

Locating The Radiation Source Using Timepix

Nguyen Ngoc Quoc Trinh ${ }^{1,2}$, Van Thi Thu Trang ${ }^{1,2}$, Le Tien Hieu, Trinh Gia Minh, Dang Ngoc Van Anh, Cao Le Phuong Tam, Hoang Thi Kieu Trang ${ }^{1,2}$

1. Department of Nuclear Physics, Faculty of Physics and Engineering Physics, University of Science, Ho Chi Minh City, Vietnam
2. Vietnam National University, Ho Chi Minh City, Vietnam

Email: nnqtrinh@gmail.com, htktrang@hcmus.edu.vn

24th IEEE Real Time Conference

ICISE, Quy Nhon, Vietnam
Quy Nhon, April 25, 2024

Locating The Radiation Source Using Timepix

$$
\begin{gather*}
n=S \times \varepsilon \times \frac{\Omega}{4 \pi} \tag{1}\\
\Omega=\cos \alpha \frac{A}{R^{2}} \tag{2}
\end{gather*}
$$

Detector

Figure 1. Illustration of the relative positions of the source and detector

- Rotating the detector around the z-axis by an angle of θ will change α.
- The $\cos (\alpha)$ will be largest when $\overrightarrow{\mathrm{n}}, \overrightarrow{\mathrm{OS}}$, and the z -axis are coplanar $\left(\theta=0^{\circ}\right)$.

This results in the largest solid angle and count rate.

Figure 2. The net count rate of dots $\left(n_{s}\right)$ depending on the detector rotation angle (θ)

Locating The Radiation Source Using Timepix

Nu
vir
Lab HCMUS

Limits of detectability

Dependence of the count rate on the detector
rotation angle on the detector
rotation angle
Classification of clusters and histogram of energy

