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I. INTRODUCTION

S detector technologies improve, the increase in resolu-

tion, number of channels and overall size create immense
bandwidth challenges for the data acquisition system, extend
data center compute times and grow data storage costs. Much
of the raw data does not contain useful information and can
be significantly reduced with real-time smart veto algorithms,
online data compression and online analysis right at the
edge [1].

The improvements in artificial intelligence, particularly the
many flavours of Machine Learning (ML), adds a powerful
and versatile tool to data acquisition (DAQ) strategies [2].
However, large and deep neural networks remain memory and
compute intensive, limiting their usability at the edge. One of
the most important aspects of integrating ML in a DAQ system
is determining when and where integrating a machine learning
algorithm will be most beneficial and how to minimize the
model size without losing the precision and accuracy required
for a scientific application. Furthermore, the performance of
the algorithm needs to be measured for both accuracy and
compute metrics.

II. TARGET APPLICATION
THE COOKIEBOX AT LCLS-II

New developments in radiation and photonic detectors
improve resolution, sensitivity, size and rate, all of which
contribute to a gigantic increase in data production rate. One
current example of this is the LCLS-II upgrade, which in-
creases the X-ray shot repetition rate from 120 Hz to 1 MHz, in
addition to increasing brightness by 4 orders of magnitude [3].
The instrumentation has also undergone improvements, in-
creasing the number of pixels and dynamic range, which
contributes to an immense growth in raw data generation [4].
One of the many solutions being implemented to handle this
large data rate consists of vetoing bad shots - that is, shots
that do not conform to the experimental requirements [5]. To
do so, we need to analyze each X-ray pulse shape in time to
stop the data collection from downstream detectors.

The CookieBox is an attosecond angular streaking detector
used for X-ray pulse shape recovery - that is, it can deter-
mine the time and energy spectra of an X-ray shot without

!Interdisciplinary Institute for Technological Innovation, Sherbrooke,
Canada.

2SLAC National Accelerator Laboratory, Menlo Park, USA.

e-mail: audrey.corbeil.therrien @usherbrooke.ca.

2 —L

\N/
/
4 sub-spikes

Main
experiment
DAQ system

Fig. 1. Overview of the Cookiebox detector. X-ray pulses have different
numbers of sub-spikes. The Cookiebox (only 8 channels are shown) samples
the pulse with Time-of-Flight Spectrometers. The data is digitized, then
preprocessed before converging on a single FPGA which hosts the ML model.

significantly altering it [6]. With this information we can veto
shots that do not conform to the current experiment require-
ments and provide additional information on good shots to
accelerate the analysis of downstream detector data. However,
for this information to be useful, it needs to arrive within
a few microseconds to avoid large buffering requirements.
Thus, the CookieBox analysis must be completed in less than
a microsecond, from the spectrometer analog signal to the
control computer, to stay within the 1 MHz rate of pulses.

The CookieBox spectrometers generate a total data stream
of about 800 GB/s on 16 channels. The data needs to converge
on a single node - in this case a single FPGA - for the
analysis to take place. For our example system, we developed
an algorithm which determines how many sub-spikes exists
within the X-ray shot. In other words, we do a simplified
time-spectrum analysis to classify a shot as having 0, 1, 2,
or many sub-spikes. Most LCLS experiments target single
spike or double spike shots, so this real-time analysis can veto
shots which do not contribute useful information to the current
experiment before they are saved on disk, reducing the size of
the dataset.

III. METHODOLOGY
A. Data preprocessing

The classical method to obtain the time and energy spectrum
of an X-ray shot requires an iterative compute intensive



algorithm which cannot be converted to an efficient FPGA
implementation [7]. As the initial use of this reconstruction
is to identify the number of spikes in a shot, we opted to
design a neural network to classify shots. In addition, the
combination of signal processing algorithms and compression
algorithms with ML can improve the latency and accuracy of
edge systems by reducing the width and depth of the model.
Thus, we included a peak-finder algorithm and non-uniform
quantization of the data before the neural network, which
resulted in much smaller neural network models [5].

The information in the spectrometer signal is held in the
timestamps of the peaks. Thus, the first operation applied on
the signal is a peak-finding algorithm based on first and second
order derivatives.

The resolution of the timestamps affects the ability of the
downstream neural network to identify the peaks. However,
the detector physics imply that not all of the time window
used is affected similarly; there are more peaks appearing
closely together at the beginning of the window, and the peaks
appearing later are fewer and more spread out. We can take
advantage of this distribution and optimize a non-uniform
width for the bins of the histogram [5]. This minimizes the bit-
width necessary for the peak timestamp data, which in turns
reduces the size of the neural network and its latency.

B. Neural Network Design

Both Fully Connected Neural Networks (FCNN) and Con-
volutional Neural Networks (CNN) were trained for perfor-
mance comparison [5]. They were trained with synthetic data,
using the Sparse Categorical Cross-Entropy loss function with
the Adam Optimizer and a learning rate of 0.001. Based on
previous studies, the FCNN using a width of 5 bits for the
optimized non-uniform quantification was selected for this
study, as the model that balanced the best accuracy with the
lowest computation requirements. The hyperparameters for
this model are summarized in Table 1 and Figure 2 shows
the confusion matrix.

Input size 32x16
Layers 3xRELU
Output Softmax
Output size 1x5
Number of parameters 3,433
Accuracy 84 %
TABLE T

NEURAL NETWORK METRICS

C. FPGA implementation

Both the preprocessing steps and the model were imple-
mented on an AMD Xilinx VCU128.

The data preprocessing algorithms, the peak finder and the
non-uniform quantizer, were implemented using High Level
Syntesis (HLS) C language, and were then imported in the
main project as modules.

The neural network model was converted for fast inference
on FPGA using the hls4ml framework [8]. The hls4ml
framework can import standard format model (Keras, ONNX)
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Fig. 2. Confusion matrix for the 5 bit FCNN network

and based on the selected configuration, will generate an IP
block that can then be imported in the main FPGA project.
Both the preprocessing modules and the neural network
were combined in the project along with VHDL modules
for the inbound communication (from the digitizers) and the
outbound communication (ethernet port to the computer). For
more details on the FPGA architecture, please refer to [9].

D. Testbench

To test the entire data acquisition chain, we built a test bench
using a 65 GSPS arbitrary waveform generator (Keysight
Technologies M8195A) to replicate the analog output from
one of the 16 CookieBox channels [10]. The signal is then
digitized by an 8-bit 6.4 GSPS ADC (ADC08DJ3200) before
being sent into the FPGA for processing.

Since the current testbench is limited to emulating one
channel, we created two modes to test different features. The
first one, latency mode, uses the single analog channel with
other channels being stored in FPGA memory. This mode is
used to test the latency and throughput of the system. The
second one, serial mode, transfers the data from each analog
channel sequentially, which is then combined in the FPGA.
This slower mode lets us measure the impact of the hardware
on accuracy.

The processed data is sent to a computer through a 1 Gb/s
Ethernet link where the results can be compared to ground
truth. An oscilloscope is used to measure the latency between
the synchronization signal from the waveform generator and
the "DONE” signal from the FPGA, which signals the end of
an inference.

IV. RESULTS AND DISCUSSION

A. Implementation

The implementation report including resource utilization
and latency of the elements of the data processing chain
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Fig. 3. Latency of the neural network module before and after data fetching
optimization.

is summarized in Table 2. The total power average power
is 5.28 W. Serial mode and parallel mode have no notable
difference in resource usage.

The FCNN originally required 2.8 s to perform the pre-
diction while the CNN required 50 ps, thus the 5 bit FCNN
was selected for further testing. However, to achieve sub
microsecond latency, the HLS code generated by hls4ml code
was reworked to improve data fetching cycles by increasing
the bus width and parallelize the data fetching operation. This
improved the FCNN latency to 0.2 us (figure 3). Adding the
latency for the data preprocessing modules, the data processing
chain processing predicted time adds up to 0.35 ps. In the next
step, we measure the latency of the entire chain using a test
bench emulating one channel of the entire acquisition chain.

Peak-Finder | Quantization | FCNN | CNN
Latency (us) 0.05 0.1 0.2% 50
DSP 0 0 141 350
LUT 1985 580 14k 85k
BRAM 0 0 4 76
FF 2252 760 7k 31k
*After optimization
TABLE II

VCU128 IMPLEMENTATION AND PERFORMANCE

B. Full chain tests

The testbench consists of, in sequence, the arbitrary wave-
form generator, the digitizer, the FPGA and the computer.
Synthetic data was uploaded to the waveform generator and
the results from the data processing chain were sent to the
computer where they were compared to the expected results.
Since the waveform generator has limited memory, we can
only test a small subset of data at a time. The subset used in
these experiments had an expected accuracy of 89 %.

On the testbench, the neural network slightly outperformed
the expected results of the test dataset with a 90 % accuracy.
After verification with our monitoring system, it was found
that small differences due to the digitizing process were the
cause. Indeed, due to analog noise, the values sent through
the waveform generator and then digitized by the ADC varied
slightly from the original values. Specifically, some peak
values were slightly offset in time compared to the original,
leading to a slight difference between the expected and the
measured accuracy as shown on figure 4. It should be noted
that tests with varying levels of noise and distortion are
planned to test the robustness of the DAQ system, something
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Fig. 4. Differences between the original dataset and the signals after
digitization in the DAQ. Ground truth is yellow, testbench digital signal is
in blue, and brown indicates both agree on the same value.

that would not be possible with the CookieBox system and
can only be achieved using the experimental testbench.

The latency was measured between the waveform generator,
which outputs a sync signal with the beginning of the 1ps
length analog signal, and the "’DONE” signal which indicates
the neural network module has completed an inference. Thus,
the time between the falling edge of the waveform generator
pulse (in yellow on figure 1) and the "DONE” signal from
the FPGA (green on figure 1) includes the 1us analog signal
from the CookieBox channel in addition to the entire DAQ
processing time. This total time is 1.4 us, which means the
measured processing time is 0.4 us, less than the time of
the signal itself. Thus, this system provides veto information
before the next shot and can be used to indicate whether or
not data from the downstream detectors needs to be saved with
minimal memory buffers.
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Fig. 5. Latency measurement from the waveform generator output to the
FPGA output.

V. CONCLUSION

We developed a system that completes data preprocessing
and a neural network inference in 0.4 ps for the CookieBox
veto application. The neural network accuracy was slightly



affected positively by the variations inherent in the analog
to digital conversion process. This effect must be further
studied to quantify the robustness of the system to various
types of noise. This experiment was enabled by a versatile
testbench based on an arbitrary waveform generator that can
replicate analog and digital signals from a variety of sensors
and can distort them to study DAQ chain robustness to various
phenomena.

Artificial Intelligence, in particular machine learning, is a
very versatile and powerful tool to analyze and compress
data. However, it comes with costs: it requires large training
datasets and significant compute power. Thus, its benefits must
always be balanced with its requirements and the algorithm
complexity should be tailored for a specific function.

Furthermore, the data representation selected for a machine
learning algorithm has an immense impact on its performance.
Preprocessing the data and choosing a compact, information
rich representation helps minimize the size of the machine
learning model and thus improve its compute performance
significantly.

Finally, it is critical that for science applications the model
is validated and tested thoroughly on both valid and invalid
data. Systems should have monitoring processes in place to
detect when smart DAQ systems operate outside the range
they were designed for.
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