Advances in STCF ECAL readout electronics

Hanlin Yu, Zhongtao Shen, Yunlong Zhang, Zekun Jia, Yong Song, Yue Long, Shubin Liu

State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei City, Anhui Province, China

Presented by Hanlin Yu

Apr 22nd to 26th, 2024, ICISE, Quy Nhon, Vietnam

Poster ID: #22

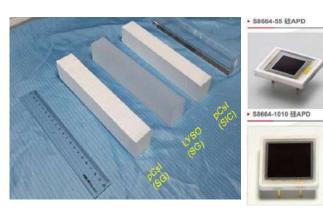
24th IEEE Real Time, 2024

UNIVERSITY OF SCIENCE AND TECHNOLOGY OF CHINA

Overall Design of Electronics

Super Tau Charm Facility, STCF

- Fast response probe spectrometer
- Collision energy: 2 7 GeV
- Collision brightness: 1×10³⁵ cm⁻² s⁻¹


Electromagnetic Calorimeter, ECAL

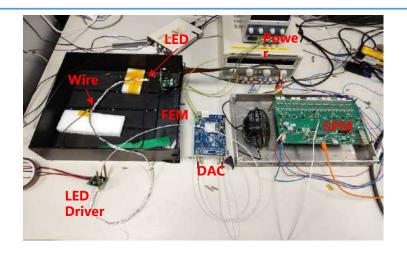
- Target particle: Terminal photon
- Measurement of energy at high brightness

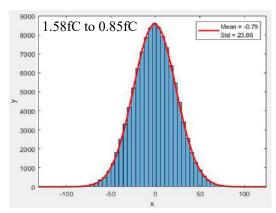
Challenges & Solutions

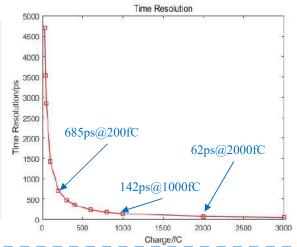
- low noise
 - CSA circuit
- High time resolution & High Sample Rate
 - Time&&litude extraction algorithm

Algorithm and Simulation Platform

Background signal simulation platform


 LEDs are driven to emit light using a DAC controlled by FPGA and collected by an APD to simulate the background signals


Time&&litude extraction algorithm Algorithm


- Get time and energy information altogether
- Baseline noise : 1.65fC→0.85fC
- Timing Resolution: 685ps@200fC, 62ps@2000fC

Summary

Completed the key technical research of readout electronics

Thank You for Watching & Welcome to Discuss

Session: Poster B (#22)

Date & Time: 25/04/2024, Tuesday – 11:55 (Asia/Ho Chi Minh, Time Zone)