
IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. XX, NO. XX, XXXX 2024 1

Cross-Chip Partial Reconfiguration for the
Initialisation of Modular and Scalable

Heterogeneous Systems
Marvin Fuchs, Hendrik Krause, Timo Muscheid, Lukas Scheller, Luis E. Ardila-Perez, Oliver Sander

Abstract—The almost unlimited possibilities to customize the
logic in an FPGA are one of the main reasons for the versatility of
these devices. Partial reconfiguration (PR) exploits this capability
even further by allowing to replace logic in predefined FPGA
regions at runtime. This is especially relevant in heterogeneous
SoCs, combining FPGA fabric with conventional processors on
a single die. Tight integration and supporting frameworks like
the FPGA subsystem in Linux facilitate use, for example, to
dynamically load custom hardware accelerators.

Heterogeneous SoCs from AMD Xilinx are widely used in
data acquisition systems. Qubit control instruments, for instance,
are often built on a single RFSoC. However, this restricts the
number of analogue channels, which is why only a small number
of qubits can be interfaced. To scale to hundreds or even
thousands of qubits, it is a promising option to expand the
resources of the RFSoC by connecting auxiliary FPGAs. The AXI
Chip2Chip (C2C) cross-chip bus allows to easily connect the logic
in the devices. However, partial reconfiguration on peripheral
FPGAs utilising the same channel is not officially supported. To
overcome this restriction, we propose a method using an AXI
C2C connection in combination with an AXI ICAP controller
and custom Linux drivers. As a result, FPGA firmware updates
can be applied at runtime, and peripheral FPGAs can be added
and removed during operation.

Index Terms—Partial Reconfiguration, Dynamic Function Ex-
change, DFX, AXI, MPSoC, System-on-Chip, Zynq UltraScale+

I. INTRODUCTION

DATA acquisition (DAQ) systems for physics experiments
must push the limits of the latest available technology to

fully exploit the potential of novel detectors. At the same time,
these systems must be adapted to meet the specific require-
ments of the particular experiment. Heterogeneous SoCs from
AMD Xilinx are often a good platform to meet these require-
ments, because the included processors can handle complex
control schemes and allow to seamlessly integrate the device
into existing Ethernet networks, whereas the programmable
logic (PL) allows to implement application-specific, fast real-
time modules and custom interfaces. As the following exam-

Manuscript submitted April 8, 2024. This work was funded by the Federal
Ministry of Education and Research (BMBF) within the framework pro-
gramme ”Quantum technologies – from basic research to market” (Project
QSolid, Grant No. 13N16151 and Project QBriqs, Grant No. 13N15950).
This research acknowledges the support by the Doctoral School“Karlsruhe
School of Elementary and Astroparticle Physics: Science and Technology”.
M. Fuchs (corresponding author, email: marvin.fuchs at kit.edu), H. Krause,
T. Muscheid, L. Scheller, L. E. Ardila-Perez and O. Sander are with the
Institute for Data Processing and Electronics (IPE) of the Karlsruhe Insti-
tute of Technology, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-
Leopoldshafen, Germany

ples show, these advantages are beneficial from small single-
device systems up to large, distributed setups with multiple
hundreds of SoCs and FPGAs.

Various custom electronics cards are being developed on the
basis of the advanced telecommunications computing archi-
tecture (ATCA) specification for the next electronics upgrade
of both general-purpose large-scale experiments ATLAS and
CMS at CERN [1], [2], [3], [4], [5]. Most of them will use the
versatility of heterogeneous multiprocessor system-on-chips
(MPSoCs) from AMD Xilinx and combine them with one or
more large FPGAs on an ATCA card to form a unit with
more resources. However, to meet the requirements of the
experiments, hundreds of these cards will be combined to form
a massive DAQ system.

This contrasts, for instance, with systems to interface cryo-
genic sensors, based on a single MPSoC or RFSoC [6], [7],
[8]. One such control and DAQ system is the so-called “Qi-
Controller” developed at the Karlsruhe Institute of Technology
(KIT). It is a platform primarily dedicated to the characteri-
zation of superconducting qubits. Currently, the QiController
is based on a single RFSoC from AMD Xilinx with sixteen
analogue-to-digital converter (ADC) and sixteen digital-to-
analogue converter (DAC) channels. To extend the range of
applications and increase the number of addressable qubits,
the system is currently being expanded to a hardware platform
utilising the ATCA form factor and composed of multiple
RFSoCs that are interconnected to several peripheral FPGAs
and to one another. The proposed architecture is depicted
in Figure 1. In this configuration, the analogue channels of
the RFSoCs are directly used to interface with the qubits,
while the peripheral FPGAs are used to drive further DACs
that increase the number of analogue channels and interface
the qubit coupling devices. Depending on the qubit device
architecture, it is expected to have about 4 couplers per qubit.
The qubits typically operate between 4 to 8 GHz while the
couplers require signals between DC and 1 GHz.

Expanding the single-chip-based QiController to a multi
SoC and multi FPGA platform introduces a variety of new
challenges, including the proper partitioning of the system
into several electronic cards, a multi-device initialisation se-
quence that takes into account the specific requirements of
each individual component, and an intuitive and easy-to-
use method for updating the software and FPGA firmware
on the system. Additionally, the ATCA backplane limits the
number of connections between the individual cards to only
four bi-directional lanes. One of these is used to connect the

IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. XX, NO. XX, XXXX 2024 2

Multiple Outputs
per FPGA

ADCs

FPGA DACs

Multiple FPGAs
per RFSoC

 DACs

AXI C2C, ...

AXI C2C, ...

RFSoC (N-1)

RFSoC

RFSoC (N+1)

AXI C2C, ...

Up to:
16 Outputs
16 Inputs

Fig. 1. Proposed modular and scalable multi-device QiController architecture.

PL of an RFSoC to an peripheral FPGA via AXI C2C in
order to link the logic in both devices. We propose to use
precisely this connection to perform PR, which allows the
FPGA firmware on the peripheral FPGA to be initialised,
updated, and dynamically exchanged from the processors in
the RFSoC, efficiently using the available connections between
devices. PR is a feature of FPGAs that enables exchanging
the configuration of one part of the FPGA at runtime without
affecting the operation of the remaining part.

AXI C2C is a method provided by AMD Xilinx to connect
the internal AXI busses of two devices via gigabit transceivers
(GTs). Using this feature is not only planned for the multi-
device QiController; it is also already implemented in the
aforementioned ATCA cards developed at CERN. Figure 2
shows how it can be used to extend the logic and interface
resources of an MPSoC by connecting an FPGA. Since the
connection is established between the PL and the FPGA, it
does not make a difference for the processing system (PS) of
the MPSoC if the resources are in the PL of the MPSoC itself
or in the external FPGA. All resources are accessible from the

Processing
System

Programmable
Logic

MCAP

SPI JTAG

ICAPPCAP

AXI C2C

Programmable
Logic

MCAP

SPI JTAG

ICAP

AXI C2CX-Bar X-Bar

PCIe PCIe

Flash
Memory

Flash
MemoryJTAG JTAG

Zynq US+ MPSoC US+ FPGA

GT GT

Fig. 2. PL extension of an MPSoC using a peripheral FPGA connected via
AXI C2C. The most important configuration interfaces for both the MPSoC
and for the FPGA are shown. It can be seen that without external loop backs,
only the ICAP interface of the FPGA is accessible from the MPSoC via AXI
C2C. The configuration interfaces that are to be used in the multi-device
QiController are highlighted (PCAP on the MPSoC, ICAP on the peripheral
FPGA).

same PS interface, and the connection is transparent.
Figure 2 also shows the most important configuration inter-

faces of the MPSoC’s PL and of an FPGA from AMD Xilinx.
It can be seen that the ICAP interface is the only one of the
FPGA that is accessible from the PS of the MPSoC via AXI
C2C and without additional connections between the devices
or loopbacks on the FPGA. The ICAP interface is part of the
FPGA and allows PR from within the fabric. It must always
be combined with a suitable IP core that provides control
logic. All FPGAs of the UltraScale and UltraScale+ family
from AMD Xilinx offer this interface, as do all their MPSoC
devices. According to the manufacturer, the ICAP interface is
also the fastest option for PR [14]. This is especially relevant
as the configuration interface is usually the most crucial
element when it comes to rapid PR. The theoretical maximum
throughput of the ICAP interface is 800 MB/s, which can also
be achieved in practice under certain conditions and if the
interface is overclocked from 100 MHz to 200 MHz [16], [18],
[19]. This is much faster than other interfaces, such as the
media configuration access port (MCAP) targeting Peripheral
Component Interconnect Express (PCIe) with a bandwidth of
typically 3 to 6 MB/s or the PCAP intended for configuring
the PL from the PS in an MPSoC and achieving a maximum
throughput of 256 MB/s [19]. However, these values refer
purely to the performance of the hardware and the FPGA
firmware and do not include any software overhead, such as
control from an operating system.

II. RELATED WORK

Since a few years, large heterogeneous systems utilising
various computational engines, including FPGAs, central pro-
cessing units (CPUs), graphics processing units (GPUs), and
artificial intelligence (AI) specific processors, are frequently
deployed in data centres of major providers like Alibaba,
Amazon, Baidu, Huawei, and Microsoft [9]. This trend is
motivated by the expectation that specialised processing units
offer the biggest potential for hardware-based computational
performance gains. Mainly for this reason, large hetero-
geneous systems with multiple FPGAs are the subject of
current research [10], [11], [12]. The automatic and fast
(re-)configuration of FPGAs is crucial, as this is a special
requirement of these devices that other computational engines
do not have, making it a new challenges for a data centre
scenario. One example is that during (re-)configuration the
FPGA cannot be used, which means a non-negligible dead
time. Furthermore, unwanted loading of configuration data
can lead to potential security risks. However, solutions for
initialising and reconfiguring FPGAs in data centres, which
are commonly based on PCIe [13], [15] or Ethernet [19], are
tailored to the special requirements of that field and cannot be
universally applied to DAQ systems. There are various reasons
for this, most of which are a result of the different requirements
made on the systems. Data centers aim to achieve best possible
computational performance, whereas DAQ systems have real
time requirements and must ensure integrity of the measure-
ment data. This can also be seen in the fact that heterogeneous
systems in data centres are usually administered with many

IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. XX, NO. XX, XXXX 2024 3

layers of software, allowing for automated management and
steering of the multi-device setup process and data flow. In
DAQ systems, it is typically preferred to avoid this level of
overhead and uncertainty by instead using a leaner, customized
solution. Nonetheless, there are mechanisms implemented in
data centres that can be transferred to the DAQ domain, such
as FPGA programming via PR as used by Amazon Web
Services (AWS) [13]. This concept includes a small static
framework that is automatically loaded on the FPGA at power-
up to initialise various of its interfaces, which can later be
used to load the payload logic using PR. The mechanism
presented here also employs this method, but in combination
with the AXI protocol, which is a frequently used option
for intercommunication in heterogeneous system consisting of
MPSoCs and FPGAs.

III. PARTIAL RECONFIGURATION

During the design process, the FPGA is divided into a static
region and one or more reconfigurable partitions (RPs). One
or more modules can be implemented for each RP, which can
later be exchanged dynamically at runtime. This corresponds
to a time-division multiplexing of the hardware resources
within an RP. To prevent signals from being unintentionally
emitted or received by the RP during PR, the interfaces
between the static design and the RPs should be disconnected
in an orderly manner for the duration of the reconfiguration.
This is typically accomplished using so-called decoupling
logic.

Both major FPGA manufacturers Intel Altera and AMD
Xilinx offer devices with PR features [21], [22]. However, the
QiController is based on an RFSoC device from AMD Xilinx,
so this contribution only targets their UltraScale+ family of
FPGA and MPSoC devices. For the sake of clarity, the term PR
is used throughout this document, even though AMD Xilinx
calls this feature Dynamic Function eXchange (DFX).

The FPGA subsystem in Linux provides a vendor agnostic
way for full and partial reconfiguration of FPGAs [23]. It com-
prises two kinds of Kernel drivers: FPGA managers and FPGA
bridges. FPGA managers implement one specific method to
configure an FPGA. To accomplish this, they control all
required hardware and FPGA firmware. FPGA bridges control
the decoupling logic to disconnect a RP from its surroundings.
One FPGA manager and any number of FPGA bridges are
grouped in FPGA regions, which embody either one RP or a
full FPGA. FPGA managers, FPGA bridges, FPGA regions,
and their dependencies must be declared in the Linux device
tree, which is a standardised form of describing the hardware
components of an embedded device or computer. The device
tree is evaluated by the Kernel at boot time and later on
to initialize, manage and use these components. Device tree
overlays provide a method to patch the device tree at runtime.
They can be used to notify the Kernel about newly connected
hardware or to unregister hardware before it is physically
removed. In the same way they can also be used to inform the
Kernel that logic is loaded or unloaded from a RP or from the
entire FPGA. Device tree overlays are even capable to actively
load and unload logic when they are applied or removed.

IV. THE PROPOSED APPROACH

In the architecture described in Figure 1 one RFSoC acts
as the central point for user interaction and updates via the
network interface. This is referred to as the central RFSoC.
However, to optimise resource utilisation and maintain system
modularity and expandability, each RFSoC is responsible for
managing, initialising, and updating the FPGAs connected to
it. As updates are merely reinitialisations that are carried out
at runtime, and therefore do no differ from initialisations, the
term initialisation is used for both operations in the follow-
ing. The ATCA standard prescribes a sophisticated hardware
platform management (HPM) infrastructure on every ATCA
card which includes a low-bandwidth reconfiguration ability,
however it is not suitable for fast real-time PR [24], [25]. The
limited backplane connections prevent the implementation of a
dedicated configuration connection for each associated FPGA
board in the crate. Since the PCAP interface is solely available
on MPSoCs, the only remaining option to enable the RFSoCs
to manage the peripheral FPGAs is to access their ICAP
interface through the AXI C2C connection. This eliminates the
need for a dedicated physical configuration connection. If the
reconfiguration capability is used primarily for initialisation
and not for rapidly multiplexing the FPGA fabric, this is also
a particularly efficient solution, as the AXI C2C connection is
not required for other data transmission during initialisation.
To enable the AXI C2C connection and access to the ICAP
interface before initialisation, the FPGA automatically loads
a small static design from a local flash memory at power-up.
This static design can be kept very generic, which is why it
is reasonable to assume that it will rarely need to be updated.

As shown in Figure 1, all peripheral FPGAs in our system
serve the same purpose, which is to interface DACs and
increase the number of available analogue channels. Therefore,
the same configuration file should be used on all of them to
reduce the building and maintenance effort and to simplify
scaling the system. However, it is not easily possible to reuse
the same file for every FPGA, as AXI is an address-based
bus that requires a unique address per node. To use the same
configuration file on all peripheral FPGAs, the AXI address
space of the overall system can be subdivided. The most
significant byte addresses an FPGA or the PL of an RFSoC,
while the less significant four bytes are used for internal device
addressing. This allows to truncate the device-specific part of
the address before it is transferred via AXI C2C to a peripheral
FPGA [26]. Thus, the RFSoCs have 40-bit addressing, while
the FPGAs only have 32-bit addressing.

The initialisation of the entire system is controlled by the
Linux operating system on the RFSoCs. For this purpose,
the capabilities of the FPGA subsystem in Linux are used in
combination with device tree overlays, as described in III. In
a three-stage procedure, device tree overlays are first applied
on each RFSoC independently to initialise the respective
PL. After that, device tree overlays are loaded to reveal the
RFSoCs to each other as well as the static part of the peripheral
FPGAs to the respective Kernels on the RFSoCs. Finally,
the RPs of the peripheral FPGAs are actively configured and
introduced to the responsible Kernel with the third layer of

IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. XX, NO. XX, XXXX 2024 4

VCU118

AXI Chip2Chip
(Aurora 64b66b)

HWICAP

ZCU102

Zynq US+ MPSoC
Processing System

AXI Chip2Chip
(Aurora 64b66b)

Smart
Connect

Smart
Connect

Reconfigurable
Partition

DFX
Bridges

 AXI4 AXI4 Chip2Chip AXI4-Lite

Fig. 3. Setup with one AMD Xilinx ZCU102 and one AMD Xilinx VCU118
to test cross-chip PR with a basic FPGA firmware architecture.

device tree overlays. This procedure enables the system to
be scaled by adding more RFSoCs and FPGAs at runtime.
The concrete hardware implementation of the overall system,
composed of several chips, can thereby be incorporated in
FPGA manager and FPGA bridge drivers.

V. EVALUATION SETUPS

Three different setups based on commercial evaluation cards
were used to evaluate the functionality and performance of
the approach. Each setup contains one AMD Xilinx ZCU102
to emulate an RFSoC of the architecture in Figure 1. Even
though the ZCU102’s MPSoC is missing ADCs and DACs, it
is based on the same architecture as an RFSoC and offers all
relevant features for PR. The peripheral FPGAs in Figure 1
are emulated with AMD Xilinx VCU118 evaluation cards. One
lane of an QSFP to SFP+ cable is used to realise the AXI C2C
connection between the boards.

To test the concept of PR via AXI C2C, the setup with
one ZCU102 and one VCU118 shown in Figure 3 was used
[26]. The FPGA on the VCU118 hosts one instance of the
AXI hardware internal configuration access port (HWICAP) IP
core to access the ICAP configuration interface of the FPGA
and one instance each of an DFX Decoupler and an DFX
AXI Shutdown Manager, which are FPGA bridges provided
by the manufacturer. All of this connects to the PS of the
ZynqMP on the ZCU102 via AXI C2C Bridge and Aurora
64B66B IP Cores on both devices. All IP cores used in this
setup are provided by AMD Xilinx. To integrate the setup
with the Linux FPGA subsystem, a custom FPGA Manager
driver for the HWICAP was developed, based on the example
character device driver for MicroBlaze [28].

The HWICAP IP core is a light weight and relatively easy to
use way to access the ICAP configuration interface. However,
it only provides an AXI4-Lite data interface for transferring
configuration data, which offers lower performance compared
to a full AXI4 interface. To access the ICAP interface with a
full AXI4 connection, AMD Xilinx provides the more pow-
erful and flexible AXI HBICAP IP core. Figure 4 shows the
adapted architecture that was used to explore the advantages of

VCU118

AXI Chip2Chip
(Aurora 64b66b)

HBICAP

ZCU102

Zynq US+ MPSoC
Processing System

AXI Chip2Chip
(Aurora 64b66b)

Smart
Connect

Smart
Connect Reconfigurable

Partition
DFX

Bridges

CDMA

 AXI4 AXI4 Chip2Chip AXI4-Lite

Fig. 4. Setup with one AMD Xilinx ZCU102 and one AMD Xilinx VCU118
to test the performance of cross-chip PR via a full AXI4 interface. The
HBICAP IP core used features an AXI4-Lite control interface and an AXI4
data interface.

ZCU102

HBICAP

Zynq US+ MPSoC
Processing System

Reconfigurable
Partition

DFX
Bridges

CDMA

 AXI4 AXI4-Lite

Smart
Connect

Fig. 5. Setup with one AMD Xilinx ZCU102 to test the performance of the
combination of HBICAP and CDMA without AXI C2C.

this IP core. The architecture also comprises a CDMA IP core
on the MPSoC to reduce processor load and exploit the full
potential of the AXI4 interface. To control both the HBICAP
and the CDMA IP core in this distributed configuration, a
custom FPGA manager driver had to be developed. Finally,
this setup was also tested with two VCU118 evaluation cards
to better represent the architecture described in Figure 1.

To evaluate the impact of the AXI C2C connection on the
PR performance, an equivalent setup without AXI C2C was
created as well. The layout is shown in Figure 5. This setup
is also more comparable to setups commonly used for the
development and benchmarking of custom high-performance
ICAP solutions such as ZyCAP [17]. This in turn makes it
easier to compare the combination of HBICAP and CDMA
with these high-performance solutions to assess whether they
should also be tested in an AXI C2C configuration.

To support the use of the HBICAP and HWICAP IP cores
in the community, we have released our implementation of the
corresponding FPGA manager drivers to the public [29].

IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. XX, NO. XX, XXXX 2024 5

Fig. 6. PR throughput for a range of different RP sizes in the setup with: A)
the HWICAP + AXI C2C (Figure 3 A), B) the setup with a HBICAP + AXI
C2C (Figure 4 B), and C) in the setup with a HBICAP on a single MPSoC
(Figure 5 C).

VI. ANALYSIS

Several tests were conducted to quantify the suitability
of the proposed approach for the initialisation of peripheral
FPGAs in the multi-device QiController. All measurements
were performed using a system clock of 100 MHz, and the
ICAP interface was not overclocked. Additionally, the line
rate for the AXI C2C connection was set to 10.3125 Gbps.
CPU intensive startup tasks in the Linux userspace, such
as the jitter-based initialisation of rng-tools, were disabled,
and tests were automatically executed once the AXI C2C
link was up, or, in the setup without AXI C2C, once Linux
was fully booted. The reconfiguration time was determined
in the FPGA fabric using a counter incremented with the
system clock while the FPGA bridges were disconnected,
measuring the time during which the RP was not usable due
to reconfiguration. The DFX AXI Shutdown Manager initiated
and stopped the counter. Each measurement was repeated ten
times, separated by a one-second pause. After this, the system
was hard rebooted and the entire procedure was repeated ten
times, resulting in a total of 100 data points.

Figure 6 provides an overview of the acquired measure-
ment data. The overall highest reconfiguration throughput at
178 MB/s was achieved with the largest RP and the AXI HB-
ICAP. This corresponds to configuring 90% of the resources
of an AMD Xilinx XCVU9P in 0.5 s and is 45% of the
maximum throughput that can be achieved using the 32-bit
AXI4 bus at a clock rate of 100ṀHz. In contrast, the highest
reconfiguration throughput with the AXI HWICAP is about
two orders of magnitude lower at 2.5 MB/s. The three diagrams
in Figure 6 show minor fluctuations in the measurements
and that the reconfiguration speed clearly depends on the
size of the RP. This is particularly visible in subfigures B
and C, showing results for the HBICAP. One exception are
the clusters with differently sized RPs at the lower end of
all three subfigures. The clusters consist of measurements
carried out immediately after power-up, indicating that in
this case the reconfiguration throughput does not depend on

Fig. 7. Arithmetically averaged PR throughput curves over several consecutive
measurements performed directly after system startup and for different RP
sizes. The consecutive measurements are separated by a one-second pause.
Deviations are indicated by error bars. The presented data shows the behaviour
of the setup with a HBICAP + AXI C2C (Figure 4). However, the other two
setups exhibit similar behaviour.

Fig. 8. Arithmetically averaged PR throughput in relation to the RP size.
Deviations are indicated by error bars.

the size of the RP. Figure 7 shows that all reconfigurations
carried out directly after the start of the system are affected.
But only these, from the second reconfiguration onwards, the
throughput is significantly higher and approximately constant
across all following reconfiguration runs. The effect could also
not be observed if only the VCU118 was restarted while the
ZCU102 waited in idle operation.

Figure 8 illustrates how RP size affects throughput during
reconfiguration. This graph only contains values from the
second reconfiguration onward to omit the above-mentioned
effect of slow initial reconfiguration. The large gap of more
than an order of magnitude between HBICAP and HWICAP
based setups clearly shows that AXI4-Lite severely limits
performance. This is mainly because AXI is a burst-based
protocol and the maximum burst length for AXI4-Lite is
limited to one data transfer per read and write request [30].
In contrast, a full AXI4 interface supports bursts of up to
256 data transfers per request. This difference has an even
greater impact on performance when an AXI C2C connection
is involved, since each request requires a handshake procedure,

IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. XX, NO. XX, XXXX 2024 6

which takes longer when two independent chips are involved.
The measurement results of the HBICAP-based systems show
that in this case the size of the RP has a significant influence on
the throughput during reconfiguration. This observation is in-
dependent of whether AXI C2C is used or not. Thus, the setup
with AXI C2C achieves even a higher maximum throughput
than the single-board implementation on the ZCU102, because
the FPGA on the VCU118 has significantly more resources
than the PL on the ZCU102, allowing for a larger RP. In
case of the ZCU102, more than 75% of all resources where
assigned to one RP and with the VCU118 even more than 90%
were possible without any issues. In case of the HWICAP
based setup, there is no dependence of the reconfiguration
throughput on the partition size.

In all measurement setups, the content of the RP and the
order in which the configurations were applied had no effect on
the reconfiguration speed. Therefore, this will not be discussed
further.

VII. RESULTS AND DISCUSSION

This section will discuss several inferences drawn from the
preceding three diagrams. Figure 6 and Figure 8 show that
reconfiguration with the HWICAP IP core via AXI C2C is in
some cases nearly two orders of magnitude slower than with
the HBICAP IP core. In case of the HWICAP, the reconfigu-
ration throughput is limited by AXI C2C, as can be seen by
the RP size independent configuration speed in Figure 8. This
is also underlined by the fact that in other comparable studies
without AXI C2C, the HWICAP is significantly faster and
the performance gap to the HBICAP is considerably smaller
[17], [19]. In contrast, reconfiguration with the AXI HBICAP
using full AXI4 for data transfer is not limited by AXI C2C,
as shown by the RP size-dependent throughput in the same
figure. From Figure 8 it can also be seen that the impact of
AXI C2C is almost negligible when the HBICAP is used.
This is especially visible at the 4 MB data point, where the
setup with AXI C2C achieves an average of 84.8 MB/s versus
88.0 MB/s in the setup without AXI C2C, corresponding to a
marginal deviation of approximately 3.4%.

The slow first reconfiguration, as seen in Figure 7, was also
investigated. This effect is only observed after a hard restart of
the MPSoC, and not when the peripheral FPGA is restarted.
Thus, it is unlikely that this effect is related to AXI C2C, the
ICAP interface controller, the FPGA bridges, or the RP itself.
Since the effect occurs with both the HBICAP and HWICAP,
it is also not related to the CDMA. Furthermore, the effect also
occurred if the first measurement was not started immediately
after power-up, but with a delay in the order of minutes. Most
likely, this effect is caused by the PS of the MPSoC or by
the Linux operating system running on it. However, the exact
cause could not be identified yet.

As was previously shown by Vipin and Fahmy, with a
custom controller the ICAP interface can reach a maximum
throughput of 382 MB/s, without overclocking the configura-
tion interface and utilising a system clock of 100 MHz [17].
This is approximately twice as fast as the highest average re-
configuration throughput we have achieved with the HBICAP

from AMD Xilinx at 178 MB/s (see Figure 8). Based on our
investigations so far, it is not possible to give a statement
about how much of this deviation is caused by the HBICAP
IP core, the Linux operating system, or our custom HBICAP
FPGA manager. Therefore, we intend to continue our work
by investigating the performance of a custom ICAP controller
in the C2C configuration. Additionally, further improvements
may also be achieved through optimised settings in Linux
or improvements on the custom HBICAP FPGA manager. In
particular, possibilities to accelerate the first reconfiguration
of an RP after system startup should be investigated, because
this is crucial if the proposed approach is eventually being
used to initialize the system. Nonetheless, the reconfiguration
speed achieved in this work, and the proposed method utilising
the AXI HBICAP IP core are already suitable for use in the
multi-device QiController.

VIII. CONCLUSION

This work presented an AXI C2C-based approach to ini-
tialise modular and scalable heterogeneous DAQ systems
composed of multiple MPSoCs and FPGAs from AMD Xilinx.
It uses the Linux operating system on the MPSoC to manage
the entire process. In particular, the FPGA subsystem of Linux
is used together with device tree overlays to perform partial re-
configuration on the peripheral FPGAs. Our implementation of
suitable FPGA manager drivers is released to the public [29].
A series of measurements were performed on three different
setups using evaluation cards to determine the performance
and reliability of the method.

A firmware architecture made entirely of AMD Xilinx IP
cores and built around the combination of AXI HBICAP and
AXI CDMA proved the feasibility of using this architecture
for the multi-device QiController, currently being designed
following the ATCA standard. The reconfiguration throughput
of 178 MB/s achieved with the current implementation has the
potential to even further improve with the use of custom ICAP
and CDMA controllers. Therefore, we intend to explore this
avenue in the coming months.

REFERENCES

[1] T. Mehner et al., “Lessons learned while developing the Serenity-
S1 ATCA card,” in JINST 19 C02018, 2024. doi:10.1088/1748-
0221/19/02/C02018.

[2] T. Mehner et al., “ZynqMP-based board-management mezzanines
for Serenity ATCA-blades,” in JINST 17/03 C03009, 2022.
doi:10.1088/1748-0221/17/03/C03009.

[3] A. Albert et al., “The Apollo ATCA design for the CMS track finder
and the pixel readout at the HL-LHC,” in JINST 17 C04033, 2022.
doi:10.1088/1748-0221/17/04/C04033.

[4] S. Tang et al., “Prototype hardware design and testing of the global
common module for the global trigger subsystem of the ATLAS
phase-II upgrade,” in JINST 17 C05026, 2022. doi:10.1088/1748-
0221/17/05/C05026.

[5] N. Loukas et al., “The CMS Barrel Calorimeter Processor demon-
strator (BCPv1) board evaluation,” in JINST 17 C08005, 2022.
doi:10.1088/1748-0221/17/08/C08005.

[6] T. Muscheid et al., “DTS-100G — a versatile heterogeneous MPSoC
board for cryogenic sensor readout,” in JINST 18 C02067, 2023.
doi:10.1088/1748-0221/18/02/C02067.

[7] J. P. Smith et al., “Highly-Multiplexed Superconducting Detector Read-
out: Approachable High-Speed FPGA Design,” in 2022 IEEE 30th An-
nual International Symposium on Field-Programmable Custom Comput-
ing Machines (FCCM), 2022. doi:10.1109/FCCM53951.2022.9786140.

https://doi.org/10.1088/1748-0221/19/02/C02018
https://doi.org/10.1088/1748-0221/19/02/C02018
https://doi.org/10.1088/1748-0221/17/03/C03009
https://doi.org/10.1088/1748-0221/17/04/C04033
https://doi.org/10.1088/1748-0221/17/05/C05026
https://doi.org/10.1088/1748-0221/17/05/C05026
https://doi.org/10.1088/1748-0221/17/08/C08005
https://doi.org/10.1088/1748-0221/18/02/C02067
https://doi.org/10.1109/FCCM53951.2022.9786140

IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. XX, NO. XX, XXXX 2024 7

[8] R. Gebauer, “A Flexible FPGA-based Control Platform for Supercon-
ducting Multi-Qubit Experiments,” doctoral thesis, Karlsruhe Institute
of Technology (KIT), 2022. doi:10.5445/IR/1000141695.

[9] C. Bobda et al., “The Future of FPGA Acceleration in Datacen-
ters and the Cloud,” CHEP 2019, vol. 15, Art. no. 34, Sept. 2022.
doi:10.1145/3506713.

[10] R. Ammendola et al., “The Next Generation of Exascale-Class Systems:
The ExaNeSt Project,” in 2017 Euromicro Conference on Digital System
Design (DSD), 2017, pp. 510-515. doi:10.1109/DSD.2017.20.

[11] J. Flich et al., “From a FPGA Prototyping Platform to a Computing
Platform: The MANGO Experience,” in 2021 Design, Automation &
Test in Europe Conference & Exhibition (DATE), 2021, pp. 7-12.
doi:10.23919/DATE51398.2021.Flich2021.

[12] A. D. Ioannou et al., “UNILOGIC: A Novel Architecture for Highly Par-
allel Reconfigurable Systems,” in ACM Trans. Reconfigurable Technol.
Syst., New York, NY, USA, 2020. doi:Ioannou2020.

[13] “AWS FPGA - Frequently Asked Questions”. [Online]. Available: https:
//github.com/aws/aws-fpga/blob/master/FAQs.md. Accessed on: March
25, 2024.

[14] Fast Partial Reconfiguration Over PCI Express, version 1.0, AMD
Xilinx. [Online]. Available: https://docs.amd.com/r/en-US/xapp1338
-fast-partial-reconfiguration-pci-express/Summary. Accessed on: April
4, 2024.

[15] J. Ruan et al., “Increasing Flexibility of Cloud FPGA Vir-
tualization,” in 2022 32nd International Conference on Field-
Programmable Logic and Applications (FPL), 2022, pp. 350-357.
doi:10.1109/FPL57034.2022.00060.

[16] S. Di Carlo et al., “A portable open-source controller for safe Dynamic
Partial Reconfiguration on Xilinx FPGAs,” in 2015 25th International
Conference on Field Programmable Logic and Applications (FPL),
2015. doi:10.1109/FPL.2015.dicarlo2015.

[17] K. Vipin and S. A. Fahmy, “ZyCAP: Efficient Partial Reconfiguration
Management on the Xilinx Zynq,” in IEEE Embedded Systems Letters,
2014, pp. 41-44. doi:10.1109/LES.2014.2314390.

[18] F. Duhem et al., “FaRM: Fast Reconfiguration Manager for Reduc-
ing Reconfiguration Time Overhead on FPGA,” in Reconfigurable
Computing: Architectures, Tools and Applications, 2011, pp. 253-260.
doi:10.1007/978-3-642-19475-7.

[19] K. Pham et al., “Moving Compute towards Data in Heterogeneous multi-
FPGA Clusters using Partial Reconfiguration and I/O Virtualisation,”
in 2020 International Conference on Field-Programmable Technology
(ICFPT), 2020, pp. 221-226. doi:10.1109/ICFPT51103.2020.00038.

[20] E. S. Hazen et al., “The APOLLO ATCA Platform,” in Proceed-
ings of Topical Workshop on Electronics for Particle Physics —
PoS(TWEPP2019), 2022. doi:10.22323/1.370.0120.

[21] Intel Quartus Prime Standard Edition User Guide - Partial Reconfigu-
ration, version 18.1, Intel. [Online]. Available: https://www.intel.com/
content/www/us/en/docs/programmable/683499/18-1/design-planning-f
or-partial-reconfiguration.html. Accessed on: March 26, 2024.

[22] Vivado Design Suite User Guide - Dynamic Function eXchange, version
2023.2, AMD Xilinx. [Online]. Available: https://docs.amd.com/r/en-U
S/ug909-vivado-partial-reconfiguration. Accessed on: March 26, 2024.

[23] “Linux Kernel Documentation - FPGA Subsystem”. [Online]. Available:
https://www.kernel.org/doc/html/latest/driver-api/fpga/index.html.
Accessed on: March 26, 2024.

[24] “PICMG Hardware Platform Management,”. [Online]. Available: https:
//www.picmg.org/product-category/hardware-platform-management/.
Accessed on: March 26, 2024.

[25] L. Calligaris et al., “Novel developments on the OpenIPMC project,” in
JINST 19/02 C02079, 2024. doi:10.1088/1748-0221/19/02/C02079.

[26] H. Krause, “Cross-Chip Dynamic Function eXchange for the Initializa-
tion of Heterogeneous Multi-FPGA Systems,” M.S. thesis, Karlsruhe
Institute of Technology (KIT), 2023.

[27] “Linux Kernel Documentation - FPGA Region Device Tree Binding”.
[Online]. Available: https://www.kernel.org/doc/Documentation/devicet
ree/bindings/fpga/fpga-region.txt. Accessed on: March 26, 2024.

[28] “HWICAP driver for MicroBlaze”. [Online]. Available: https://github.c
om/Xilinx/linux-xlnx/tree/master/drivers/char/xilinx hwicap. Accessed
on: March 29, 2024.

[29] “Cross-Chip DFX Drivers”. [Online]. Available: https://github.com/kit
-ipe/Cross-Chip-DFX-Drivers. Accessed on: May 16, 2024.

[30] AMBA AXI and ACE Protocol Specification, version H, Arm Limited.
[Online]. Available: https://developer.arm.com/documentation/ihi0022/
h/?lang=en. Accessed on: March 29, 2024.

https://doi.org/10.5445/IR/1000141695
https://doi.org/10.1145/3506713
https://doi.org/10.1109/DSD.2017.20
https://doi.org/10.23919/DATE51398.2021.Flich2021
https://doi.org/Ioannou2020
https://github.com/aws/aws-fpga/blob/master/FAQs.md
https://github.com/aws/aws-fpga/blob/master/FAQs.md
https://docs.amd.com/r/en-US/xapp1338-fast-partial-reconfiguration-pci-express/Summary
https://docs.amd.com/r/en-US/xapp1338-fast-partial-reconfiguration-pci-express/Summary
https://doi.org/10.1109/FPL57034.2022.00060
https://doi.org/10.1109/FPL.2015.dicarlo2015
https://doi.org/10.1109/LES.2014.2314390
https://doi.org/10.1007/978-3-642-19475-7
https://doi.org/10.1109/ICFPT51103.2020.00038
https://doi.org/10.22323/1.370.0120
https://www.intel.com/content/www/us/en/docs/programmable/683499/18-1/design-planning-for-partial-reconfiguration.html
https://www.intel.com/content/www/us/en/docs/programmable/683499/18-1/design-planning-for-partial-reconfiguration.html
https://www.intel.com/content/www/us/en/docs/programmable/683499/18-1/design-planning-for-partial-reconfiguration.html
https://docs.amd.com/r/en-US/ug909-vivado-partial-reconfiguration
https://docs.amd.com/r/en-US/ug909-vivado-partial-reconfiguration
https://www.kernel.org/doc/html/latest/driver-api/fpga/index.html
https://www.picmg.org/product-category/hardware-platform-management/
https://www.picmg.org/product-category/hardware-platform-management/
https://doi.org/10.1088/1748-0221/19/02/C02079
https://www.kernel.org/doc/Documentation/devicetree/bindings/fpga/fpga-region.txt
https://www.kernel.org/doc/Documentation/devicetree/bindings/fpga/fpga-region.txt
https://github.com/Xilinx/linux-xlnx/tree/master/drivers/char/xilinx_hwicap
https://github.com/Xilinx/linux-xlnx/tree/master/drivers/char/xilinx_hwicap
https://github.com/kit-ipe/Cross-Chip-DFX-Drivers
https://github.com/kit-ipe/Cross-Chip-DFX-Drivers
https://developer.arm.com/documentation/ihi0022/h/?lang=en
https://developer.arm.com/documentation/ihi0022/h/?lang=en

	Introduction
	Related Work
	Partial Reconfiguration
	The Proposed Approach
	Evaluation Setups
	Analysis
	Results and Discussion
	Conclusion
	References

