
IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. XX, NO. XX, XXXX 2024 1

The DUNE-DAQ Application Framework
Eric L. Flumerfelt for the DUNE Collaboration

Abstract—The Deep Underground Neutrino Experiment
(DUNE) is a next-generation neutrino experiment that will
probe the properties of these elusive particles with unparalleled
precision. It will also act as an observatory for neutrino bursts
caused by nearby supernovae, in the event that one occurs while
the experiment is in operation. Given these goals, the DUNE
trigger and DAQ system must be able to maintain extremely
high uptime and provide a path for full readout of the detectors
for very long times (up to 100 s). To achieve these ends,
we have designed the DUNE DAQ system around a flexible
“application framework”, which provides a modular interface for
specific tasks while handling the interconnections between them.
The application framework collects modules into applications
which can then be interacted with as units by the control,
configuration and monitoring systems. One of the key features
of the framework is its communications abstraction layer, which
allows for modules to interact with both internal queues and
external network connections with a single transport-agnostic
interface. We will report on the architecture and features of the
framework.

Index Terms—Data acquisition, Physics computing, Software
packages

I. INTRODUCTION

THE Deep Underground Neutrino Experiment (DUNE)
[1] is a next-generation neutrino experiment that will

probe the properties of these elusive particles with unparalleled
precision. It is based in Lead, SD and receives neutrino beam
from Fermilab, a 1300 km baseline, as seen in Fig. 1.

Up to four far detector modules will be constructed, with the
first two being liquid-Argon time-projection chambers, Fig. 2.
It will also act as an observatory for neutrino bursts caused
by nearby supernovae, in the event that one occurs while the
experiment is in operation.

Given these goals, the DUNE trigger and DAQ system [2]
must be able to maintain extremely high up-time and provide
a path for full readout of the detectors for very long times (up
to 100 s). To achieve these ends, we have designed the DUNE
DAQ system around a flexible “application framework”, which
provides a modular interface for specific tasks while handling
the interconnections between them.

During the first DUNE 35 T and initial ProtoDUNE test
runs, the artdaq DAQ framework from Fermilab was used

Paper submitted for review May XX, 2024. Notice: This work was produced
by Fermi Research Alliance, LLC under contract No. DEAC02-07CH11359
with the U.S. Department of Energy,Office of Science, Office of High Energy
Physics. The United States Government retains and the publisher, by accepting
the work for publication, acknowledges that the United States Government
retains a non-exclusive, paid-up, irrevocable, world-wide license to publish
or reproduce the published form of this work, or allow others to do so, for
United States Government purposes. The Department of Energy will provide
public access to these results of federally sponsored research in accordance
with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-
access-plan).

Eric L. Flumerfelt is with the Fermi National Accelerator Laboratory,
Batavia, IL 60510 USA.

Fig. 1. This cutaway illustration shows the path of neutrinos in the Deep
Underground Neutrino Experiment. A proton beam is produced in Fermilab’s
accelerator complex (improved by the PIP-II project). The beam hits a target,
producing a neutrino beam that travels through a particle detector at Fermilab,
then through 800 miles (1,300 km) of earth, and finally reaches the far
detectors at Sanford Underground Research Facility.

Fig. 2. Long-Baseline Neutrino Facility South Dakota Site

[3]. The up-time requirement for DUNE DAQ is 99.5%,
leading to a requirement that the DAQ be able to handle
run-time changes of the components selected for readout. It
was found, however, that artdaq lacked sufficient flexibility
to provide this functionality. Additionally, the artdaq system
layout did not provide hooks for some of the data processing
steps needed at the readout level, resulting in less-maintainable
plugin implementations.

The DUNE DAQ application framework was designed to
meet the requirements of the DUNE. It provides a common
set of APIs and utilities that allow for implementation of the
DAQ logic in a consistent and maintainable way, while also
providing upgradability through the use of dynamically-loaded
plugin implementations for well-defined application interfaces.

II. DUNE DAQ OVERVIEW

The DUNE DAQ consists of a number of application
components which communicate with one another as in Fig. 3.
Each application handles a specific set of DAQ functionality
using a number of ”DAQ Modules” specific to that application.

1) Readout applications receive and buffer data from de-
tector electronics, and send processed waveform data



IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. XX, NO. XX, XXXX 2024 2

Fig. 3. Current organization of the DUNE DAQ software applications.
Messaging connections between applications are shown along with their data
types, though it is important to note that DAQ modules within the applications
are sending and receiving messages, not the applications themselves.

(called Trigger Primitives) to the trigger applications.
They listen for incoming data requests from the builder
application. The internal structure of a readout applica-
tion is depicted in Fig. 4.

2) The Hardware Signals Interface (HSI) application inter-
faces with the timing hardware and the Central Trigger
Board (CTB) to produce HSI Event messages for peri-
odic and beam event triggers.

3) The trigger applications create trigger decisions based on
configurable algorithms using the trigger primitives sent
from the readout. The trigger primitives are broadcast
to all applications which have registered themselves
as receivers, so the number of trigger applications is
flexible and dependent on the number of desired trigger
algorithms.

4) The trigger record builder applications receive trigger
decisions, request data from the readout and trigger
applications, and build Trigger Records which are saved
to disk.

5) The Dataflow Orchestrator (DFO) application arbitrates
the distribution of trigger decisions to builder applica-
tions based on current run-time conditions, and protects
the builder applications from becoming overwhelmed by
large trigger records, inhibiting the production of new
trigger decisions if necessary.

6) An additional Trigger primitive writer application may
be used to save the Trigger Primitive stream to disk;
these files can then be used for future trigger algorithm
development.

III. APPLICATION FRAMEWORK STRUCTURE

The DUNE DAQ Application Framework consists of several
software packages which implement various sub-components
and expose interfaces to the central framework functionality,
as shown in Fig. 5, and the appfwk [4] package which provides
the main interfaces used by the implementation modules. As
previously stated, applications are composed of a number of

Fig. 4. Diagram of the readout application used in the DUNE DAQ. Modules
are represented by white boxes, and network connections and queues are also
shown. Queues are always strictly internal to the application, whereas network
connections are always single-sided from the application’s perspective.

DAQ modules which implement the functionality for each
application type, Fig. 6. Services used by the application
framework abstract their implementations behind consistent
interfaces so that those implementations can be changed at-
will, increasing the longevity and maintainability of the frame-
work. Fig. 7 shows the structure of the application framework
packages, as well as including one of the packages which uses
the interfaces provided by the application framework (listrev
[5] is the application framework test package).

1) The iomanager [6] package provides the messaging
interface used by the modules, whereas the DAQ module
management facilities and API are implemented in the
appfwk package itself.

2) The ipm [7] and serialization [8] packages are used for
transmitting data between applications.

3) utilities [9] contains a number of tools that are used
throughout the framework (including DNS resolution, a
generic base class for all application framework objects,
and threading tools).

4) rcif [10] provides the interface to the run control system,
implemented in cmdlib [11].

5) appdal [12] and coredal [13] provide the configuration
interface and schema, as well as recipes for generating
the most commonly-used applications and their messag-
ing connections at run-time, using module configurations
stored in the configuration database.

6) The opmonlib [14] package contains the interface and
implementation of the DAQ monitoring and metric col-
lection code.

7) logging [15] takes care of log message archiving and
provides a fast, run-time configurable interface for debug
messages.

A. Service Interfaces

The Application Framework provides a plug-in interface
for these external interfaces, allowing for both custom and
commercial off-the-shelf implementations to be used.



IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. XX, NO. XX, XXXX 2024 3

Fig. 5. Logical stack diagram of the application framework. Core ser-
vices are exposed to the framework through interfaces, with plugin-based
implementations to allow for upgrading functionality as technologies evolve
during the life-time of the experiment. The framework’s core functionality
includes the definition of applications, the management of DAQ modules,
and the messaging API used by the modules. Applications of various types
are implemented on top of the framework to perform the data acquisition
logic required by the experiment.

Fig. 6. Diagram of a generic application based on the framework, showing
queues and external network connections. Several facilities are available to
the application and exposed to DAQ modules through framework interfaces.

The Control interface keeps track of application state and
validates incoming commands. Command transmission be-
tween applications can use a REST or gRPC-based [16]
communication implementation. The Run Control system is a
separate set of applications which are outside of the application
framework. When a valid command is received, the application
distributes it to its DAQ modules via an ”action plan”, a pre-
configured series of parallel steps. Each step of an action plan
is an ”action”, an aliased method within the DAQ module.
A single module may register multiple actions to be executed
within a single action plan, in order to define ”pre” and ”post”
command steps.

Configuration information is provided to the application at
startup using the OKS system adapted from ATLAS [17]. The
configuration system uses an object-based model and retrieves
configuration data based on object class and unique names.
Along with the logging interface, the configuration interface
is one of the basic components of the system which must be
configured via the application command-line; all other service
interfaces and application behavior are defined through the
configuration.

Each ”monitorable” element of the system is given a unique

Fig. 7. Software packages comprising the application framework. The listrev
package is shown as an example user of the framework, while several of the
packages containing service interfaces and implementations are also shown
as dependencies of the framework.

name which it can use to push metrics to the monitoring
interface, which in turn publishes them using a plugin-based
output facility. Additionally, the monitoring interface period-
ically polls for metrics in a top-down manner, ensuring that
all monitored elements regularly report their current values.
Current output facility implementations include JSON files and
a protobuf [18] format via a Kafka [19] broker. If distributed
via Kafka, the data are stored in an InfluxDB [20] database
and plots are automatically construted via DUNE-developed
Grafana [21] dashboards.

Log messages are handled using the ERS package [22], also
adapted from ATLAS [23]. ERS provides for well-structured
messages which can be collected in a back-end database
(currently implemented in Kafka) for further processing. Ad-
ditionally, Fermilab’s TRACE [24] package provides high-
speed low-level debug printouts which are assigned a name
and a level, and these can be enabled or disabled at run-time.
The performance of TRACE has been measured at <1 µs for
enabled messages and O(1 ns) for disabled messages.

B. DAQ Module Interface

The goal of the Application Framework is to simplify as
much as possible the interactions with other systems, so that
DAQ modules can be written in a self-contained, task-oriented
manner. It consolidates interfaces for control, configuration,
monitoring, and logging; these systems interact with applica-
tions, allowing them to ignore the internal complexity of the
modules and their interconnections. Users are provided with
access to data received from the configuration system and the
interface used to aggregate monitoring data. The framework
marshals and delivers commands to modules when they are
received by the applications.

The modules register their interest in certain commands, so
when a command is received, the application can intelligently
deliver it to just the modules that have a corresponding



IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. XX, NO. XX, XXXX 2024 4

action. The framework also provides an abstraction layer for
connections, allowing modules to send data to an endpoint
identified by a name without regard as to whether the module
owning the endpoint is local to the application or running
elsewhere.

Apart from a single required init method, the developer
is free to implement whatever methods and internal threading
is needed to accomplish the task of the DAQ module. The
encapsulation provided by the messaging system means that
the module is completely independent of other modules,
though it is recommended for modules to use the callback
system provided by the messaging API to schedule work on
message arrival.

C. Messaging API
One of the core functionalities of the Application Frame-

work is its messaging API. Each message channel consists of a
unidirectional, strongly-typed connection (i.e. each connection
only handles one type of message data), with both network
and queue-based implementations for inter- and intra-process
messaging, respectively. Connections are indexed by name and
data type (converted to a string by macros defined in the
serialization package and called at data type definition), and
can be retrieved from an external connectivity service using
pattern matching on the name. Supported topologies include
point-to-point, broadcast, and many-to-one connections. End-
points are classified as being ”bind”-type or ”connect”-type,
based on whether the endpoint should be at a well-known or
ephemeral location for the given topology. For example, in the
many-to-one case, the receiver is the ”bind”-type endpoint, and
all senders are ”connect” type. Meanwhile, for the broadcast
pattern, the sender is the ”bind”-type and any receivers are
”connect” type (this particular topology also allows for zero
receivers).

The messaging API exposed to the DAQ modules is agnostic
for whether messages are internal to an application or sent over
the network, allowing for greater flexibility in how modules
are organized into applications. This also allows for custom
applications implementing large portions of the DAQ logic to
be created for smaller test scenarios. Conversely, if a particular
application has a large processing load, it can be split up to
take advantage of available computing resources.

Network transport and serialization use plug-in interfaces,
currently implemented via ZMQ [25] (in ipm and MsgPack
[26]). ZeroMQ ”push/pull” and ”pub/sub” socket types are
used to implement the required connection topologies. Several
ZeroMQ socket options are used to guarantee that messages
are only accepted if the remote endpoints are connected, in-
cluding sndtimeo and rcvtimeo set to 0 and immediate
set on the sender socket. These options allow for the applica-
tion to quickly detect when remote endpoints are not functional
and attempt to reconnect.

D. Threading and Utilities
Several utility classes are provided by the Application

Framework, diagrammed in Fig. 8. Most notable are the Work-
erThread and ReusableThread interfaces, which provide long-
lived tasks and a thread pool implementation, respectively.

Fig. 8. UML Class diagrams of the application framework utilities.

These threading helper classes help DAQ module developers
to implement their logic in a consistent way, improving system
maintainability and allowing for the framework to manage
thread lifetime and exception handling.

The framework provides a naming hierarchy which is used
for monitoring and logging, and the utilities package provides
the NamedObject interface which is the base class for all
application framework classes.

DNS resolution utilities provided by the Resolver class
are used in the network messaging implementation and have
the ability to interface with the Kubernetes DNS [27] for
service-based endpoint resolution.

IV. TESTING AND EXAMPLES

In order to ensure that the application framework meets
the requirements of the DUNE DAQ, each component of the
system is tested in both individual unit tests and through a
series of integration tests of increasing complexity, cumulating
in tests that exercise a significant portion of the DAQ itself,
including real detector hardware.

Each package within the application framework has a suite
of unit tests, and the listrev example was created to exercise
the functionality of the framework as whole as part of the
integration testing of the DUNE DAQ. Its operation is as
follows:

1) A ”ReversedListValidator” module broadcasts a request
to create a new list of integers.

2) Each RandomDataListGenerator uses the information in
the create message to product a list of integers.

3) The ReversedListValidator requests a list identified by
an iteration index from the RandomDataListGenerators
and the ListReverser.

4) The ListReverser, upon receiving a request for a new
list, in turn requests the list from the RandomDataL-
istGenerator, inverts the order of the list received, and
sends it to the ReversedListValidator.

5) Once the ReversedListValidator has received the relevant
pairs of data, it can check that the list was indeed



IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. XX, NO. XX, XXXX 2024 5

Fig. 9. Communication paths within the listrev example package. Several
iterations of the example are run as part of the application framework
integration test suite, to ensure that queues and network connections are
properly working in the required connectivity patterns, and that the DAQ
modules remain functional regardless of which application they are located
in or what other DAQ modules are also in that application. The configuration
shown has two generators in separate applications and one reverser and
validator in a third application.

reversed and that it matches the pattern specified in the
create message, seeded by the iteration index.

This example showcases many different aspects of the ap-
plication framework’s functionality, including DAQ module
creation and managment, several messaging topologies and
patterns (create messages use broadcasts, and the request of
one data type resulting in a data response of a different data
type), and it uses the control, monitoring, and configuration
interfaces. This allows for a discrete test of the application
framework without relying on detector hardware in well-
controlled conditions.

V. IMPLEMENTATIONS OF THE FRAMEWORK

The DUNE DAQ Application Framework has been used as
the basis for the DAQ system for ProtoDUNE horizontal and
vertical drift, as well as the ICEBERG prototype detector at
Fermilab and the TOAD Near Detector prototype. The system
has evolved with each iteration, with different DAQ modules
being used in different configurations. Readout has transi-
tioned from Proto-WIBs to DUNE-WIBs and from FELIX-
based readout [28] to WIBEth Ethernet-based readout [29].
This has shown the framework’s ability to interface with differ-
ent readout hardware with a reasonable development period for
the DAQ modules specific to each readout type. The DUNE-
DAQ Application Framework is being deployed at ProtoDUNE
II for data-taking activities in 2024, with the horizontal-drift
TPC currently being made ready for operations.

VI. CONCLUSIONS

The application framework has been deployed at the Proto-
DUNE test detector at CERN, as well as other test detectors,
and we have used the test runs to refine and improve the frame-
work. The framework is in the final stages of development,
with reviews being performed to finalize the functionality and
close out development of new features. As it is a central part of
the DUNE DAQ, any API changes results in a large amount
of effort to reconcile existing module implementations with
the change, so it is imperative to have the framework in a
very stable state to allow development to reach a conclusion
in other parts of the system.

We have demonstrated that the framework’s plugin-based
architecture allows for easy extension to additional readout
types, an essential feature for the DUNE which will require
readout from at least three and up to six different detector
technologies simultaneously. We believe that the framework
may prove useful as the basis for the DAQ suites of other
high-energy physics experiments in the future.

REFERENCES

[1] Dune homepage. [Online]. Available: https://dunescience.org. Accessed
on: May 7, 2024.

[2] A. Abed Abud, C. Batchelor, K. Biery et al., “Trigger and data
acquisition (tdaq) system design,” DUNE DAQ Project, Tech. Rep.,
Jan. 2023. [Online]. Available: https://edms.cern.ch/document/2812882.
Accessed on: May 7, 2024.

[3] K. Biery, E. Flumerfelt, J. Freeman, W. Ketchum, G. Lukhanin, and
R. Rechenmacher, “Artdaq: DAQ software development made simple,”
Journal of Physics: Conference Series, vol. 898, no. 3, pp. 032013, Oct.
2017, DOI. 10.1088/1742-6596/898/3/032013.

[4] DUNE-DAQ/appfwk. [Online]. Available:
https://github.com/DUNE-DAQ/appfwk. Accessed on: May 7, 2024

[5] DUNE-DAQ/listrev. [Online]. Available:
https://github.com/DUNE-DAQ/listrev. Accessed on: May 7, 2024

[6] DUNE-DAQ/iomanager. [Online]. Available:
https://github.com/DUNE-DAQ/iomanager. Accessed on: May 7,
2024

[7] DUNE-DAQ/ipm. [Online]. Available:
https://github.com/DUNE-DAQ/ipm. Accessed on: May 7, 2024

[8] DUNE-DAQ/serialization. [Online]. Available:
https://github.com/DUNE-DAQ/serialization. Accessed on: May 7,
2024

[9] DUNE-DAQ/utilities. [Online]. Available:
https://github.com/DUNE-DAQ/utilities. Accessed on: May 7, 2024

[10] DUNE-DAQ/rcif. [Online]. Available:
https://github.com/DUNE-DAQ/rcif. Accessed on: May 7, 2024

[11] DUNE-DAQ/cmdlib. [Online]. Available:
https://github.com/DUNE-DAQ/cmdlib. Accessed on: May 7, 2024

[12] DUNE-DAQ/appdal. [Online]. Available:
https://github.com/DUNE-DAQ/appdal. Accessed on: May 7, 2024

[13] DUNE-DAQ/coredal. [Online]. Available:
https://github.com/DUNE-DAQ/coredal. Accessed on: May 7, 2024

[14] DUNE-DAQ/opmonlib. [Online]. Available:
https://github.com/DUNE-DAQ/opmonlib. Accessed on: May 7,
2024

[15] DUNE-DAQ/logging. [Online]. Available:
https://github.com/DUNE-DAQ/logging. Accessed on: May 7, 2024

[16] gRPC. [Online]. Available: https://grpc.io/. Accessed on: May 7, 2024
[17] R. Jones, L. Mapelli, Y. Ryabov, and Soloviev, I., “The OKS persistent

in-memory object manager,” IEEE Trans. Nuclear Science, vol. 45, no.
4, pp. 1958-1964, Aug. 1998, DOI. 10.1109/23.710971

[18] Protocol Buffers Documentation. [Online]. Available:
https://protobuf.dev/. Accessed on: May 7, 2024

[19] Apache Kafka. [Online]. Available: https://kafka.apache.org/. Accessed
on: May 7, 2024

[20] InfluxDB Overview. [Online]. Available:
https://www.influxdata.com/products/influxdb-overview/. Accessed
on: May 7, 2024

[21] Grafana: The open observability platform. [Online]. Available:
https://grafana.com/. Accessed on: May 7, 2024

[22] DUNE-DAQ/ers. [Online]. Available:
https://github.com/DUNE-DAQ/ers. Accessed on: May 7, 2024

[23] S. Kolos,A. Kazarov, and L. Papaevgeniou, “The Error Reporting in the
ATLAS TDAQ System,” Journal of Physics: Conference Series, vol. 608,
no. 1, pp. 012004, Apr. 2015, DOI. 10.1088/1742-6596/608/1/012004

[24] S. Foulkes, and R. Rechenmacher, “TRACE - A System Wide Di-
agnostic Tool,” 2007 IEEE-NPSS Real-Time Conference, 2007, DOI.
10.1109/RTC.2007.4382742

[25] ZeroMQ: An open-source universal messaging library. [Online]. Avail-
able: https://zeromq.org/. Accessed on: May 7, 2024

[26] MessagePack: It’s like JSON, but fast and small. [Online]. Available:
https://msgpack.org/index.html. Accessed on: May 7, 2024

[27] DNS for Services and Pods — Kubernetes. [Online]. Available:
https://kubernetes.io/docs/concepts/services-networking/dns-pod-service/.
Accessed on: May 7, 2024



IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. XX, NO. XX, XXXX 2024 6

[28] Soo Ryu on behalf of the ATLAS TDAQ Collaboration, “FELIX: The
new detector readout system for the ATLAS experiment,” Journal of
Physics: Conference Series, vol. 898, no. 3, pp. 032057, Oct. 2017,
DOI. 10.1088/1742-6596/898/3/032057

[29] R. Sipos for the DUNE collaboration, “The Ethernet readout of the
DUNE DAQ system,” 2024 IEEE-NPSS Real-Time Conference, Apr.
2024, to be published


