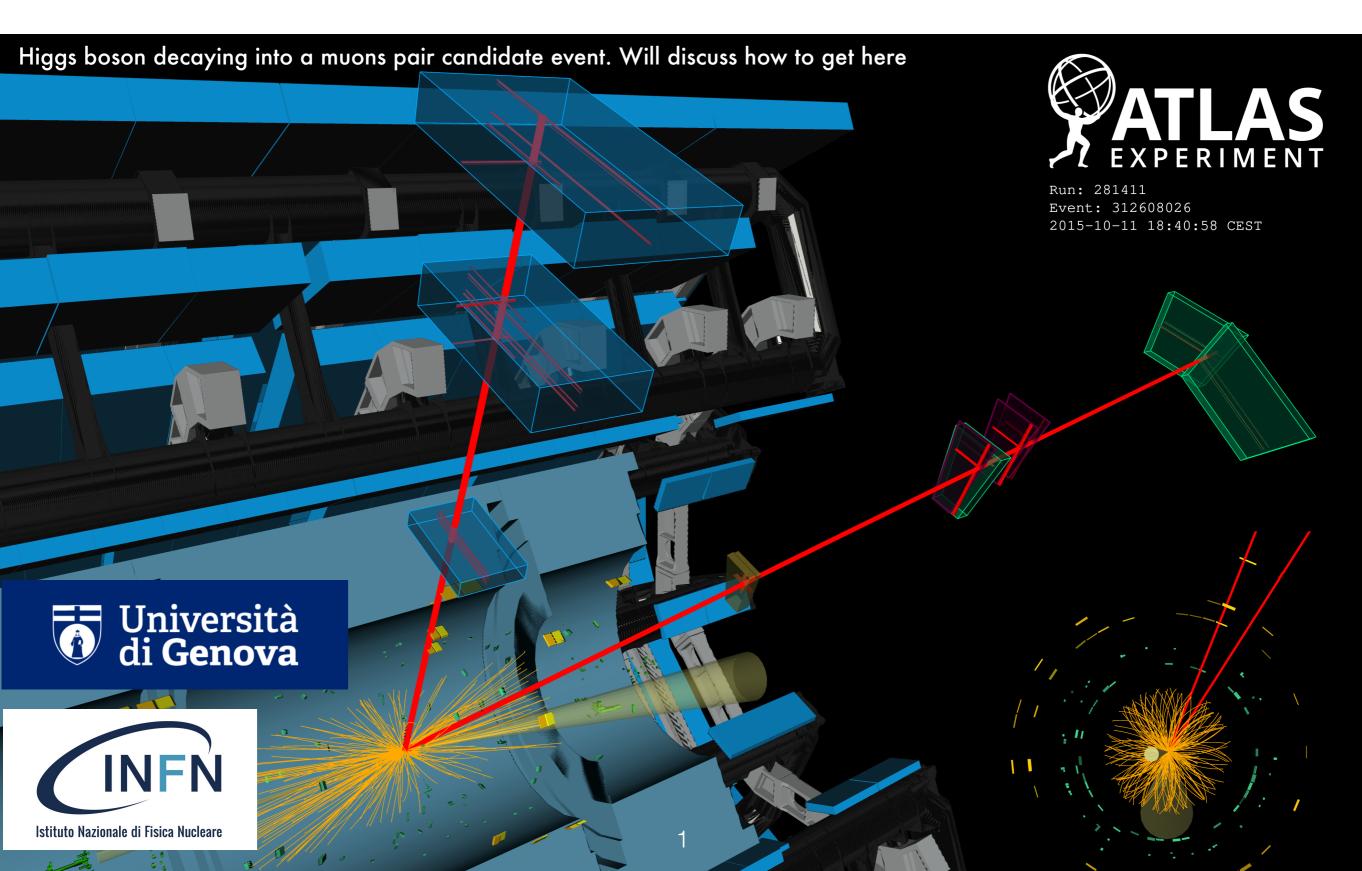
Studies on track finding algorithms based on machine learning with GPU and FPGA

F.A. Di Bello on behalf of the ATLAS TDAQ collaboration

Real Time IEEE 2024



Introduction

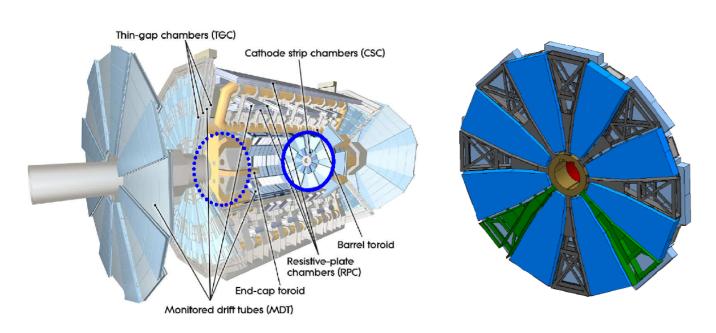
- The ATLAS experiment is presently successfully collecting data
- Strong effort to upgrade its trigger system from RUN2 to RUN3
- Special effort particularly towards muon trigger upgrades, where a new detector, the small wheel has been installed

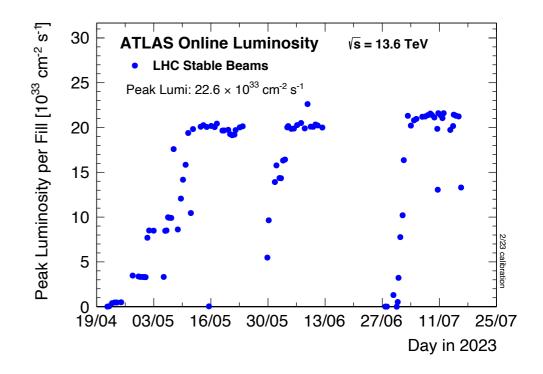
The main object of the talk:

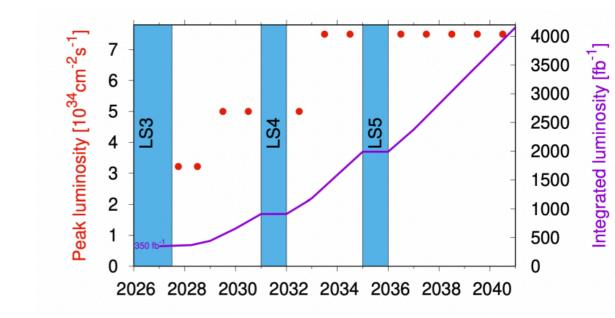
F. A. Di Bello

- Discuss possibility to include ML algorithms for muon tracking
- At the HL-LHC, an heterogeneous high-level triggering farm is considered,

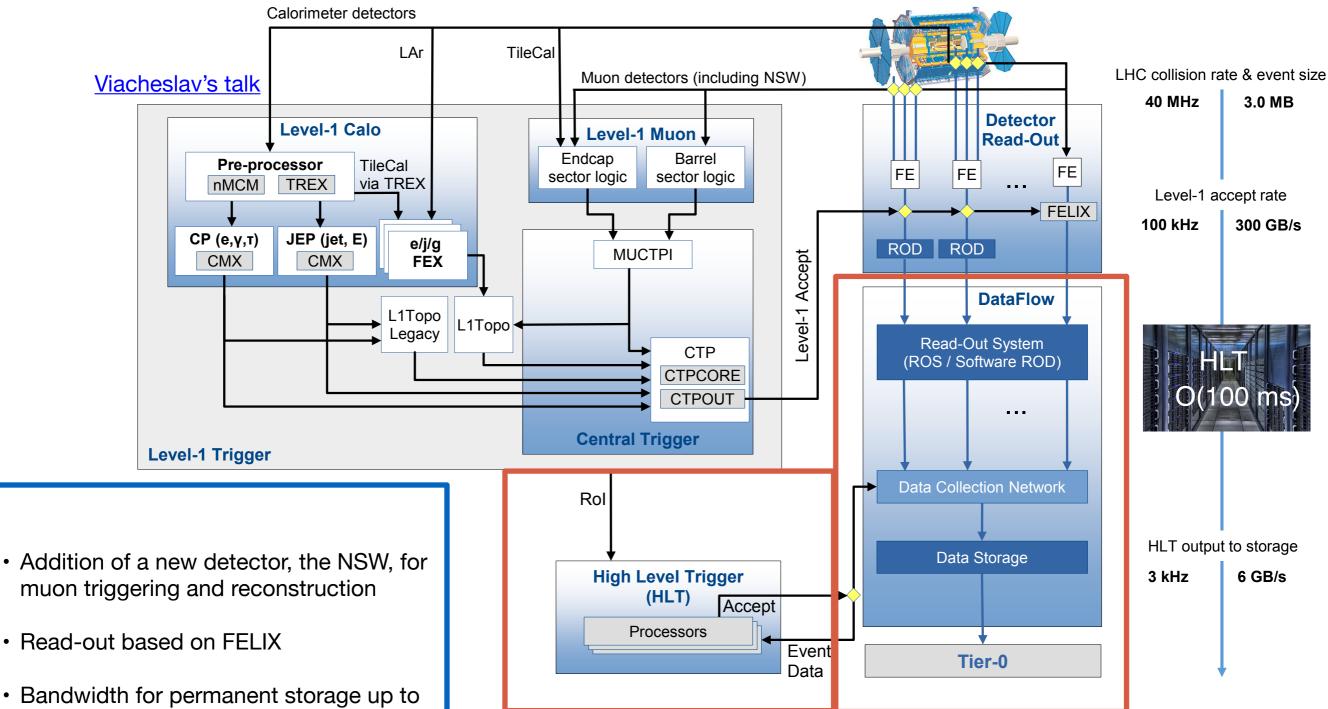
compromise between performance, costs, power-consumption







The ATLAS trigger system in RUN3



Aim of the talk:

Can accelerator cards commercially designed for machine learning application be helpful for the muon trigger system?

- muon triggering and reconstruction
- Read-out based on FELIX
- Bandwidth for permanent storage up to 8 Gb/s (higher than nominal at 6 Gb/s)
- ATLAS Event Filter farm will migrate to a heterogeneous system of CPU/GPU/ FPGA for the HL-LHC [TDR]

The toy model used in this study

To speed up R&D part of the study, a toy model is simulated

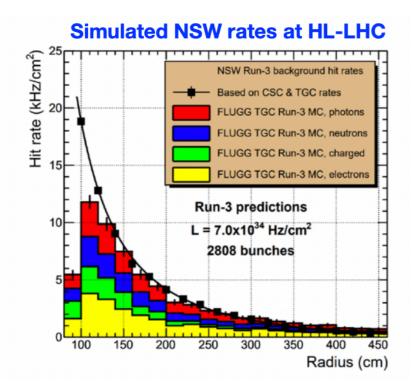
Geant4 based toy model for a generic detector, inspired by the NSW geometry

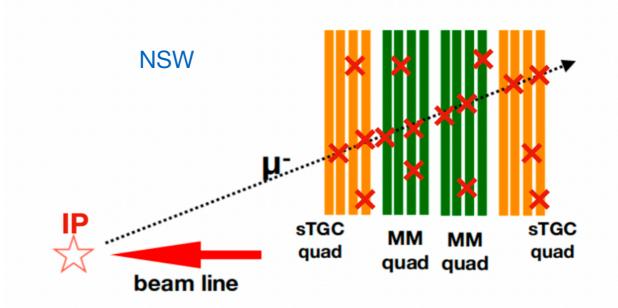
Different noise rate are tested: 2, 5, 10, 15 kHz/cm² (affects the occupancy of single events)

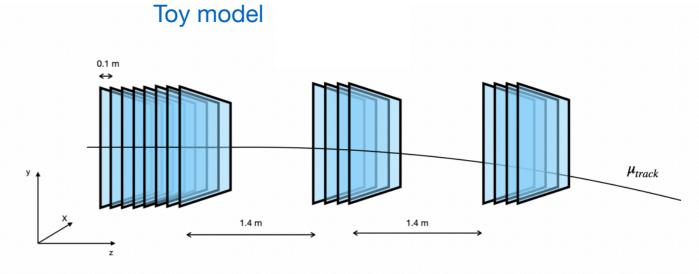
Samples produced with O(10M) events

F. A. Di Bello

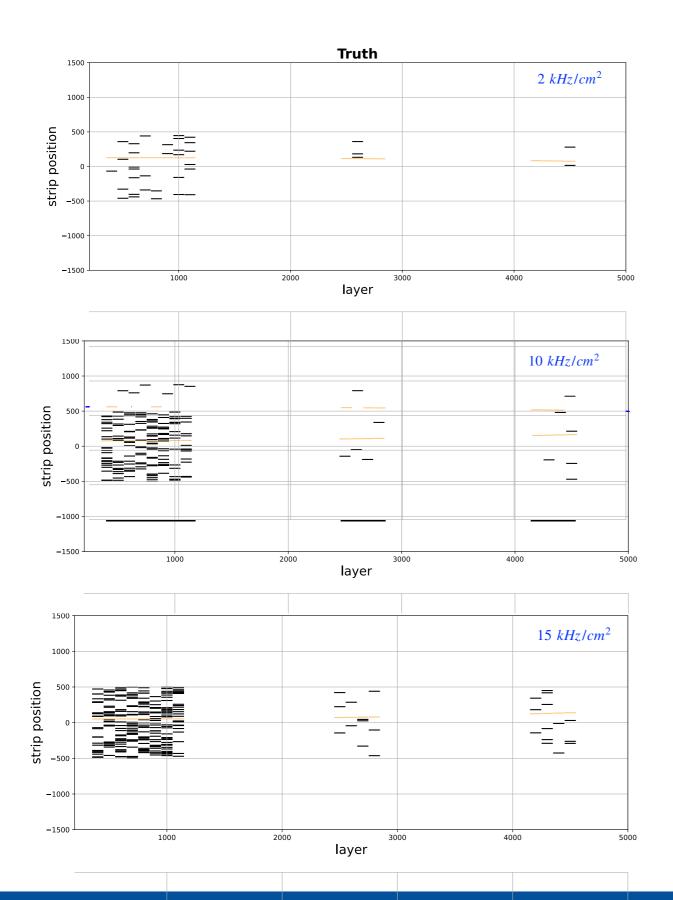
Effects from correlated background is also emulated: e.g. electrons from material interactions downstream the detector







Occupancy examples



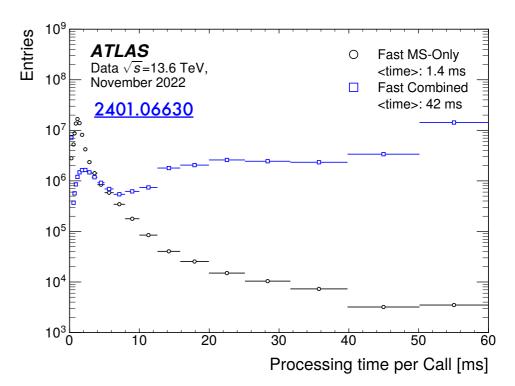
Will not discuss how to get predictions

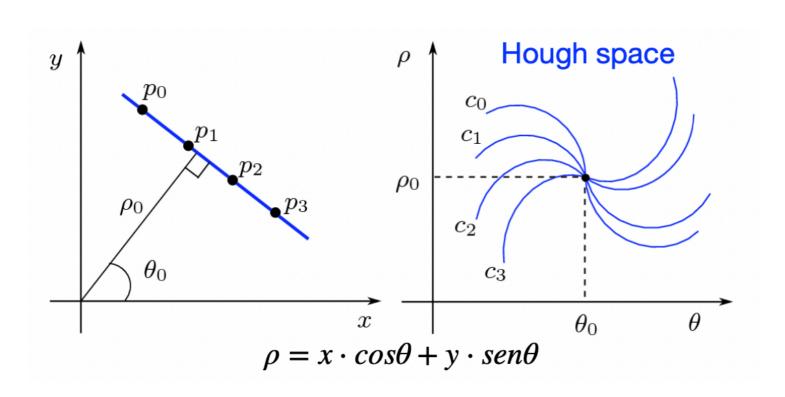
U. Di Genova

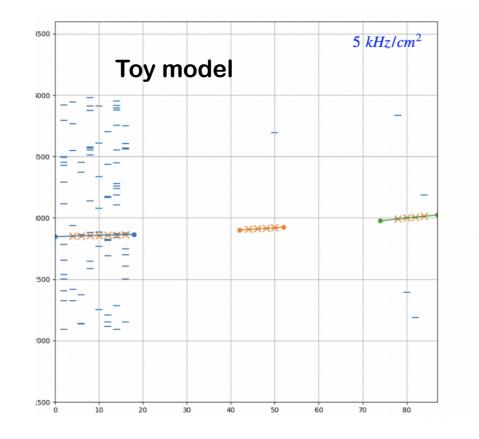
F. A. Di Bello

Muon trigger system timing performance

- Trigger algorithms based on Hough transform (HT)
- Standard in muon tracking since several years: simple and performant algorithms, but comes with caveats...
 - 1. High level of fine tuning needed: (binning, number of hits in maxima)
 - 2. Number of fakes increases with occupancy
 - 3. Number of inference time increases with occupancy





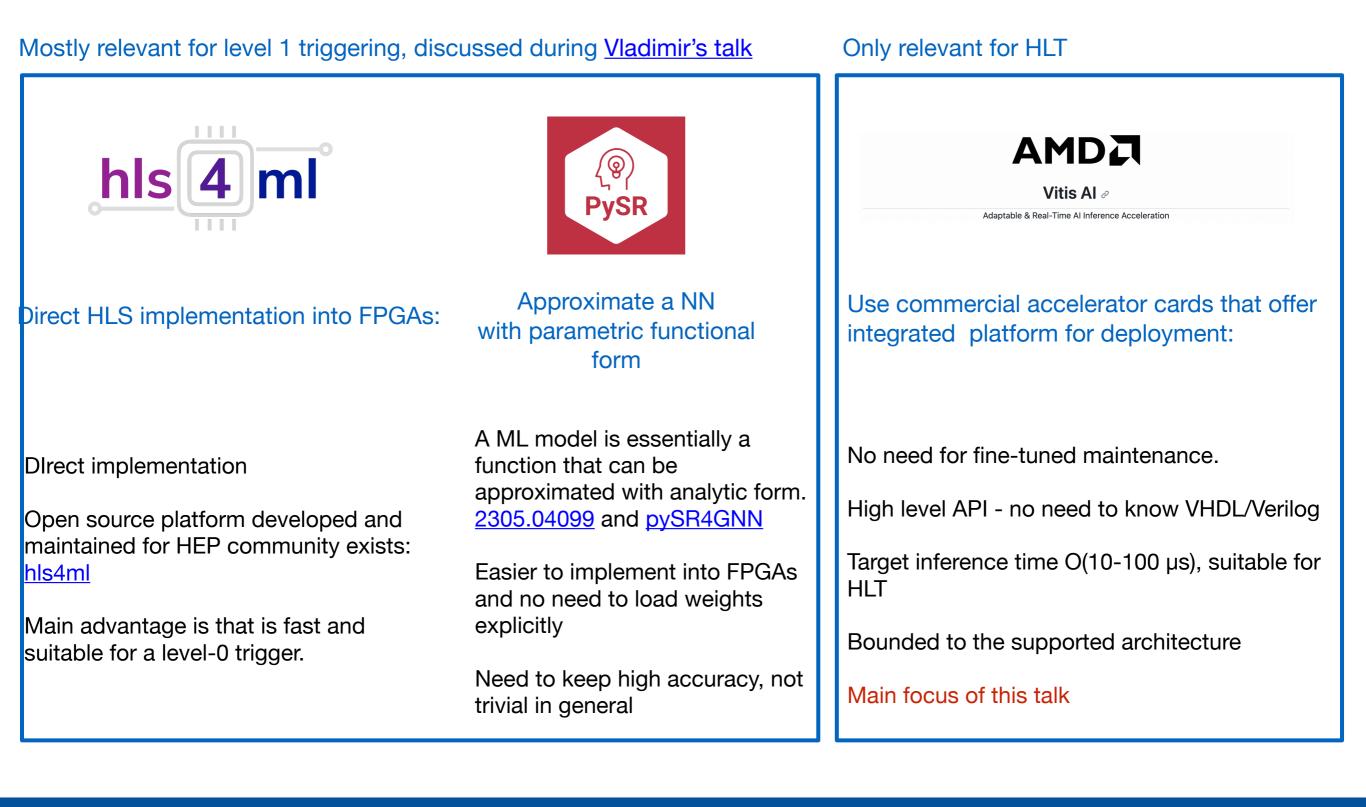


U. Di Genova

F. A. Di Bello

FPGAs usage for machine learning applications

The field of development is very active, with various possibilities available. The typical trade-off lies between customizable solutions, performance, and the simplicity of implementation and maintenance



The hardware tested

Xilinx AMD developer several accelerator cards to boost ML inference: <u>cards overview</u> High Level-API: <u>Vitis-AI</u>, more recently also <u>Zebra Mipsology</u>

U250: evaluation card

Based on UltraScale+ LUT: 1728K Off-Chip DDR memory: 64GB Off-Chip DDR bandwidth: 77 GB/s Network Interface: 2x QSFP28 Cost is approximately: 7-10k euro

ML models: DNN and CNN

<image>

U50: evaluation card

Based on UltraScale+ LUT: 872k HBM2 memory: 8GB HBM2 bandwidth: 316 GB/s Network Interface: 1 x QSFP28 Cost is approximately: 2-4k euro

ML models: DNN and CNN * <u>U50LV</u> also supports RNN VCK5000: development card

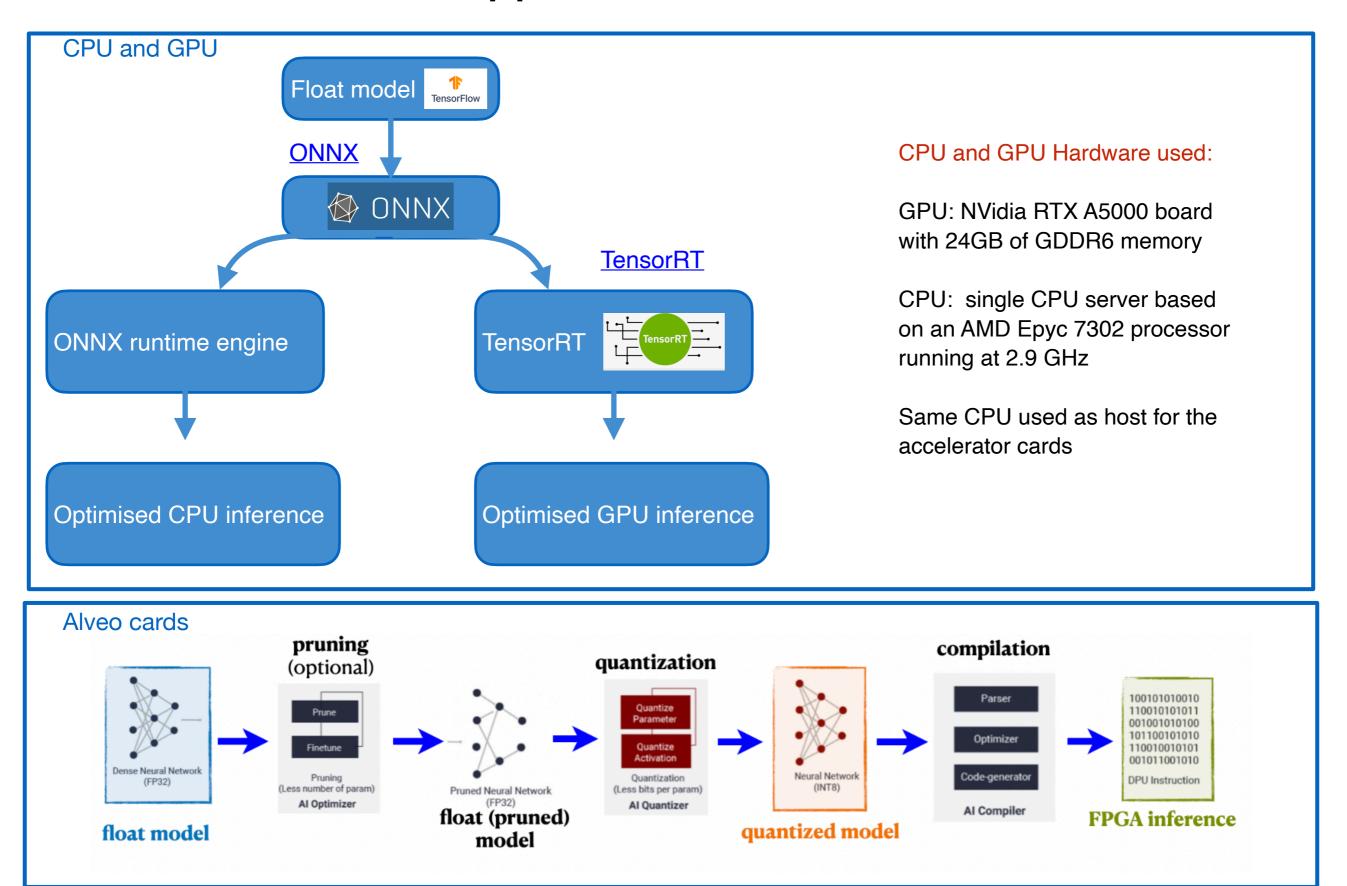
Based on AMD 7nm Versal LUT: 900k Off-Chip DDR memory: 16GB Off-Chip DDR bandwidth: 102 GB/s Network Interface: 2x QSFP28 C/C++ API also available Cost is approximately: 10-15k euro

ML models: DNN, CNN and RNN

U. Di Genova

Note: support for GNN still missing

Application overview

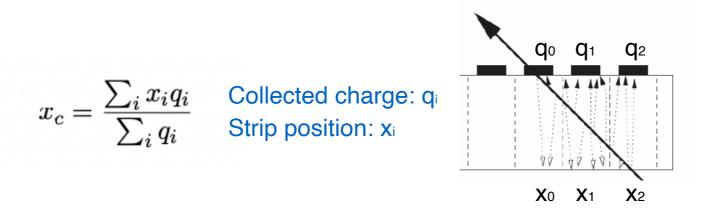


F. A. Di Bello

First application: cluster center position

A cluster is formed from neighbouring hits

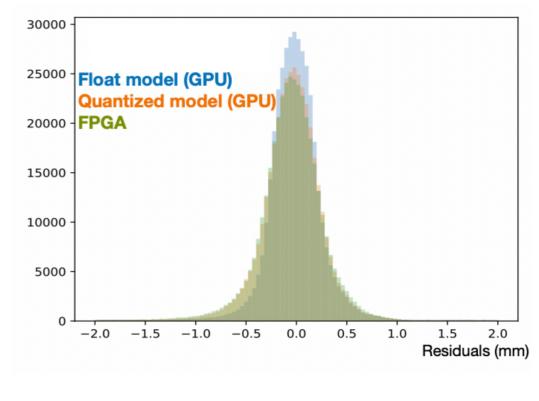
Typically, the weighted centroid of the cluster is used

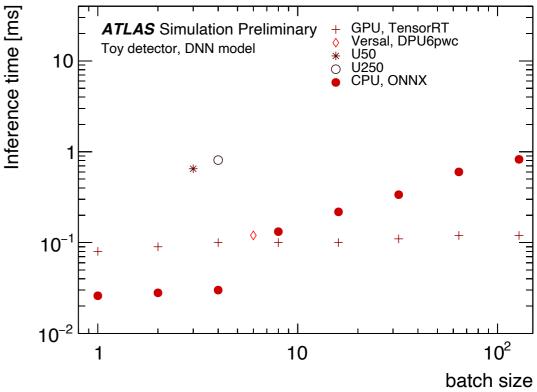


Depending on the incidence angle, collecting field, and magnetic field, the centroid estimation is inaccurate

A simple DNN based on ToT and spatial coordinate O(50k) parameters and 20 input variables. It improves up to 50% depending on the incident angle

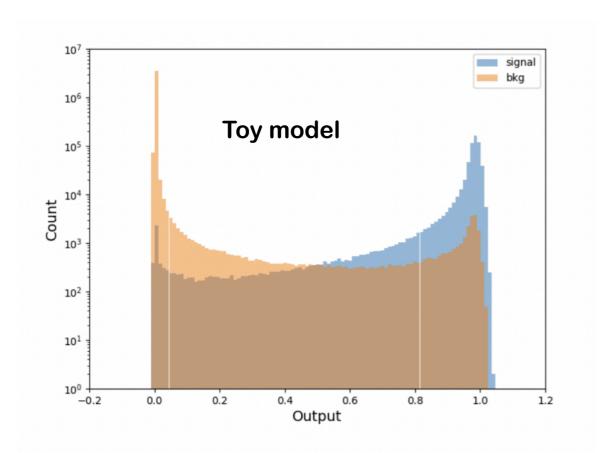
NB: inference time here are not a simulation, are real processing times obtained on the U50, U250 and Versal VCK5000

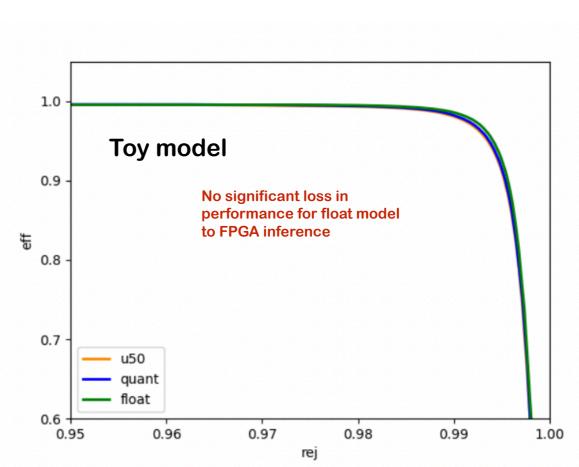


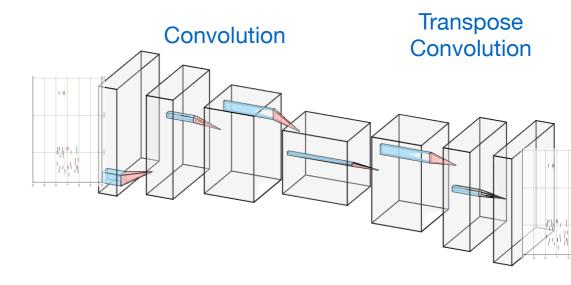


Alternative: a CNN approach

- In order to test the algorithm with Alveo cards, a CNN was also developed
- A CNN is not an optimal approach for pattern recognition tasks but it is useful for testing FPGA performance
- The number of parameters of the CNN model is O(50k)
- An event display is translated into a 3000x16 pixel 2D image, and convolution/deconvolution operation are used
- The output is an image whose intensity indicates the probability of the hits being associated to the muon



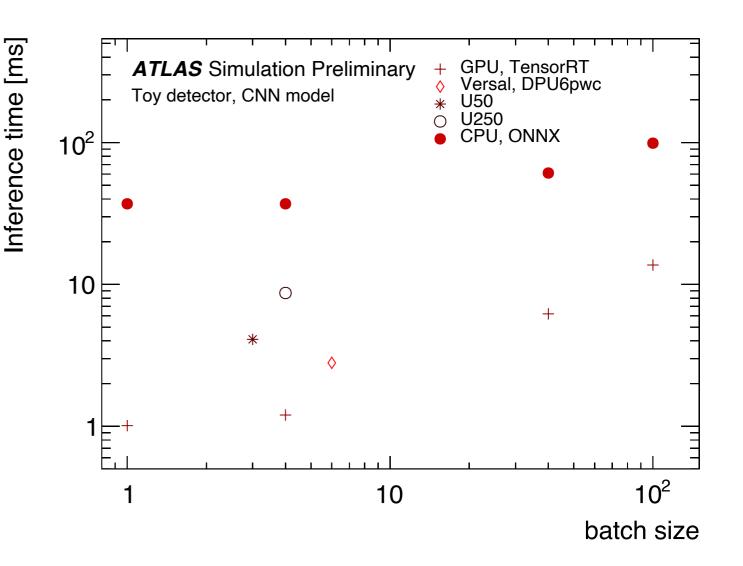




F. A. Di Bello

Comparison CNN

- CNN model successfully tested on CPU, GPU and several FPGAs
- Overall CPU already meets the requirement imposed by the HLT latency
- Largest improvement is seen with TensorRT on GPU.
- Study on CPU load will be performed, together with power dissipations
- Keep in mind this task does not need very deep CNN!

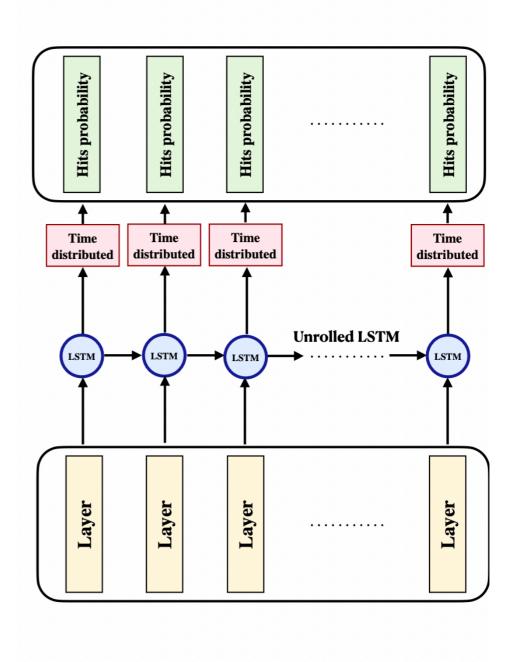


U. Di Genova

NB: no scaling for hit rate (single event occupancy) at inference time, as expected

Pattern recognition with an RNN

- Inputs are output of the previous DNN (position of the particle crossing within each cluster)
- Free parameter of the network O(300k)
- More sophisticated ML approaches such as GNN and/ or transformers are not yet supported by Alveo cards
- In the RNN approach, consequent layers are ordered based on their position
- Three possibilities: outside-in or, inside-out, or also bidirectional
- Even if in principle supported, we failed to run RNN over the VCK500 card, tried Vitis-AI tag v3.5



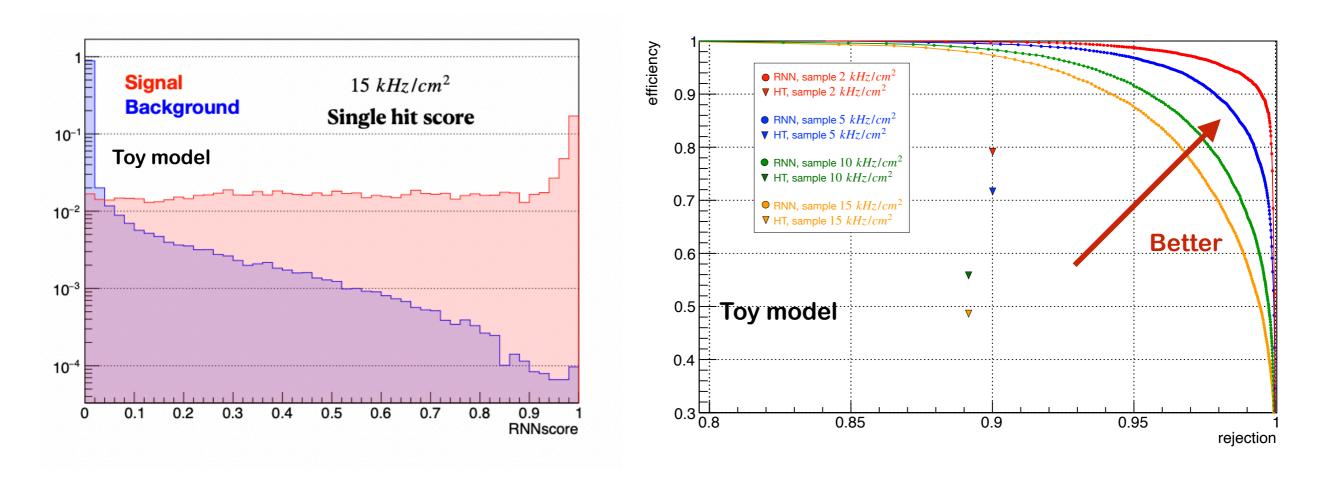
U. Di Genova

F. A. Di Bello

RNN performance results

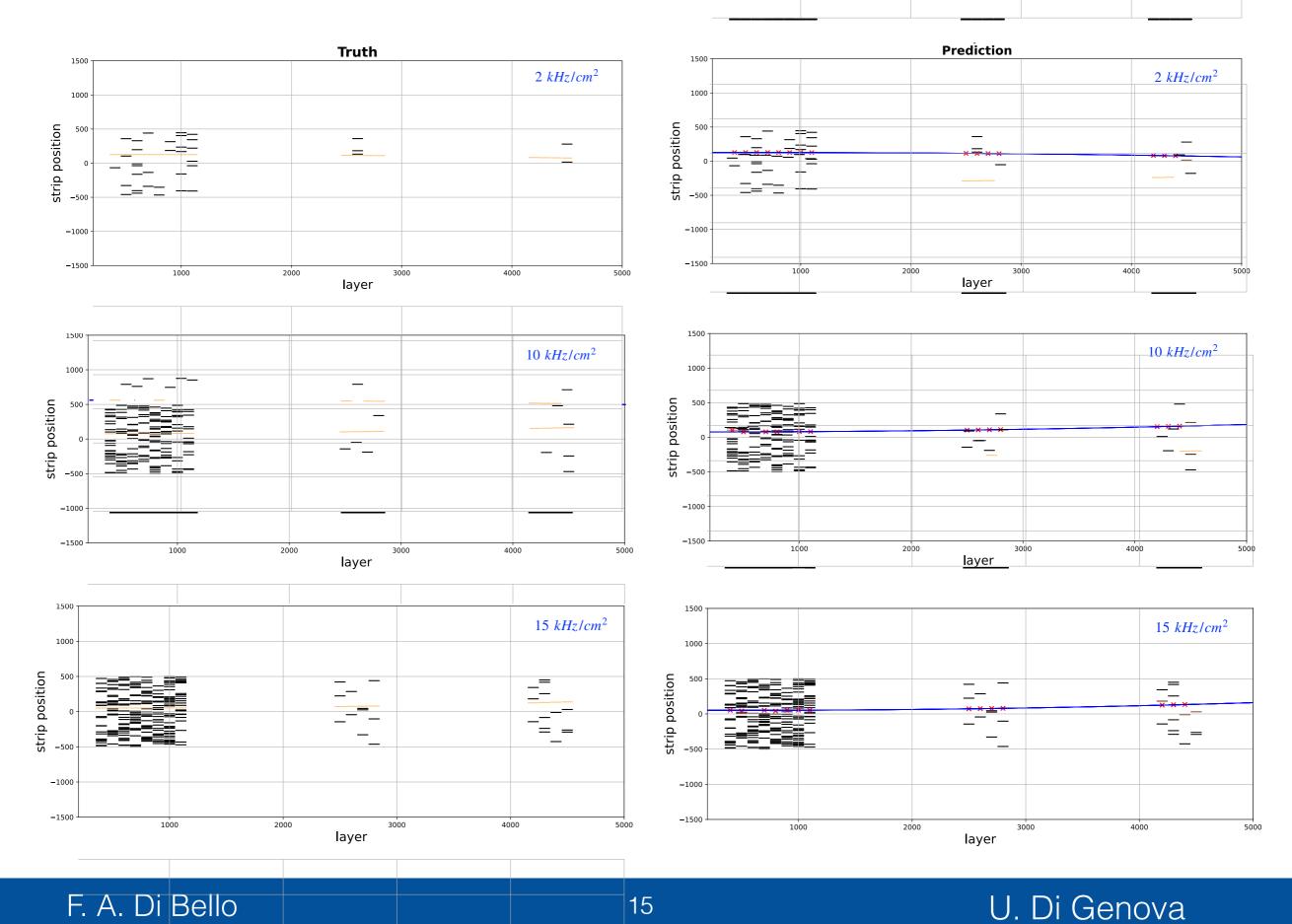
Performance evaluated for different rates, generally, a decrease of performance is seen at higher rates, as expected

Hough Transform used as benchmark, NB: not very much fine tuned or optimised



Remember that this performance are based on a realistic toy, full implementation in ATLAS ongoing

Occupancy examples



F. A. Di Bello

15

RNN timing results

Tested on CPU (single core and multi-core) via ONNX, and on GPU with built-in tensor-flow and accelerated with TensorRT

NB: these numbers are from real ATLAS RUN3 data, not on the toy model.

Batch size = 1	Inference time (s)	ONNX CPU load/ core	GPU load
CPU 1 core	1.5E-03	100%	-
CPU 10 cores	1E-03	100%	-
GPU tensorRT	2E-02	_	23%

Batch size=1e3	Inference time (s)	ONNX CPU load/ core	GPU load
CPU 1 core	8.5E-01	100%	-
CPU 10 cores	1E-01	100%	-
GPU tensorRT	2E-02	-	50%

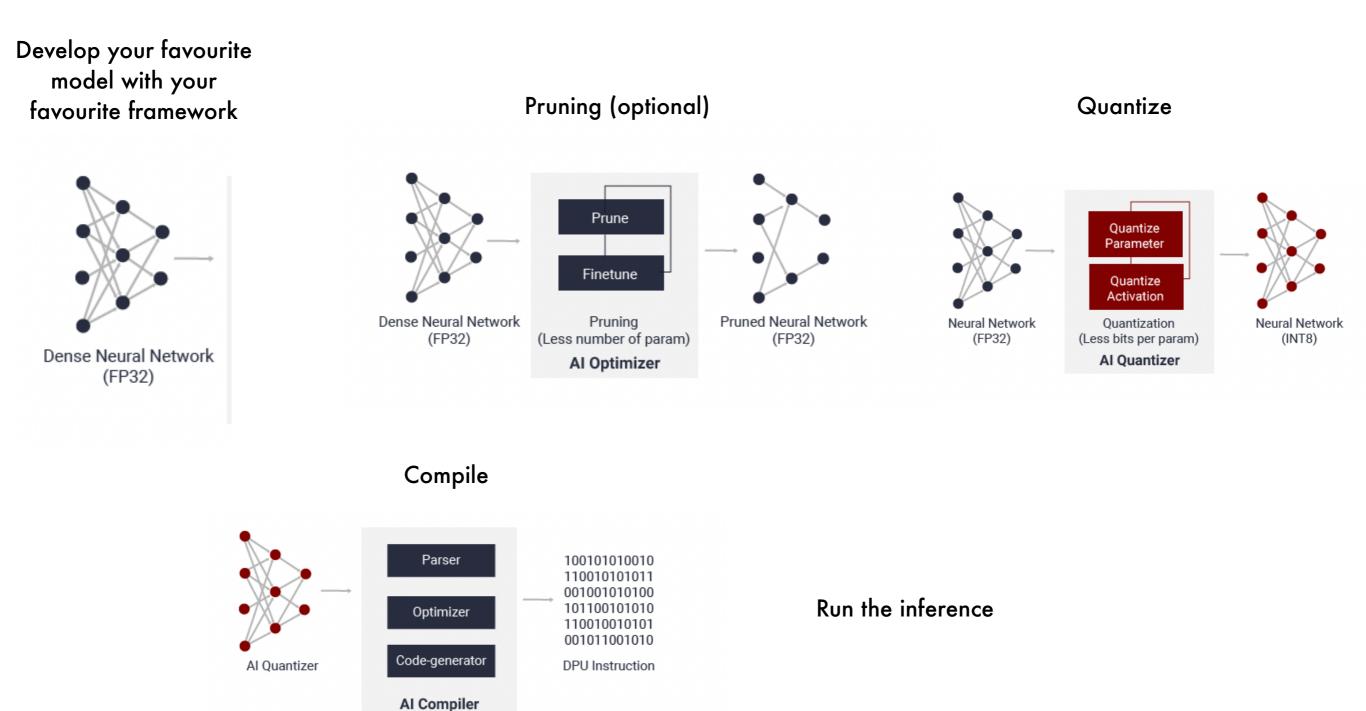
CPU load when running over GPU yet to be tested. Test on VCK5000 work in progress.

F. A. Di Bello

Conclusions

- · Study on novel possibilities in the muon HLT algorithms
- Maintain good efficiency/rejections at high occupancy (good news for HL-LHC)
- DNN and CNN model successfully tested on three Alveo cards
- Inference time generally O(ms) and within latency requirement of HLT
- RNN implementation into FPGA is under way
- Once done, power consumption, and CPU load when running on each accelerators will be studied

Workflow to use Alveo cards



F. A. Di Bello

Varying the batch size

Main point is that tensorRT does not work with dynamic batch sizes tensorRT TensorFlow Model ONNX model New ONNX model with fix bs import onnx onnx_model = onnx.load_model('model_singleLoss.onnx') $BATCH_SIZE = 1$ inputs = onnx_model.graph.input for input in inputs: dim1 = input.type.tensor_type.shape.dim[0] dim1.dim_value = BATCH_SIZE model_name = "model_singleLoss_mod.onnx" onnx.save_model(onnx_model, model_name)

Models we are interested in

RNN:

Layer (type)	Output Shape	Param #
input_1 (InputLayer)	[(None, 16, 100)]	0
lstm (LSTM)	[(None, 16, 200), (None,	240800
lstm_1 (LSTM)	[(None, 16, 20), (None, 2	17680
time_distributed (TimeDistri	(None, 16, 51)	1071
Total params: 259,551 Trainable params: 259,551 Non-trainable params: 0		

Layer (type)	Output Shape	Param #
input_1 (InputLayer)	[(None, 3000, 16, 1)]	0
conv1 (Conv2D)	(None, 3000, 16, 2)	194
pool1 (MaxPooling2D)	(None, 1500, 16, 2)	0
conv2 (Conv2D)	(None, 1500, 16, 4)	100
pool2 (MaxPooling2D)	(None, 750, 16, 4)	0
conv3 (Conv2D)	(None, 750, 16, 8)	392
pool3 (MaxPooling2D)	(None, 375, 16, 8)	0
conv4 (Conv2D)	(None, 375, 16, 16)	6160
pool4 (MaxPooling2D)	(None, 375, 8, 16)	0
conv5 (Conv2D)	(None, 375, 8, 16)	32784
Tconv0 (Conv2DTranspose)	(None, 375, 16, 2)	258
Tconv1 (Conv2DTranspose)	(None, 750, 16, 4)	68
Tconv2 (Conv2DTranspose)	(None, 1500, 16, 8)	264
Tconv3 (Conv2DTranspose)	(None, 3000, 16, 16)	1040
output (Conv2D)	(None, 3000, 16, 1)	49

Total params: 41,309 Trainable params: 41,309 Non-trainable params: 0

F. A. Di Bello

U. Di Genova

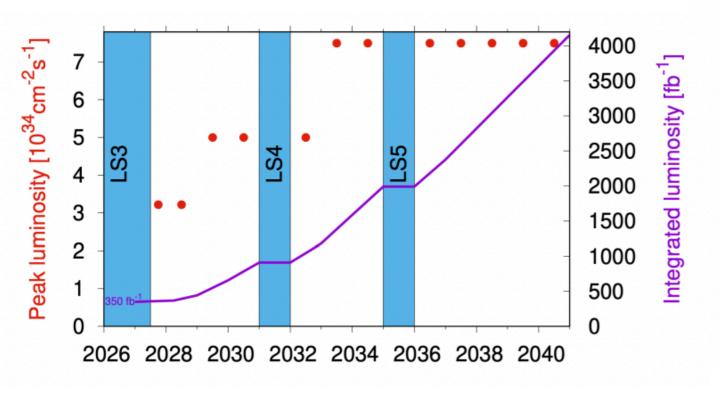
CNN:

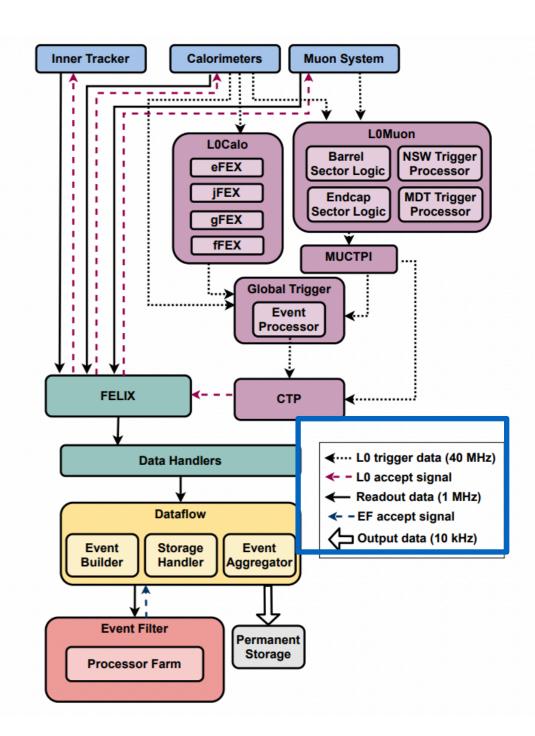
ATLAS HL-LHC trigger system

The work here is relevant for future RUN3 operations, but most importantly for triggering at HL-LHC

High luminosity and pile-up makes trigger decisions much more challenging

We will mostly consider as use-case muon system, for future applications to muon tracking





U. Di Genova

TDR trigger HL-LHC

The toy model used in this study

ATLAS NSW Preliminarv Cluster rate [Hz cm⁻²] 14000 $p+p \sqrt{s}=13.6 \text{ TeV}$, year 2022 12000 sTGC strips Sector A06, 1st strip, 1st layer 10000 Run number 440199 8000 6000 4000 2000 0<u>.</u> 0.5 1.5 2 2.5 Luminosity [10³⁴ cm⁻² s⁻¹]

U. Di Genova

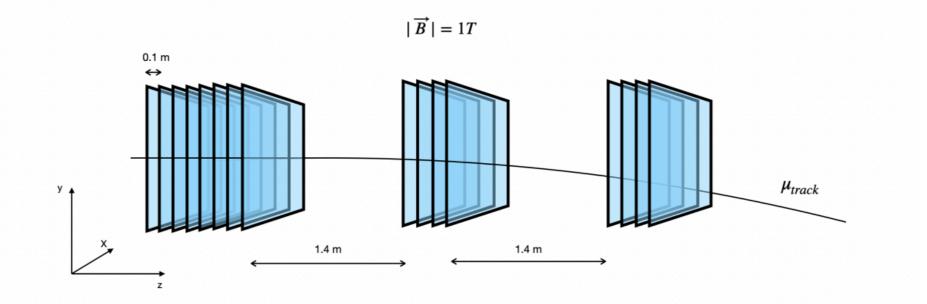
To speed up R&D part of the study, a toy model is simulated

Toy model is inspired by a muon system

4 samples produced with different noise rates: 2, 5, 10, 15 kHz/cm**2

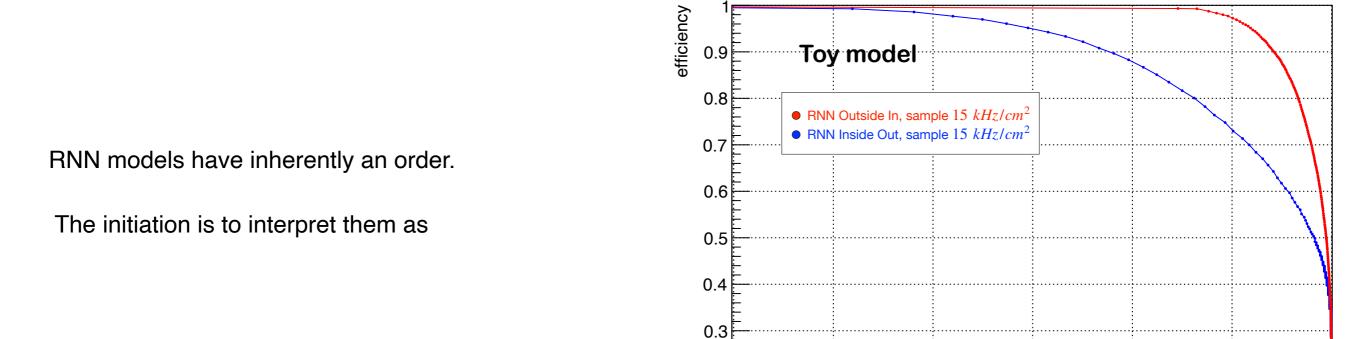
Effect from correlated background is also emulated

Will now discuss the main reco steps for tracking: clustering and pattern reco and their performance on CPU/GPU and FPGAs



RNN performance results

M. Carnesale PhD Thesis



0.2

0.1⊾ 0.4

0.5

0.8

0.9

rejection

0.7

0.6

F. A. Di Bello

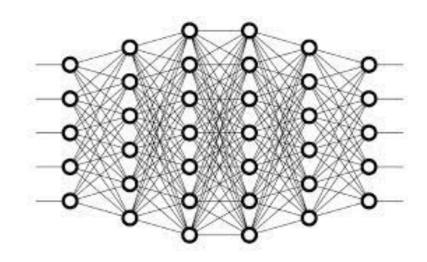
The Deep Neural Net approach

A deep neural network is used (similar to what done in the inner silicon tracker <u>ref</u>)

Inputs are:

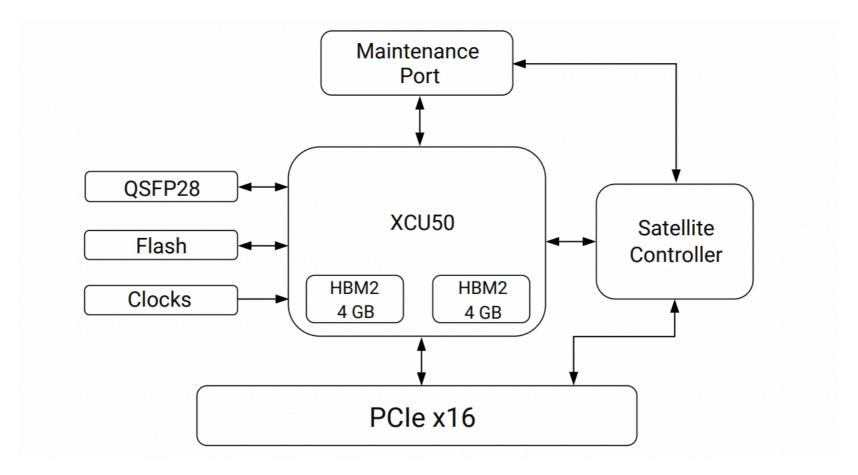
- 1. The total number of hits belonging to the cluster
- 2. The charge of the strip with highest charge
- 3. The charge of its two left-right closest neighbours
- 4. The position of the strip with highest charge
- 5. The Position of its two left-right closest neighbours

NB: if the cluster has less than 5 strips, zero-padding is employed



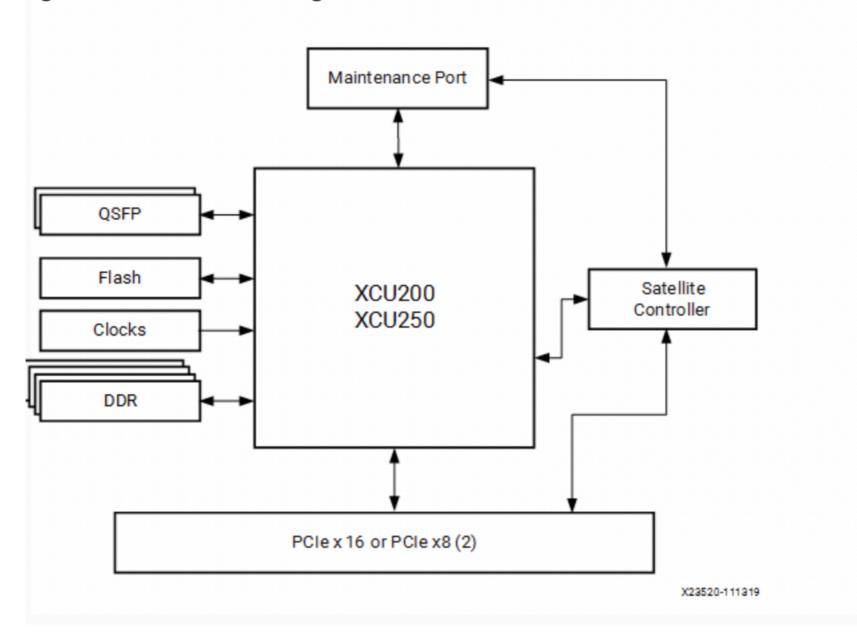
Standard regression using as target the true crossing position of the muon

U50



U250

Figure: U200/U250 Block Diagram



F. A. Di Bello

26