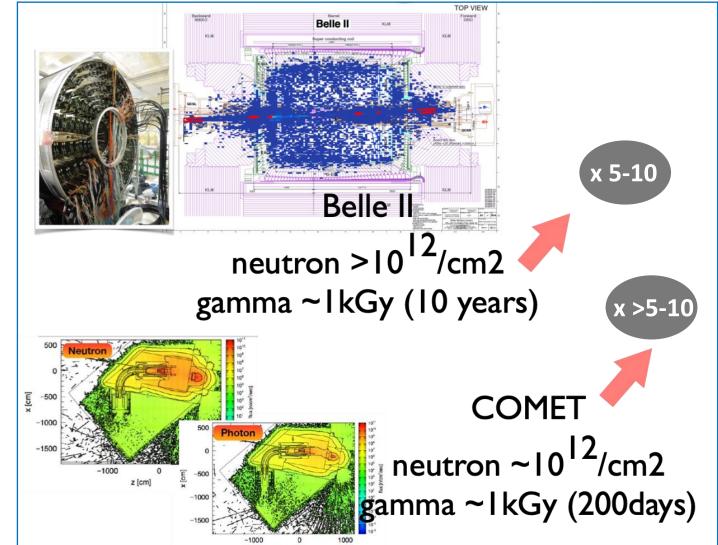


Development of Radiation-tolerant Slow-Control Board based on Atom Switch-based FPGA

Apr. 25, 2024

Kazuki Ueno (Osaka University/QUP)

Nanae Taniguchi (KEK/QUP),


Toshitsugu Sakamoto, Makoto Miyamura (NanoBridge Semiconductor, Inc.) 24th IEEE Real Time Conference @ICISE, Quy Nhon

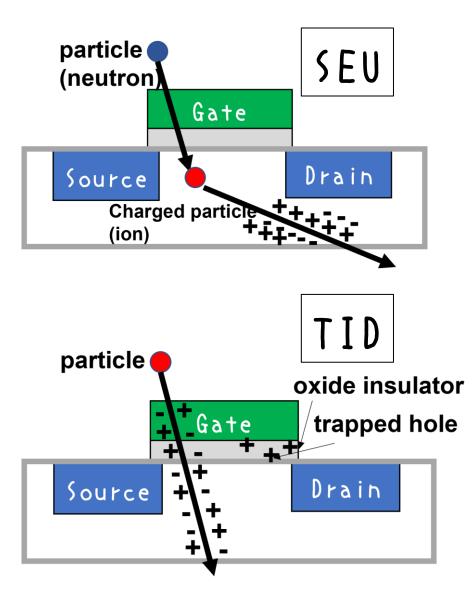
Outline

- Introduction
- Atom switch FPGA
- Irradiation tests
- Slow-Control board
- Summary

Accelerator experiment and radiation

examples of radiation level

Trend higher energy higher luminosity higher intensity


Radiation tolerance for electronics(incl. sensor) will be more important.

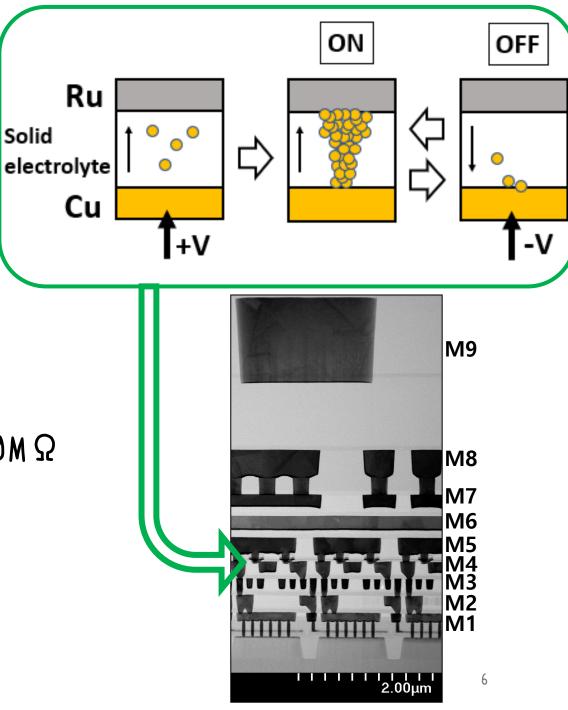
Radiation effects

- Single Event Upset(SEU) (soft error)
 - Bit flip by neutron (nuclear reaction, recoil) and high energy heavy particles.
- Type Inversion
 - Hard damage in semiconductor by neutron.

• Total Ionizing Dose Effect (TID)

- Permanent damage by fixed charge from large amounts of radiation (gamma-ray).
- Displacement Damage Dose (DDD)
 - Permanent damage by displacement of crystal lattice atom from radiation (electron, proton, large amounts of neutrons).

- For future experiments
- •Current situation
 - (example) Soft error on FPGA
 - •Error correction/mitigation code
 - •Re-configuration
- •Future
 - Countermeasure is indispensable.
 Use of Atom switch


 (Atom switch-based (AS) FPGA)

Atom switch FPGA Atom switch(AS)

Conductive bridge is formed in polymer solid electrolyte between inert Ru and active Cu electrodes.

Specification

- resistances for ON/OFF : $\sim 2k/200M\,\Omega$
- # of rewriting times : > 10^3
- retention time : > 10 years
- Switch capacitance : < 0.2fF
- SEU free in principle

AS-FPGA Examples of AS-FPGAs

	ltem	Spec.		LUTs	4input LUT 171k slices
	LUT	33,792	Fabric (CLB, BRAM, DSP)	Block RAM	4bx1024word Dual Port
	Flip Flop BRAM	33,792			980 slices
		768		PLL	5
	SRAM size	1.536 kbit		CLK trees	8 (hard wired)
	rated vol.			DSP	648 slices
The second s				GPIO	240
1mm	IO vol.	1.8V			(Programmable)
	AS bit	50 Mbit		LVDS	16
	process	40nm	A DESCRIPTION OF A DESC	Core voltage	1.05 V
	•			IO voltage	1.8 V

28nm CMOS

Process

AS-FPGA

- Features
 - Rad-hard (error rate < 1/100)
 - Low power consumption (< 1/10)
- Current status
 - irradiation test with heavy ion and pulsed laser
 - verification test on satellite

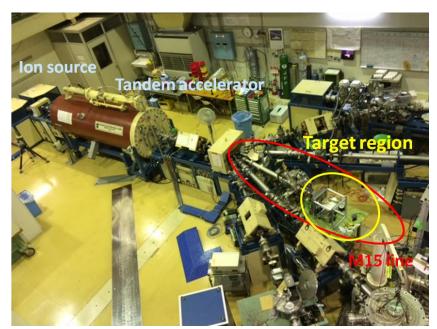
In principle OK for our purpose

We need to confirm feasibility.

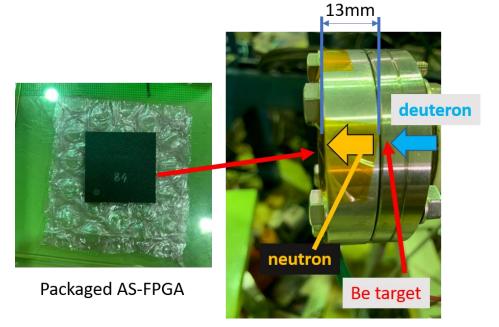
- tolerance to very high radiation level
- usability
- etc. . .

Irradiation tests

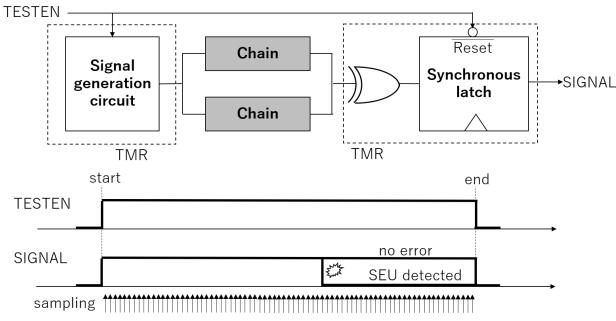
Neutron irradiation tests


Tandem accelerator @ Kobe Univ.

- Beam : 3 MeV deuteron
- Target : Be (ϕ 20 mm)
- Neutron energy : 2 MeV (<7 MeV)
- Flux : 4.9x10⁶ Hz/cm² @ 10cm from target (beam current = 1 μ A)


Reactor @ KUR

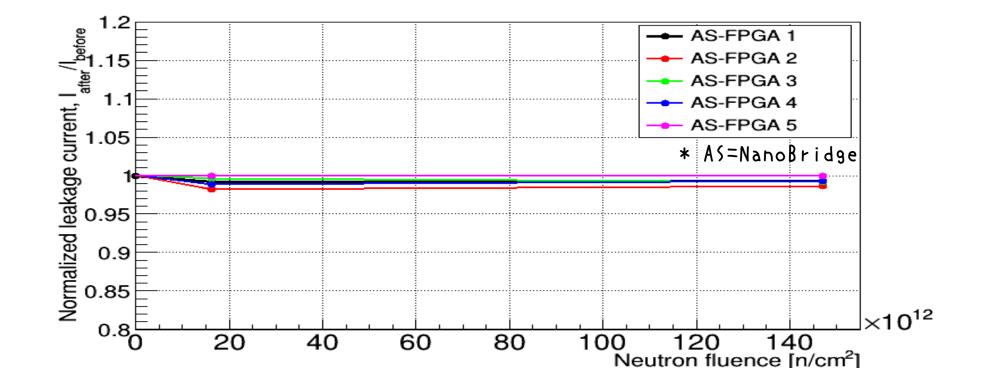
- Method : Pneumatic Tube
- Rated thermal power : 5 MW
- Neutron energy : broad
- Flux : > 10^{13} Hz/cm²


Tandem facility

Neutron irradiation tests

SEU counts were measured with 4 types of chains.

NO SEUs were observed in AS FPGA!

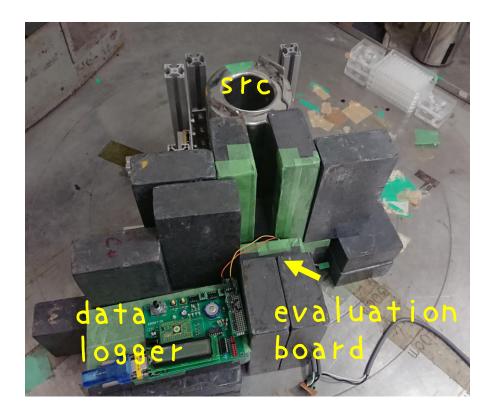

Schematic view of evaluation circuit for SEU

Results of SEU counts

DUT type S		Scale	Scale Neutron fluence(n/cm ²)					
	SRAM	2 kbit	1.6 x 10 ¹¹	5				
	A S 1	96 CLBs	3.6 x 10 ¹¹	0				
	A \$ 2	368 CLBs	1.7 x 10 ¹¹	0				
	DFF+AS	468 CLBs	1.5 x 10 ¹¹	0				

Neutron irradiation tests

Leakage current was measured before/after irradiation.


NO DDDs were observed!

Irradiation tests

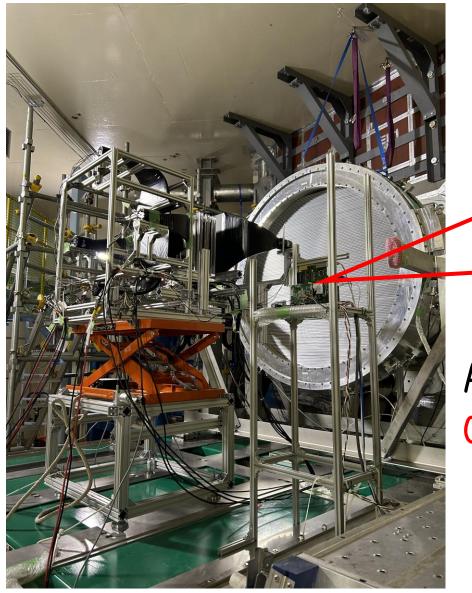
gamma-ray irradiation tests

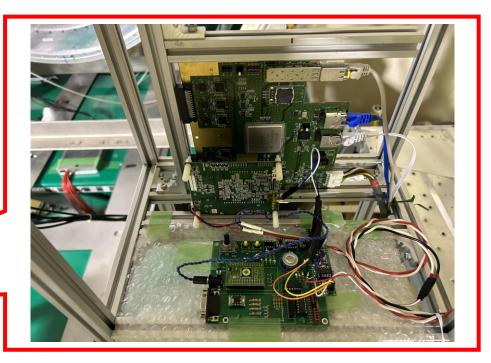
RI Center @ Tokyo Institute of Technology & QST

- Src : Co-60
- Dose rate : 500 Gy/h
- Total dose : 10 kGy

Experimental setup

TID measurements


gamma=ray irradiation tests


Leakage current were measured during irradiation.

NO change was seen up to 6 kGy. After 6 kGy, leakage current increased slightly due to degradation in CMOS.

Demonstration at experimental environment

AS-FPGA operation was tested in COMET first beam environment.

Successfully operated!

Feasibility

- It was found that AS-FPGA had potential to use for future experiment.
 - No SEUs up to at least 10^{11} n/cm².
 - No DDDs up to at least 10^{14} n/cm².
 - No TIDs up to at least 10 kGy.

examples of SEU Summary of soft error rates and ratios of re-downloading time and total measurement time. The BRAM MBE rates of Artix-7¹ and Kintex-7 were not estimated due to low statistics. The CRAM URE rates in the COMET experiment were estimated by using the neutron fluence of 1 × 10¹² neutron/cm².

rate for some		CRAM		BRAM		CRAM URE rate in COMET [h ⁻¹]	Dead time
FPGAs		SEU [[n/cm ²] ⁻¹]	URE [[n/cm ²] ⁻¹]	SEU $[n/cm^2]^{-1} kB^{-1}$	MBE [[n/cm ²] ⁻¹ kB ⁻¹]		
	Virtex-5	$(4.6 \pm 1.4) \times 10^{-8}$	$(1.4 \pm 0.4) \times 10^{-10}$	$(7.0 \pm 2.2) \times 10^{-11}$	$(9.7 \pm 3.1) \times 10^{-13}$	1/27	0.024%
(Y. Nakazawa et al.,	Artix-7 ¹	$(3.4 \pm 1.0) \times 10^{-8}$	$(1.2 \pm 0.4) \times 10^{-11}$	$(7.6 \pm 2.3) \times 10^{-12}$		1/30	0.034%
NIMA 936 (2019) 351)	Artix-7 ²	$(2.9 \pm 0.9) \times 10^{-8}$	$(5.4 \pm 1.7) \times 10^{-11}$	$(7.0 \pm 2.3) \times 10^{-12}$	$(1.4 \pm 0.6) \times 10^{-12}$	1/67	0.031%
NIMA 430 (2014) 331)	Kintex-7	$(2.6 \pm 0.8) \times 10^{-8}$	$(5.7 \pm 1.8) \times 10^{-11}$	$(8.7 \pm 2.7) \times 10^{-12}$		1/64	0.011%

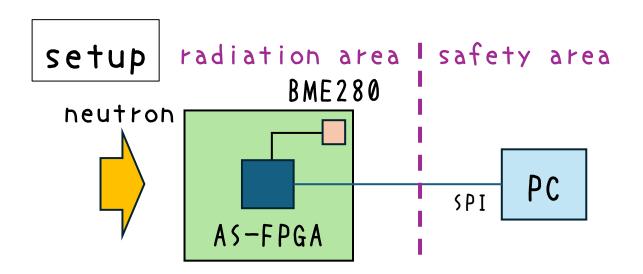
- More irradiation tests with higher level are needed.
- Usability check is important.

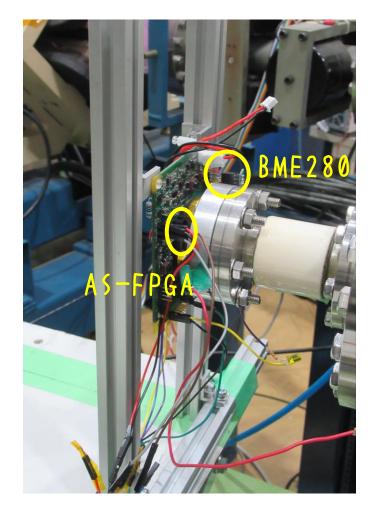
-> Development of Slow-Control board.

Slow-Control (evaluation) board

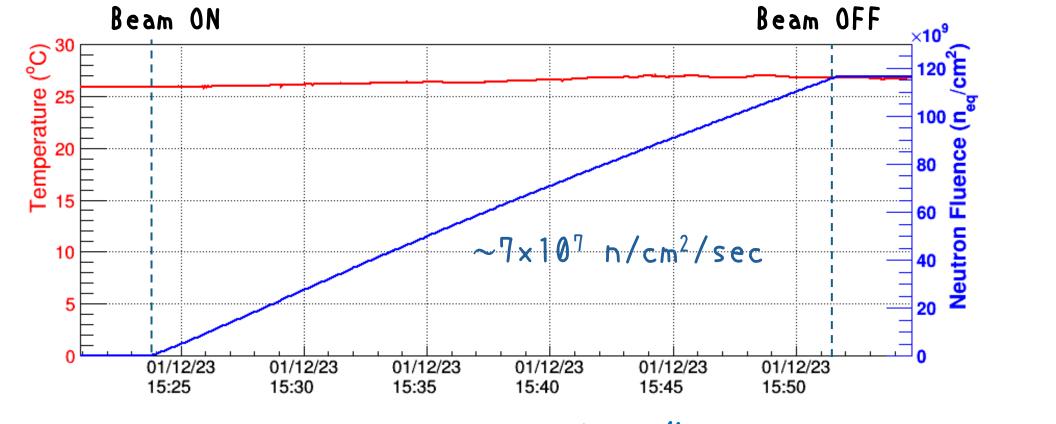
Purpose

- Develop Slow-Control device
- Evaluate functions as FPGA under high radiation environment.
- Provide feedback for development of program tool.
 - Slow-Control board
 - General I/O
 - LED
 - Switch




general environmental sensor can be easily connected.

Neutron irradiation test


Environment monitor test @ Kobe Univ.

- Bosch BME280 (temperature sensor) was connected.
 rad-hard up to > 10¹² n/cm².
- Simple logic was implemented.
- Operation test at high radiation environment was performed.

Result

We have successfully operated the "Slow-Control board" and taken data under the high radiation environment!

Summary

- Countermeasure against radiation is important for future accelerator experiment.
- AS-FPGA is the one of the candidates.
- Feasibility check was done using neutrons and gamma-rays.
- Slow-Control board using AS-FPGA was developed.
- Operation test under the high radiation environment was successfully done.

future work

- More irradiation tests with higher radiation level are needed.
- Program tool will be developed.
- Fast signal handling will be considered.