
hls4ml: low latency neural network inference on FPGAs

Vladimir Loncar (MIT)
For the FastML team

fastmachinelearning.org

https://fastmachinelearning.org
http://a3d3.ai


The Large Hadron Collider
27 km circumference accelerator at CERN 
on the border of France and Switzerland 
near Geneva

Accelerates protons close to the speed of 
light, and collides them at 14 TeV centre of 
mass energy

Searching for new fundamental physics of 
the universe!

Collisions happen at 4 points where there 
are detectors

- We work on one of these: the CMS 
experiment 2



Data acquisition in LHC
At the LHC proton beams collide at a frequency of 40 MHz

Extreme data rates of O(100 TB/s)

“Triggering” - Filter events to reduce data rates to manageable levels

3



Trigger hardware
We need fast processing of raw data in O(µs)

- Not possible to use common hardware, such as 
CPUs, nor common operating systems

Must be flexible and modular to support reconfiguration 
and upgrade/maintenance of modules

- Field-programmable gate arrays (FPGAs)
- Perfect because:

- Resource parallelism ➔ low latency
- Pipeline parallelism ➔ high throughput

4



Designing low-latency ML processing pipelines
The design of low latency algorithms differs from other ML implementations

- We must tailor specific processing hardware to the task at hand to increase the overall 
algorithm performance

- Processor design + the design of algorithms = hardware ML co-design

However, designing hardware is challenging

- Designing efficient parallel algorithms for programmable hardware is even more 
challenging

- Usually done by domain experts using hardware description languages (HDLs)

➔ High-Level Synthesis (HLS)

5



High-Level Synthesis
An automated design process that takes functional description (usually in C/C++-like 
language) as input and produces register-transfer level (RTL) abstraction expressed in HDL

- No need to manually write HDL code
- C++ is not ideal language for hardware design, as it lacks definitions of concurrency 

and timing
- HLS tools extend the specification of the language with compiler directives aimed at 

guiding the conversion to RTL

HLS tools have advanced significantly in recent years (study), making them a viable option 
for creating ML tools

Using HLS we created a tool for converting DL models into high-performance hardware 
definition

 ➔ High-Level Synthesis for Machine Learning, hls4ml 6

https://fastmachinelearning.org/iccad2023/file/fastml-iccad-23-final10.pdf


high level synthesis for machine learning
hls4ml - User-friendly tool to automatically build and optimize DL models for FPGAs:

- Python library, pip install hls4ml
- Thriving github ecosystem, 1.1k ⭐

model
quantized 
& pruned 

model

HLS
model

HLS
project

Co-processing 
kernel

Custom firmware 
design

tune 
configuration

7

QKeras + AutoQ (Keras)
Brevitas (PyTorch)

QONNX

https://github.com/google/qkeras
https://github.com/Xilinx/brevitas
https://github.com/fastmachinelearning/qonnx


Supported architectures:
- Fully-connected Networks (MLPs) - arxiv:1804.06913

- Convolutional Neural Networks (CNNs) - arxiv:2101.05108

- Recurrent Neural Networks (RNNs) - arxiv:2207.00559

Experimental support:
- Graph NNs

- GarNet architecture - arxiv:2008.03601

- JEDI-net - arxiv:2209.14065

- Transformers - arxiv:2402.01047

Other ML

- Symbolic expressions - arxiv:2305.04099

8

Supported neural networks

https://arxiv.org/abs/1804.06913
https://arxiv.org/abs/2101.05108
https://arxiv.org/abs/2207.00559
https://arxiv.org/abs/2008.03601
https://arxiv.org/abs/2209.14065
https://arxiv.org/abs/2402.01047
https://arxiv.org/abs/2305.04099


Distinguishing features:
- Zero-suppressed weights
- Quantization

- Binary/Ternary layers (computation without using DSPs) - arxiv:2003.06308 
- Google QKeras integration - arxiv:2006.10159 

- User-controllable trade-off between resource usage and latency/throughput
- Tuned via “reuse factor”

- Tunable I/O interface - fully parallel (low latency) or streaming (resource-efficient)

Multiple HLS “backends” to support different vendor tools
- AMD/Xilinx Vivado/Vitis HLS
- Intel/Altera Quartus HLS (and oneAPI)
- Siemens/Mentor Catapult HLS

9

Library features

https://arxiv.org/abs/2003.06308
https://arxiv.org/abs/2006.10159


Constraints and limits of hls4ml
1 ns 1 µs 1 ms

● Achievable with parallel 
I/O and low reuse factor

● Requires extensive model 
compression via pruning 
and quantization

● Number of model 
parameters: 
O(100) - O(1000)

● Achievable with 
streaming I/O 

● Compression required on 
lower-end FPGAs, 
moderate quantization

● Number of model 
parameters: 
O(1000) - O(10 000)

● Served by vendor tools: 
Vitis AI, Intel oneAPI…

● Based on systolic array 
design with off-chip 
storage of weights

● Number of model 
parameters: 
O(100 000) - O(1 million)



How does hls4ml deploy NNs to FPGAs?

11

Efficient use of available resources

- hls4ml performs optimizations on the 
model to achieve hardware affinity

Everything must be stored on-chip!

- Better latency/throughput
- Required to meet the constraints of L1 

trigger

Parallelize as much as possible

- Pipeline the layers to increase throughput



FPGA architecture: Basic Elements

Wider custom operations 
are implemented by 

interconnecting Basic 
Elements

Basic Elements are
surrounded with a

flexible interconnect

12

Configured to perform any 
1-bit operation



FPGA architecture: Basic Elements

We combine basic elements to build the 
ingredients of the neural network

For example:

- Matrix-vector multiplication
- Various math functions
- Convolution
- Activations
- …

Softmax

Logic for 
matrix-vector 
multiplicaton

13



FPGA architecture: Memory blocks

On-chip memory blocks provide fast 
access to data

- Due to latency constraints, we can’t use 
off-chip memory

Can be configured and grouped using the 
interconnect to create various cache 
architectures

- We use memory blocks to store the 
(immutable) weights of the network

18K block

14

Small caches

Larger cache 
hierarchy



FPGA architecture: Multiply/Add blocks

Digital Signal Processing (DSP) Blocks

- Up to 12 000 blocks in high-end FPGAs
- Gives us the theoretical upper limit of 

parallel operations per clock cycle

Support variable precision fixed-point 
multipliers

- 27 × 18 two’s complement multiplier
- Support for rounding/saturation
- Can emulate floating-point operations

15

Dedicated 
multiply and add 

blocks



How to meet the requirements of LHC trigger?

Efficient network design via model 
compression:

- Pruning - removing weights with low 
magnitude

- Quantization - using fewer bits 
- Knowledge distillation - producing smaller 

models

Tuning I/O and parallelism to meet latency 
demands

- Reuse factor - controls the amount of 
unrolling

- Array or streaming I/O 16



Efficient network design: Pruning & Quantization
Pruning weights to zero allows us to 
remove them from the computation

- Directly saves memory and multiplier 
resources

Quantization
- Using fewer bits for computation saves us 

logic, memory and multiplier resources
- For best results, we need to use 

quantization-aware training (QAT)
- Developed QKeras for QAT - a 

collaboration with Google, QONNX with 
AMD Xilinx

- More about quantization in a talk tomorrow
17

Pruned model 
requires less DSP 

and memory blocks

Quantization saving 
logic resources



Efficient network design: Parallelism
Trade-off between latency and resource 
usage determined by the parallelization of 
the calculations in each layer

- Configure the “reuse factor” = number of 
times a multiplier is used in a computation

- We aim for sub-1µs latency (e.g., <200 
cycles @ 200MHz)

18

Additional 
multipliers used

Duplicated logic



Fully parallel
Each mult. used 1x

Each mult. used 3x 

Each mult. used 6x 

…

~ 175 ns

~ 75 ns

…La
te

nc
y 

(c
lo

ck
 

cy
cl

es
)

Longer latency

More resources

Latency of layer m

19

Parallelization: Timing



Example: Jet tagging with a DNN

20

Discrimination between highly energetic (boosted) q, g, W, Z, t initiated jets

Jet = collimated ‘spray’ of particles

 top other quarkZ W gluon

t→bW→bqq
3-prong jet

Reconstructed as one massive jet with substructure

q/g backgroundW→qqZ→qq
2-prong jet 2-prong jet no substructure

and/or mass ~ 0



Example: Jet tagging with a DNN
Input variables: several observables known to have high discrimination power from 
offline data analyses and published studies

- D. Guest at al. PhysRevD.94.112002, G. Kasieczka et al. JHEP05(2017)006, J. 
M. Butterworth et al. PhysRevLett.100.242001, etc..

Train a five class multi-classifier on a sample of ~ 1M events with two boosted 
WW/ZZ/tt/qq/gg anti-kT jets

- Dataset DOI: 10.5281/zenodo.3602254
- OpenML: https://www.openml.org/d/42468

Fully connected neural network with 16 inputs:
- Relu activation function for intermediate layers
- Softmax activation function for output layer

21

better

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.94.112002
https://link.springer.com/article/10.1007/JHEP05(2017)006
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.100.242001
https://www.openml.org/d/42468


Example: SVHN digit classification with CNNs
Street-view house numbers dataset (SVHN)

- 32x32x3 images

- A tougher MNIST

Model architecture:

22



Example: SVHN model performance
Baseline models

- Full 32-bit precision (BF)
- Full 32-bit precision, pruned (BP)

- 75% sparsity
- Polynomial decay

QKeras models
- Quantized (Q)

- Binary (1-bit)
- Ternary (2-bit)
- Quantized to 3-16 bits

- Pruned (QP)
- 75% sparsity

23



Example: SVHN model performance on an FPGA
Targeting a high-end Xilinx Virtex UltraScale+ VU9P series FPGA

Possibility to scale to much smaller FPGAs!

- Potentially much lower cost

 24

More details in our paper! 

https://arxiv.org/abs/2101.05108


Example: Top tagging with LSTM/GRU
Implementation of LSTM/GRU layers commonly used in RNNs

Two “modes” of operation:

- Static mode: a single RNN block processes every input for every sequence
- Non-Static mode: RNN blocks for each input in the sequence

Non-Static mode is expected to give larger throughput (lower II) but at much higher 
resource usage

25

https://indico.cern.ch/event/1156222/contributions/5062815/


Example: Jet tagging with symbolic expressions
Symbolic Regression (SR): a ML technique that seeks to discover analytic 
functions that approximate a dataset

- Offer interpretable results for the underlying problem

Expressions can be “discovered” via PySR or a neural network

hls4ml takes care of code generation, data types and approximation of 
math functions with lookup tables

More details in Ho-Fung’s talk at CHEP

26

https://astroautomata.com/PySR/
https://arxiv.org/abs/2401.09949
https://indico.jlab.org/event/459/contributions/11740/


Ongoing work: High-Granularity Quantization
High Granularity Quantization (HGQ) - A novel method on optimizing bitwidths with gradients

- Unlike QKeras where all weights of a layer have the same bitwidth, in HGQ each weight of the same 
multiplier gets unique bitwidth, perfect for unrolled designs that we use in L1T

- Significantly reduced resource usage, out-of-the-box bit accuracy, accurate resource estimation…

See Chang’s talk at FastML, soon fully supported in hls4ml

27

https://indico.cern.ch/event/1283970/contributions/5550655/
https://github.com/fastmachinelearning/hls4ml/pull/914


Ongoing work: Hardware-aware pruning
In fully unrolled designs (ReuseFactor = 1), HLS compiler optimizes any multiplications by zero

- Any unstructured pruning works if RF=1
- But what about RF>1? We don’t get the benefit unless all weights that share a DSP are zero

Hardware-aware pruning (from Ben) allows us to structure pruning by targeting weights that are shared by 
a DSP and set them to 0 (can also be applied to save BRAMs as well)

28

https://indico.cern.ch/event/1283970/contributions/5550659/


Ongoing work: Transformers
Goal - Transformer architectures with microsecond latencies

A promising demonstration of an implementation of MultiHeadAttention layer in 
Keras was created, see talk by Elham et al

- Multi-stage pipelined design integrated with hls4ml’s existing features (RF)
- + LayerNorm and other building blocks

Tested on a few models, e.g., for B-tagging (9k parameters)

Moving on to next stage and investigating efficient transformer architectures 29

https://indico.cern.ch/event/1318874/contributions/5549549/attachments/2703136/4692092/HLS4ML-Transformer-presentation.pdf


Summary
hls4ml - software package for translation of trained neural networks into synthesizable 
FPGA firmware

- Tunable resource usage latency/throughput
- Fast inference times, O(1µs) latency

Currently being extended to multiple hardware and neural network architectures

- Graph NNs, Transformers…

More information:

- Website
- Code
- Tutorial

30

https://fastmachinelearning.org/hls4ml/
https://github.com/fastmachinelearning/hls4ml
https://github.com/fastmachinelearning/hls4ml-tutorial

