of data by removing certain images. We use identifiers of
slices and images to calculate the exact timestamp of each hit
and identify potential event candidates. Only the images that
match these candidates are preserved, while those that do not
match any are discarded. This helps reduce the size of the slice
data, as shown in Fig. 3. The data reduction is performed by
the High-Level Trigger (HLT) system, an extensive framework
designed for efficient data manipulation and filtering. The HLT
system includes two main components: the filtering framework
and the filter management system.



IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. XX, NO. XX, XXXX 2024 4

A. Filtering framework

The filtering framework is a Qt-based software responsible
for numerous data processing tasks, including decoding, partial
track reconstruction, and data reduction. To handle these tasks
efficiently, we have developed multiple libraries corresponding
to specific steps, such as protocol parsing, detector alignment,
database access, and state machines. These libraries are op-
timized for performance and dynamically linked to the main
application.

The application implements dynamic multithreading, where
it detects the number of CPU cores available and creates
an equal number of processing threads. Moreover, on sys-
tems with multiple CPUs, it utilizes a non-uniform memory
access (NUMA) approach known as siloing. This method
isolates resources, avoiding data exchange between processors
and crossing NUMA domains. This means that threads can
only access their local memory, which improves the overall
throughput. [9]

The fundamental principle of the filtering process is based
on eliminating images without any physics events. Initially, we
categorize images into two distinct groups: primary images,
sourced from detectors actively involved in making filter
decisions, and secondary images. Primary images undergo
decoding and in-depth analysis to identify event candidates.
Secondary images are filtered, but have no impact on the final
decision.

To optimize the decoding process, we define a small set of
primary detectors. Since track reconstruction relies solely on
these primary images containing incomplete detector informa-
tion, the resulting reconstructed tracks provide an estimate of
real particle trajectories. We refer to this process as a partial
track reconstruction.

When analysing primary images, the processing pipeline
involves two main steps as illustrated in Fig. 5:

1) Time alignment (preprocessing): processing of times-
tamps using a shifted wavelet tree algorithm to detect
hit bursts [10].

2) Spatial analysis (filtering): analysing of hit positions
and particle trajectories to detect physics events with
interesting signatures.

The algorithms included in these steps are modular and
exchangeable, allowing for various implementations developed
for specific physics cases. Moreover, the filtering pipeline can
accommodate several parallel data paths that can be combined
into a single binary decision.

After completing the analysis pipeline, we obtain a list of
event candidates indicating potential physics events. Using this
list, we conduct data reduction by eliminating images that
do not intersect with any event candidate. For each event
candidate, we always retain two consecutive images to address
potential edge cases near image borders.

B. Distributing application

The filtering application is distributed as an executable file
together with all its dependencies and delivered through the
CernVM-FS file system. CVMFS is a service managed by
CERN, designed to ensure smooth and reliable distribution of

software. It was specifically created to deploy software across
large computing grids that handle extensive data processing
tasks.

Internally, CVMFS uses a content-addressable storage sys-
tem and Merkle trees. Files are distributed solely through
HTTP connections, which helps circumvent most firewall and
network issues. Furthermore, the file system automatically
verifies and maintains data consistency using various hashing
algorithms. [11]

Our filtering system fully relies on this distribution channel
and its caching capabilities. CVMFS can efficiently handle
numerous connections without any throttling or bottlenecks,
making it the perfect storage solution for our application,
which runs thousands of instances simultaneously. Addition-
ally, CVMFS is mounted as a read-only file system in user
space via a FUSE module, making it seamlessly integrated
with the filtering application.

VI. FILTER MANAGEMENT SYSTEM

The second key component of the HLT system is the man-
agement platform, which handles the submission, execution,
and control of filtering jobs. This platform is split into backend
and frontend parts, both interacting with the HLT database
as illustrated in Fig. 6. Despite using the same database,
the frontend and backend components do not communicate
directly. This separation allows them to operate independently
on different platforms and services. Regarding the database,
the management system depends again on the DBOD service
as its primary metadata source.

A. Filtering backend

The HLT backend, developed in Python, ensures the man-
agement and submission of filtering jobs. It directly commu-
nicates with HTCondor, a high-throughput computing plat-
form operated by CERN. HTCondor efficiently distributes
computing tasks to connected machines, making it highly
scalable and capable of handling thousands of hosts [12]. At
CERN, users share a single HTCondor instance, competing
for approximately 100,000 CPU cores [13]. To ensure fairness,
HTCondor implements an advanced system of priorities and
quotas.

During operation, HLT regularly checks the queue table for
filtering requests. When a new request arrives, the backend
generates a job definition and submits it to HTCondor using
its Python API. This interface enables faster communication
compared to regular system calls, which use plain text for
exchanging information. However, submit files are still created
and stored in the database for debugging purposes and for
users who wish to submit filtering jobs manually.

Upon submission, HTCondor appends the request to its
global queue, where it waits for an execution on a worker node.
Each job’s lifecycle is managed through a predefined set of
states in the form of the state machine. HLT states are defined
as a superset of HTCondor states, allowing state mirroring and
synchronization between both systems. This synchronization
happens every 2 minutes and involves only active jobs; those
in final states are no longer synchronized.



IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. XX, NO. XX, XXXX 2024 5

Fig. 5. Example of the filtering algorithm performed by the AMBER HLT system. The preprocessing and filtering stages can be adjusted or replaced according
to the physics case.

Fig. 6. Architecture of the AMBER HLT system, fully relying on shared
services provided by CERN. On-site hardware is limited to readout servers
and buffers, with all other services being virtualized and managed by CERN.

After a job is finished, HTCondor removes it from the
queue. Then, the HLT backend reacts to this change and
retrieves the job’s log file from the Andrew File System (AFS).
This is because HTCondor faces a global limitation in the
EOS storage service that restricts frequent updates to small
log files [16]. To overcome this issue, HTCondor utilizes the
AFS file system as a temporary storage for log files. After job
completion, HLT transfers these files from AFS back to EOS,
following the recommendation of HTCondor administrators
[13]. By examining these logs, the backend identifies the job’s
result and looks for any potential issues. If there are any errors,
the job is resubmitted again for the second attempt. Eventually,
the job’s status is updated in the database to reflect the final
result.

Although HTCondor offers a history overview of completed
jobs, we chose not to utilize this feature due to its rela-
tively low performance and high latencies. Our measurements
indicate that a single query to the HTCondor history file
takes approximately 6.44± 1.43 seconds. This result varies
significantly depending on factors such as HTCondor settings,
size of the history file, system and storage performance, among
others. Thus, querying the history file has not proven suitable
for us, considering the system must poll thousands of jobs
every two minutes.

The HLT backend operates on a shared Linux terminal
service, known as LxPlus, which comes pre-equipped with
all necessary packages and libraries for submitting HTCondor
jobs. Due to its small footprint, HLT does not negatively
impact other users. Unlike typical daemons, the backend is
not continuously active. Instead, it is periodically triggered by
the CERN Acron service, offering cron-like scheduling capa-
bilities with an added authentication layer. This service allows
users to create crontab entries for Kerberos-authenticated cron
jobs using the privileges of the authenticated user [14]. Acron
effectively addresses authentication requirements when sub-
mitting jobs to HTCondor. In contrast, the PanDA production
system developed by the ATLAS collaboration relies on a more
complex setup involving virtual organizations authenticated
with SSL certificates and OIDC tokens [15].

Regarding the output data files generated by HLT, we utilize
the capability of worker nodes to send data to the CERN Tape
Archive (CTA). More precisely, output files are transferred to
another EOS instance (CTA-EOS) that is directly connected to
the tape archive. Files stored on this special EOS instance are
automatically backed up onto tapes, ensuring secure archival
of filtered data for subsequent physics analysis.

In summary, the HLT backend performs tasks similar to
the PanDA production system developed at ATLAS [17].
However, we found PanDA to be too complex and resource-
intensive for our specific use case. With HTCondor as our
primary target platform at CERN, we were able to significantly
optimize the overall architecture and performance of the
filtering system.

B. Web frontend

As its second main component, HLT offers a web interface –
the frontend. This interface allows users to manage and control
the filtering system. It gives a clear picture of filtering jobs
and their states. Users are even allowed to submit their own
filtering requests that are handled and executed by the filter
management system. Jobs are grouped into tasks, typically
corresponding to individual runs, making it easier to monitor
them all together. The web interface also makes it easy
to check and retrieve logs of completed jobs as they are
automatically copied to EOS.

The web interface runs on the CERN Web Services, offering
a convenient web hosting platform for users. It is accessible
from both the CERN network and the internet, and is protected
by CERN Single Sign-On, allowing HLT operators and shifters



IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. XX, NO. XX, XXXX 2024 6

Fig. 7. Web frontend interface provides an illustrative overview of the current
system status and allows user to fully control and configure the filtering
system.

to use it from anywhere. Additionally, it employs advanced
access control lists based on user roles defined in the CERN
LDAP directory [18].

Built with PHP 8 and the Bootstrap framework, the frontend
scripts are hosted on EOS, with the database serving as
the main source of information. Since the frontend does not
process any raw data, it is very fast and responsive, offering
quick access to a large number of users.

VII. PERFORMANCE MEASUREMENT

The filtering system depicted in the previous paragraphs has
undergone extensive testing and validation during the initial
phase of the AMBER experiment in 2023. We confirmed
that our system can be scaled horizontally, primarily due
to the scalable nature of the underlying HTCondor platform
and other computing services available at CERN. These tests
demonstrated that the HLT backend is able to manage over
one thousand concurrent jobs effectively.

To gain a comprehensive understanding of how CERN’s
shared services operate, we aimed to evaluate and assess the la-
tencies within the system. Our initial measurement focused on
the processing time of individual filtering jobs. We performed
tests using more than 1,000 data files, each 1 GB in size.
Each file was processed by a single job utilizing 4 CPU cores.
On average, filtering a single data file took 24.99 seconds
with a standard deviation of 8.47 seconds. The distribution
of measured times is shown in Fig. 8. When we translate
these values into processing rates per CPU core, we achieve
an average rate of 10.24 MB/s. Considering the 10 GB/s data
rate of the full detector setup [9], we estimate the need for
approximately 1,000 CPU cores to perform real-time filtering.

The second measurement examined the queueing time of the
HTCondor platform at CERN, specifically its version 23.0.2.
Our findings revealed that the average time spent in the queue
was approximately 100.80± 48.78 seconds, as illustrated in

Fig. 8. Processing time distribution represents the net execution time for 1 GB
files, each containing around 250,000 time slices.

Fig. 9. This indicates that each job typically waits around one
and a half minutes in the HTCondor queue before execution.
The variability in queueing time is significant, accounting for
nearly 50 % of the measured average, which suggests that
queueing time is a highly volatile metric and depends on
various factors. We identified four main aspects influencing
the queueing time:

• Cluster occupancy (available resources): When more
jobs are submitted by other users, they compete for
limited resources. Inevitably, higher user submission rate
leads to increased latency.

• Job and worker requirements: Jobs with stricter re-
quirements may only be compatible with fewer workers,
further restricting available resources.

• User priority: Users who submit numerous jobs may
have their priority reduced, while those with lower
submission rates receive higher priority. This approach
follows the HTCondor fair-share policy [19].

• Quotas: Users are often restricted to a certain number of
parallel jobs.

To optimize system performance, we implemented several
strategies. For instance, jobs are submitted with minimal
requirements to increase the chances of earlier execution and
lower the latency. The filtering application supports a variable
number of worker threads and efficiently utilizes all available
CPU cores regardless of their number. Furthermore, in case
of a significant increase in queueing time, our backup strategy
aims to approach HTCondor administrators and request higher
priority for our jobs.

Our last measurement investigated the total job time, incor-
porating delays from the HLT backend. Given that synchro-
nization occurs every two minutes, this mechanism introduces
an average extra latency of one minute. Consequently, the
average job duration was measured at 151.90± 82.28 seconds.
The resulting distribution is shown in Fig. 10.



IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. XX, NO. XX, XXXX 2024 7

Fig. 9. Queueing time distribution in HTCondor shows highly volatile results
that depend on external aspects such as cluster occupancy and user priorities.

Fig. 10. Total job duration distribution gives the overall expected latency
of the filtering system. It accounts for queueing latency, execution time, file
transfers, and other aspects.

VIII. CONCLUSIONS

This paper introduces an extraordinary high-throughput
filtering system designed for the AMBER experiment at
CERN. Traditionally, high-energy physics experiments employ
computing farms with costly hardware for real-time data
processing. However, our system offers an alternative approach
by utilising existing shared resources within the CERN data
centre, eliminating the need for dedicated on-site computer
farms.

Our proposed system efficiently handles the data generated
by the medium-sized experiment with a throughput of 10 GB/s,
performing numerous parallel filtering tasks in real time within
a fully virtualized environment. Key components of the de-
signed system include FPGA-based data acquisition, custom
streaming protocols for data transmission, and the high-level
filter system for data reduction.

The streaming acquisition system utilizes fast FPGA elec-
tronics for data multiplexing and event building, followed
by readout cards and further processing in readout comput-

ers. Subsequently, data are reduced using a high-throughput
filtering framework written in C++, ensuring partial track
reconstruction and subsequent data reduction.

The automated filter management system is constructed
entirely using shared services such as EOS, AFS, CVMFS,
LxPlus, DBOD, and others. The system consists of a Python
backend for job submission and retrieval, paired with a web
frontend for user interaction and monitoring. The backend
utilizes HTCondor as the underlying platform for load bal-
ancing and job distribution, whereas tasks are being executed
on shared computing resources at CERN.

Performance measurements demonstrate the scalability and
efficiency of the designed system, with individual filtering jobs
processing data files in around 24.99 seconds on average.
The queueing time in HTCondor averages around 100.80
seconds, influenced by factors such as cluster occupancy,
job requirements, and user priorities. The total job duration,
including queueing latency, execution time, and file transfers,
averages around 151.90 seconds. These measurements indicate
the system’s capability to handle the high-throughput require-
ments of the AMBER experiment while optimizing resource
utilization and reducing costs.

Moving forward, our plans involve further optimizations of
the filtering system to reduce latencies and improve through-
put. Improvements include implementing more detailed mon-
itoring to identify bottlenecks. We also intend to fine-tune
the HTCondor scheduler, aiming to stabilize job queueing
times. Furthermore, we plan to investigate the potential of the
filtering software running on GPUs, which could considerably
improve the performance of the filtering system.

REFERENCES

[1] The ATLAS TDAQ Collaboration, “The ATLAS Data Acquisition
and High Level Trigger system”, J. Inst., vol. 11, no. 06, pp.
P06008–P06008, Jun. 2016, DOI. 10.1088/1748-0221/11/06/P06008.

[2] R. Covarelli, “The CMS High-Level Trigger”, AIP Conference Proceed-
ings, vol. 1182, no. 1000, pp. 188–191, 2009, DOI. 10.1063/1.3293780.

[3] R. Aaij et al., “Allen: A High-Level Trigger on GPUs for LHCb”,
Computing and Software for Big Science, vol. 4, no. 1, pp. 1–11, 2020,
DOI. 10.1007/s41781-020-00039-7.

[4] R. Acciarri et al., “Long-Baseline Neutrino Facility (LBNF) and
Deep Underground Neutrino Experiment (DUNE) Conceptual De-
sign Report, Volume 4 The DUNE Detectors at LBNF”. arXiv,
Jan. 12, 2016. Accessed: Mar. 15, 2024. [Online]. Available:
http://arxiv.org/abs/1601.02984

[5] D. Steffen et al., “Overview and future developments of the intelligent
FPGA-based DAQ (iFDAQ) of COMPASS”, Proceedings of Science,
vol. Part F1285, pp. 0–3, 2016, DOI. 10.22323/1.282.0912.

[6] S. Huber et al., “Data Acquisition System for the COMPASS++/
AMBER Experiment”, IEEE Transactions on Nuclear Science, vol. 68,
no. 8, pp. 1891–1898, 2021, DOI. 10.1109/TNS.2021.3093701.

[7] Toshiba Electronic Devices, “MG07ACA Series - Product
Specification”. Jul. 2020. Accessed: Mar. 22, 2024. [Online].
Available: https://toshiba.semicon-storage.com/content/dam/toshiba-ss-
v3/master/en/storage/product/data-center-enterprise/eHDD-MG07ACA-
Product Overview rev3s.pdf

[8] A. C. Alonso, D. C. Polidura, and M. De Giorgi, “Database on demand
User Guide”. Aug. 15, 2023. Accessed: Mar. 22, 2024. [Online].
Available: https://dbod-user-guide.web.cern.ch/

[9] M. Zemko et al., “Triggerless data acquisition system for the AMBER
experiment”, in Proceedings of 41st International Conference on High
Energy physics — PoS(ICHEP2022), Bologna, Italy: Sissa Medialab,
Nov. 2022, p. 248. DOI. 10.22323/1.414.0248.



IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. XX, NO. XX, XXXX 2024 8

[10] Y. Zhu and D. Shasha, “Efficient elastic burst detection in data streams”,
in Proceedings of the ninth ACM SIGKDD international conference on
Knowledge discovery and data mining, Washington, D.C.: ACM, Aug.
2003, pp. 336–345. DOI. 10.1145/956750.956789.

[11] J. Blomer, “CernVM-FS’s documentation”. Feb. 19,
2016. Accessed: Mar. 23, 2024. [Online]. Available:
https://cvmfs.readthedocs.io/en/stable/

[12] T. Theisen, M. Coatsworth, G. Thain, and T. L. Miller, “HTCondor
Version 23.5.2 Manual”. Mar. 20, 2023. Accessed: Mar. 23, 2024.
[Online]. Available: https://htcondor.readthedocs.io/en/latest/

[13] B. Jones, S. Traylen, J. van Eldik, and N. Hoimyr, “Batch Docs - Batch
Service Concepts”. Jul. 05, 2016. Accessed: Mar. 21, 2024. [Online].
Available: https://batchdocs.web.cern.ch/concepts/

[14] G. McCance and U. Schwickerath, “Acron documentation - Acrontab
usage”. May 17, 2023. Accessed: Mar. 21, 2024. [Online]. Available:
https://acrondocs.web.cern.ch/

[15] T. Maeno, “Identity and Access Management”. Jan. 06, 2021.
Accessed: Mar. 21, 2024. [Online]. Available: https://panda-
wms.readthedocs.io/en/latest/architecture/iam.html

[16] L. F. Alvarez, S. Traylen, N. Hoimyr, and J. van Eldik, “Batch Docs
- EOS”. Jan. 16, 2020. Accessed: Mar. 22, 2024. [Online]. Available:
https://batchdocs.web.cern.ch/troubleshooting/eos.html

[17] T. Maeno, “PanDA Introduction”. Mar. 01, 2021. Ac-
cessed: Mar. 21, 2024. [Online]. Available: https://panda-
wms.readthedocs.io/en/latest/introduction/introduction.html

[18] P. Tedesco, H. Short, V. Brillault, and S. Lopienski, “Authorization
Service - Role based permissions”. Oct. 02, 2020. Accessed: Mar.
22, 2024. [Online]. Available: https://auth.docs.cern.ch/applications/role-
based-permissions/

[19] B. Jones, S. Traylen, and F. Protopsalti, “Batch Docs - Priorities
in HTCondor”. Mar. 20, 2024. Accessed: Mar. 21, 2024. [Online].
Available: https://batchdocs.web.cern.ch/fairshare/fairshare.html

[20] P. Abbon et al., “The COMPASS experiment at CERN”, Nuclear
Instruments and Methods in Physics Research, Section A: Accelerators,
Spectrometers, Detectors and Associated Equipment, vol. 577, no. 3, pp.
455–518, Mar. 2007, doi: 10.1016/j.nima.2007.03.026.

[21] A. Hanushevsky, “The XRootD Protocol Version 5.2.0”. National Ac-
celerator Laboratory, Dec. 04, 2023.


